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Abstract. The Brinkman equation is used to model the isothermal flow of the Newto-
nian fluids through highly permeable porous media. Due to the multiscale behaviour
of this flow regime the standard Galerkin finite element schemes for the Brinkman
equation require excessive mesh refinement at least in the vicinity of domain walls to
yield stable and accurate results. To avoid this, a multiscale finite element method is
developed using bubble functions. It is shown that by using bubble enriched shape
functions the standard Galerkin method can generate stable solutions without exces-
sive near wall mesh refinements. In this paper the performances of different types of
bubble functions are evaluated. These functions are used in conjunction with bilin-
ear Lagrangian elements to solve the Brinkman equation via a penalty finite element
scheme.

PACS (2006): 47.11.-j, 47.11.Fg, 47.11.St

Key words: Finite element, multiscale method, porous media, Newtonian fluid flow, bubble func-
tion, static condensation.

1 Introduction

In a porous medium, flow can be represented by different types of governing equations
depending on the range of the permeability of the domain and the flow Reynolds num-
ber [1]. In highly permeable porous media, low Reynolds number flow regimes can be
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represented by the Brinkman equation. In this type of flow where permeability of porous
matrix is high the fluid carries some of the imposed stress. This effect rises sharply in near
wall layers as the permeability of porous media decreases. It is interpreted as the flow
system having different scales, a “fine scale” in the near wall zone and a “coarse scale”
in the rest of the domain. Therefore, theoretically accurate modelling of the Brinkman
regime can only be obtained via excessive mesh refinement of the solution domain, at
least in the region of the boundary layer [2]. However, the thickness of the boundary layer
is not known a priori and depends on the domain permeability. This in turn makes the
classical schemes such as the standard Galerkin method unsuitable for a multiscale prob-
lem such as the Brinkman equation [3]. These types of problems can be modelled using
multiscale variational methods [4, 5]. These techniques are currently used to solve prob-
lems related to turbulent flows, structural analysis of composite materials, flow through
porous media, weather forecasting and large-scale molecular dynamic simulations. Rep-
resentation of all physical scales need a high level of discretisation which is a common
difficulty with these problems. To have stable-accurate solution, the multiscale method
should be capable of incorporating the influence of the fine-scales while using discretisa-
tion at a coarse level to avoid excessive mesh refinement. In a two-scale method, the field
unknown is divided into two parts as u=u1+ub, where ub is known as fine, sub-grid or
unresolved scale which may be derived analytically and u1 is known as coarse or resolved
scale where is represented by a standard polynomial finite element approximation.

In spite of theoretical progresses in this area the development of algorithms which
enable implementation of the theoretical considerations in practice is not a trivial matter
[6]. Bubble functions can be incorporated in a finite element discretisation to generate a
multiscale scheme. These functions are, typically, high order polynomials which vanish
on the element boundaries [7–11]. The bubble functions can be systematically derived
using the residual free bubble method [12–15]. The essential idea of this method is that
the bubble functions should satisfy, strongly, the model differential equation within each
element subject to homogeneous boundary conditions. In multi-dimensional problems,
the analytical solution of a partial differential equation (PDE) in the residual free method
within each element is a major task. The analytical solution of a PDE can be replaced
by the analytical solution of an ODE (ordinary differential equation), in the residual free
bubble function method. To this end the exact solution of the ODE is approximated by
the Taylor series expansion and the multi-dimensional bubble functions are derived by
tensor product of one dimensional bubbles.

In the present work, a continuous penalty scheme is used to evaluate polynomial
bubble functions in multiscale finite element solution of the flow in porous media with
curved and contracting boundaries using the Brinkman equation. The method of incor-
porating bubble functions with Lagrangian shape functions using static condensation
method, derivation of two dimensional bubble functions and elimination of the bound-
ary integrals are explained. The numerical results are validated with analytical solution
in a simple rectangular domain and then the isothermal flow of a Newtonian fluid is
studied in different domains.
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Figure 1: Rectangular flow domain (domain 1) and boundaries used for model validation.

2 Governing equations

The governing equations of isothermal flow of Newtonian fluids in a porous duct with
impermeable walls (Fig. 1) in a two dimensional Cartesian coordinate system are given
by:
Continuity equation:

∂u

∂x
+

∂v

∂y
=0, (2.1)

x-component of the Brinkman equation:

−
∂p

∂x
−

µ

K
u+µe

(

∂2u

∂x2
+

∂2u

∂y2

)

=0, (2.2)

y-component of the Brinkman equation:

−
∂p

∂y
−

µ

K
v+µe

(

∂2v

∂x2
+

∂2v

∂y2

)

=0, (2.3)

where u and v are velocity components, p is pressure, µ is fluid viscosity, K is the do-
main permeability and µe is the effective viscosity that theoretically takes into account
the stress borne by the fluid as it flows through a porous medium. However, experi-
mental measurement of µe is not a trivial matter, if not impossible [1]. Therefore, in the
present work in accordance with overwhelming majority of the published literatures µe

is set to be equal to the fluid viscosity µ, e.g., [16–18].
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2.1 Boundary conditions

We use the following boundary conditions (see Fig. 1):

(i). Inlet to the domain
In accordance with majority of engineering flow processes at the inlet a plug flow
condition is applied. This can be written as follows:

u=0, v=v0 for 0< x<h and y=0, (2.4)

where h is the gap width in a rectangular domain.

(ii). At impermeable (solid) walls

u=0, v=0 for x=0 and 0≤y<h,

u=0, v=0 for x=h and 0≤y<h.
(2.5)

(iii). Exit
At the outlet a stress free condition is used, therefore both shear and normal com-
ponents of the surface forces are set to zero:

τyy

∣

∣

exit
=2µ

∂v

∂y
=0 for y=h, 0≤ x≤h, (2.6)

τyx

∣

∣

exit
= τxy

∣

∣

exit
=µ

(

∂u

∂y
+

∂v

∂x

)

=0 for y=h, 0≤ x≤h, (2.7)

τxx|exit =2µ
∂u

∂x
=0 for y=h, 0≤ x≤h. (2.8)

The use of “stress free” instead of “developed flow” conditions provides a more general
exit boundary condition enabling the simulation of realistic situations where the flow
development cannot be guaranteed.

2.2 Dimensionless form of the governing equations

To preserve the consistency of the numerical solutions we use the following dimension-
less variables [2]:

y∗=
y

h
, x∗=

x

h
, u∗=

uµ

ρgh2
, v∗ =

vµ

ρgh2
, p∗ =

p

ρgh
,

τ∗
xx =

τxx

ρgh
, τ∗

yy =
τyy

ρgh
, τ∗

yx =
τyx

ρgh
, τ∗

xy =
τxy

ρgh
,

where ρ is the fluid density, p is the pressure and g is acceleration due to gravity. Substi-
tuting the defined dimensionless variables in Eqs. (2.1)-(2.8) the following dimensionless
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governing equations are obtained:

∂u∗

∂x∗
+

∂v∗

∂y∗
=0, (2.9)

−
∂p∗

∂x∗
−

1

Da
u∗+

(

∂2u∗

∂x∗2
+

∂2u∗

∂y∗2

)

=0, (2.10)

−
∂p∗

∂y∗
−

1

Da
v∗+

(

∂2v∗

∂x∗2
+

∂2v∗

∂y∗2

)

=0, (2.11)

where Da is the Darcy parameter defined as:

Da=K/h2.

The corresponding dimensionless boundary conditions are expressed as:

(i). Entrance

u∗=0, v∗ =v∗0 for y=0, 0< x<1. (2.12)

In this work v∗0 was selected to be equal to 0.01. This is to assure that the flow
regime remains laminar and the inertia term can be neglected [1].

(ii). Impermeable walls

u∗=v∗=0 for x∗=0, 0≤y∗≤1,

u∗=v∗=0 for x∗=1, 0≤y∗≤1.
(2.13)

(iii). Exit
Stress free conditions expressed in the dimensionless form are imposed:

τ∗
yy =2

∂v∗

∂y∗
=0 for y∗ =1, 0≤ x∗≤1, (2.14)

τ∗
yx =τ∗

xy =

(

∂u∗

∂y∗
+

∂v∗

∂x∗

)

=0 for y∗ =1, 0≤ x∗≤1, (2.15)

τ∗
xx =2

∂u∗

∂x∗
=0 for y∗=1, 0≤ x∗≤1. (2.16)

3 Multiscale modelling

To explain the multiscale finite element modelling based on the bubble functions, the
multiscale variational and residual free bubble functions are presented.
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3.1 Multiscale variational method

In the variational multiscale method, the unknowns are divided into functions having
different scales. In a two-scale method this can be shown as

uh =u1+ub, (3.1)

where ub is known as the fine, sub-grid or unresolved scale and u1 is known as coarse
or resolved scale representing a standard finite element approximation polynomial (in-
terpolation function). In the multiscale variational formulation which is developed by
Hughes [4], for the sub-grid model we consider a Dirichlet problem as

{

Luh = f , in Ω (domain),
uh = g, on Γ (boundary),

where L is a differential operator. Using the definition of a bilinear form as a(•,•) the
variational formulation for the above equation is

a(vh,uh)=(vh,Luh),

where (•,•) represents a scalar product. Let

{

uh =u1+ub,
vh =v1+vb,

where we assume

ub =vb =0 on Γe (sub-domain boundary).

The variational formulation may be written as

a(vh,uh)=(vh, f ) or a(v1+vb,u1+ub)=(v1+vb, f ).

It can be written as two sub-problems

a(vb,u1)+a(vb,ub)=(vb, f ), (3.2)

a(v1,u1)+a(v1,ub)=(v1, f ). (3.3)

The Euler-Lagrange equations of the first sub-problem is

{

Lub =−(Lu1− f ), in Ωe (sub-domain),
ub =0, on Γe (sub-domain boundary).

(3.4)

Multiscale variational method uses the Green’s function approach to solve the above
equation [4].
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3.2 Residual free bubble function method

To solve (3.4), based on the residual free bubble function method the sub-grid scale is
divided into two parts as

ub =u0
b+u

f
b , (3.5)

where u0
b and u

f
b are, respectively, solutions of the following equations [11]:

{

Lu0
b =−Lu1 in Ωe,

u0
b =0 on Γe,

{

Lu
f
b = f in Ωe,

u
f
b =0 on Γe.

(3.6)

Assuming that φ is a bubble shape function and ψ is a polynomial shape function, then
Eq. (3.6) can be rewritten as

{

Lφi =−Lψi in Ωe,
φi =0 on Γe,

(3.7)

where ψi and φi are functions associated with node i, Ωe is the element domain and Γe is
the element boundary. Hence

{

Lφ f = f in Ωe,

φ f =0 on Γe,
(3.8)

and

uh =u1+ub =
n

∑
i=1

ui(ψi+φi)+φ f , (3.9)

where n is the number of nodes per element. To solve Eqs. (3.8) and (3.9) it is assumed
that [15]

Ni =ψi+φi. (3.10)

For the Brinkman equation, operator L is defined as

L=∆−
1

Da
. (3.11)

For a constant pressure drop assuming f =pd, where pd is the constant pressure drop (for
penalty method used in this work, this assumption is not necessary)

pd =−
∂p

∂y
. (3.12)

Substituting Eq. (3.10) into Eq. (3.7), for a linear element on each node we have







d2N1

dx2 − 1
Da N1 =0 for x∈ [0−l],

N1 =ψ1⇒

{

N1(0)=1,
N1(l)=0,

(3.13)







d2N2

dx2 − 1
Da N2 =0 for x∈ [0−l],

N2 =ψ2⇒

{

N2(0)=0,
N2(l)=1,

(3.14)
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where l is the characteristic element length and ψi is a linear shape function. The solu-
tion of the above equation gives bubble shape functions expressed in a local elemental
coordinate system as

N1 =
sinh

√

1
Da(l−x)

sinh
√

1
Da l

, N2 =
sinh

√

1
Da x

sinh
√

1
Da l

. (3.15)

If Eq. (3.8) is solved, φ f will be derived as

φ f = pdDa(1−(N1+N2))= pdDaφb, (3.16)

where φb is known as elemental bubble function [10].

4 Polynomial bubble functions

Hyperbolic functions in Eq. (3.15) can only be directly used if the integrals in the elemen-
tal equations are evaluated manually. However, this results in loss of flexibility and it is
desirable to convert them into polynomials to make it possible to use quadrature meth-
ods in a finite element program. The Taylor series expansion can be used to express these
functions as polynomials by truncating after a selected number of terms. For example,
truncating after the second term third order polynomial bubble functions are derived as

N1 =
(l−x)

(

1+ (l−x2)
6Da

)

l(1+ 1
6Da h2)

=
l−x

l
−

x(l−x)(2l−x)

l(6Da+l2)
, (4.1)

N2 =
x
(

1+ 1
6Da x2

)

l(1+ 1
6Da l2)

=
x

l
−

x(l−x)(l+x)

l(6Da+l2)
. (4.2)

In Eqs. (4.1) and (4.2) the second parts represent third order bubble functions














φ1 =
x(l−x)(2l−x)

l(6Da+l2)
,

φ2 =
x(l−x)(l+x)

l(6Da+l2)
.

(4.3)

Using a local coordinate system of ξ(−1,1) the bubble functions are written as



















φ1 =
(1−ξ2)(3−ξ)

8
(

1+ 6Da
l2

) =b(3−ξ)(1−ξ2),

φ2 =
(1−ξ2)(3+ξ)

8
(

1+ 6Da
l2

) =b(3+ξ)(1−ξ2),

(4.4)

where ξ =1−2x/l, b= 1
8 (1+6Da/l2)−1, and l is a characteristic element length.
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Using a similar procedure fifth order bubble enriched bilinear element can also be
derived as

{

φ1 = A[a(1−ξ2)+b(1−ξ2)(1−ξ)+c(1−ξ2)2+d(1−ξ2)2(1−ξ)],

φ2 = A[a(1−ξ2)+b(1−ξ2)(1+ξ)+c(1−ξ2)2+d(1−ξ2)2(1+ξ)],
(4.5)

where

A=
1

l
(

1+ l2

6Da + l4

120Da2

) , a=

(

−
l

6Da
−

l3

120Da2

)

l2

4
,

b=

(

−
l

6Da
−

3l2

120Da2

)

l3

8
, c=

2l5

1920Da2
, d=

l5

3840Da2
.

4.1 Static condensation

When the derived hyperbolic functions are approximated by the Taylor expansion, the
resulting polynomial bubble functions are no longer residual free. In theory, any func-
tion which is zero at the element boundary is a bubble function. The fact that bubble
functions disappear on element boundaries makes it possible to remove the equations
that correspond to these functions from the set of elemental equations. This procedure
is called static condensation [19]. In the residual free method, condensation takes place
automatically for the derived bubble functions. Therefore, the bubble functions incor-
poration with Lagrangian shape functions takes place automatically. Bubble coefficients
are calculated as a part of the condensation procedure. However, as an alternative other
bubble functions can be used to incorporate with linear Lagrangian shape functions by
means of the static condensation procedure. Two types of bubble functions are consid-
ered in this work. Based on derived polynomial in the residual free method and using
optional elemental polynomial bubble functions. The structure of the bubble polynomi-
als for the Brinkman equation can be considered as:

• Second order elemental bubble function:

φb =(1−ξ2), (4.6)

• Fourth order elemental bubble function:

φb =(1−ξ2)+(1−ξ2)2, (4.7)

• Sixth order elemental bubble function:

φb =(1−ξ2)+(1−ξ2)2+(1−ξ2)3. (4.8)
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According to the above polynomials it can be concluded that an m-th order elemental
bubble function may be written as

φb =(1−ξ2)+(1−ξ2)2+···+(1−ξ2)m =
m

∑
q=1

(1−ξ2)q. (4.9)

As another choice for the bubble functions we consider the following type of functions:

φb =(1−ξ2n), n=1,2,··· . (4.10)

To incorporate the bubble functions with ordinary shape functions, with respect to Eq. (3.1)
we have

uh =ψ1u1+ψ2u2+φbub, (4.11)

where ψi in this work is the Lagrangian linear shape function and φb is the polynomial
bubble function. Using the static condensation procedure the bubble enriched one di-
mensional shape functions can be generally derived as

Ni =ψi+bφb, (4.12)

where b is the bubble coefficient and is derived during the implementation of the static
condensation method (3.2).

4.2 Derivation of two dimensional bubble functions

Two dimensional bubble functions, required for practical implementations, can be de-
rived using tensor products of one dimensional functions. The derived bubble func-
tions are then incorporated into normal interpolation functions of bilinear Lagrangian
elements to obtain shape functions of a bubble enriched bilinear element as























N1 = 1
4 (1−ξ)(1−η)−b(1−ξ2)(1−η2),

N2 = 1
4 (1+ξ)(1−η)−b(1−ξ2)(1−η2),

N3 = 1
4 (1+ξ)(1+η)−b(1−ξ2)(1−η2),

N4 = 1
4 (1−ξ)(1+η)−b(1−ξ2)(1−η2),

(4.13)

where

b=
1

8(0.2+2Da l−2)
, (4.14)

which is calculated during the implementation of the static condensation method. Here
l is a characteristic length of the element. Using the same procedure forth order bubble
enriched bilinear elements can be derived as



















N1 = 1
4(1−ξ)(1−η)−b[(1−ξ2)(1−η2)+(1−ξ2)2(1−η2)2],

N2 = 1
4(1+ξ)(1−η)−b[(1−ξ2)(1−η2)+(1−ξ2)2(1−η2)2],

N3 = 1
4(1+ξ)(1+η)−b[(1−ξ2)(1−η2)+(1−ξ2)2(1−η2)2],

N4 = 1
4(1−ξ)(1+η)−b[(1−ξ2)(1−η2)+(1−ξ2)2(1−η2)2],

(4.15)
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where

b=
1

8(0.386+3.905Da l−2)
. (4.16)

Any higher order bubble enriched bilinear element can be derived similarly.
If the n-th order bubble function (4.10) is used the two dimensional bubble enriched

bilinear shape functions can be written as



















N1 = 1
4(1−ξ)(1−η)−b(1−ξ2n )(1−η2n),

N2 = 1
4(1+ξ)(1−η)−b(1−ξ2n )(1−η2n),

N3 = 1
4(1+ξ)(1+η)−b(1−ξ2n )(1−η2n),

N4 = 1
4(1−ξ)(1+η)−b(1−ξ2n )(1−η2n),

(4.17)

where b is represented as

b=
l

2Da

2n

2n+1

(

16n2

(4n−1)l
+

8n2l

(4n+1)(2n+1)Da

)−1

. (4.18)

4.3 Elimination of inter-element boundary integrals

When bubble functions are applied the inter-element boundary integrals are not auto-
matically eliminated during the assembly of elemental equations. This problem does not
become apparent in the one dimensional case as the boundary integrals are reduced to
simple nodal flux terms. The variational formulation for the Brinkman equation, after
application of Green’s theorem is

(

1

Da
uh,v1

)

+(∇uh,∇v1)=(pd,v1). (4.19)

Substitution from Eq. (3.1) gives

(

1

Da
uh,v1

)

+(∇u1,∇v1)+(∇ub,∇v1)=(p,v1). (4.20)

If v1 is a linear test function (weight function), then according to Green’s theorem [20]:

(∇v1,∇φ)Ωe
=−(∆v1,φ)Ωe +(∇v1,φ)Γe =0, (4.21)

where φ is a bubble function. Therefore Eq. (4.20) is reduced to

(

1

Da
uh,v1

)

+(∇u1,∇v1)=(p,v1). (4.22)

As can be seen the bubble function does not affect the Laplacian term in the Brinkman
equation and therefore no boundary integral due to the bubble function exists.
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5 Finite element scheme

There are a variety of different finite element schemes that can be used for the solution
of the governing equations of porous flow regimes. The finite element scheme used in
the present work is based on the continuous penalty technique [21]. This technique is in
essence similar to the “Lagrange Multiplier Method” used for the solution of differential
equations subject to a constraint. Here the continuity equation (i.e. the incompressibil-
ity condition) is regarded as a constraint for the equation of motion. Therefore instead
of solving the governing flow equations as a system of three PDEs the pressure in the
components of the equation of motion is replaced by a multiplier (called penalty param-
eter) times the continuity equation. This gives a more compact set of working equations
with components of the velocity as the remaining unknowns. Additionally, elimination
of the pressure from the equation of motion automatically satisfies the basic numerical
stability condition for the simulation of incompressible flows, known as the LBB criteria.
The mathematical theory underpinning the development of LBB criterion is somewhat
obscure [19]. However, it can be readily observed that the absence of a pressure term
in the incompressible continuity equation makes the possibility of a mismatch between
approximations used to satisfy the equations of motion and continuity almost inevitable
in any numerical solution of a system of PDEs with velocity and pressure as the prime
unknowns. It has been proved that for the bubble enriched bilinear elements the LBB
condition is still satisfied [22]. If the continuous penalty scheme is used, after represent-
ing the unknowns based on the trial functions the governing equations can be written
as

∫

Ωe

Wi

[

∂

∂x∗
λ0

(

∂

∂x∗

n

∑
j=1

Nju
∗
j +

∂

∂y∗

n

∑
j=1

Njv
∗
j

)

−
1

Da

n

∑
J=1

Nju
∗
j

+

(

∂2

∂x∗2

n

∑
j=1

Nju
∗
j +

∂2

∂y∗2

n

∑
j=1

Nju
∗
j

)]

dx∗dy∗ = 0, (5.1)

∫

Ωe

Wi

[

∂

∂y∗
λ0

(

∂

∂x∗

n

∑
j=1

Nju
∗
j +

∂

∂y∗

n

∑
j=1

Njv
∗
j

)

−
1

Da

n

∑
J=1

Njv
∗
j

+

(

∂2

∂x∗2

n

∑
j=1

Njv
∗
j +

∂2

∂y∗2

n

∑
j=1

Njv
∗
j

)]

dx∗dy∗ = 0, (5.2)

where Wi is a weight function and is equal to the Lagrangian shape function ψi in the
standard Galerkin method and Nj is the bubble enriched shape function.

The penalty parameter λ0 should be chosen to be large enough so that the mass con-
tinuity is satisfied [23], however, at the same time it should not be so large that working
equations of the scheme become ill-conditioned (i.e. physically important terms in them
become insignificant). Therefore the selection of this value requires numerical experi-
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ments. In the present work a value of λ0 = 1010 is found to generate accurate results for
the benchmark problems and is used in all of the simulations.

As shown in Eqs. (5.1) and (5.2) the use of the penalty method results in the derivation
of working equations in a compact form in which the pressure is eliminated from the
set. Therefore the calculation of pressure must be carried out in a separate step after the
determination of the velocity field. In this study the well known variational recovery
method [23] is used to calculate the pressure fields.

Eqs. (5.1) and (5.2) can be used corresponding to a total of n interpolation functions to
obtain n equations and a system of n×n equations is constructed. Using matrix notation
in [23] this system is written as

[

A11
ij A12

ij

A21
ij A22

ij

]{

u∗
j

v∗j

}

=

{

B1
j

B2
j

}

, (5.3)

where

A11
ij =

∫

Ωe

[

(λ0+1)

(

∂Wi

∂x∗
∂Nj

∂x∗

)

+
∂Wi

∂y∗
∂Nj

∂y∗
+

1

Da
WiNj

]

dx∗dy∗,

A12
ij =

∫

Ωe

λ0
∂Wi

∂x∗
∂Nj

∂y∗
dx∗dy∗, A21

ij =
∫

Ωe

λ0
∂Wi

∂y∗
∂Nj

∂x∗
dx∗dy∗,

A22
ij =

∫

Ωe

[

(λ0+1)

(

∂Wi

∂y∗
∂Nj

∂y∗

)

+
∂Wi

∂x∗
∂Nj

∂x∗
+

1

Da
WiNj

]

dx∗dy∗,

B1
j =

∫

Γe

Wi

{[

λ0

(

∂u∗e

∂x∗
+

∂v∗e

∂y∗

)

+
∂u∗e

∂x∗

]

nx+

(

∂u∗e

∂y∗

)

ny

}

dΓe,

B2
j =

∫

Γe

Wi

{(

∂v∗e

∂x∗

)

nx+

[

λ0

(

∂u∗e

∂x∗
+

∂v∗e

∂y∗

)

+
∂v∗e

∂y∗

]

ny

}

dΓe.

A system of weighted residual equations should be derived for each element in the
domain. This is obviously not convenient. However, by using an elemental coordinate
system rather than the global coordinates the uniformity of the matrix Eq. (5.3) can be
preserved. This is achieved via using isoparametric mapping of elements of the global
mesh into a master element where all the calculations are carried out [24]. In addition, a
natural coordinate system such as −1≤ξ, η≤1 can be used within the master element to
enable the evaluation of all integrals within its domain by Gauss quadrature method [25].

Repeated application of the above procedure to each element in the computational
mesh leads to the construction of elemental weighted residual equations written in ma-
trix notations. Subsequent assembly of these equations over the common nodes between
elements provides a system of global algebraic equations. Imposition of all boundary
conditions into the assembled set of working equations renders the global system deter-
minate which is then solved using a solution technique such as the Gaussian elimination
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method. A computationally efficient version of this method which relies on bit by bit
reducing of the global system to upper triangular form according to an advancing front
is used in the present work [26].

6 Analytical solution

To evaluate the accuracy of the numerical solutions obtained using bubble enriched ele-
ments they are compared with an analytical solution. The dimensionless Brinkman equa-
tion in one dimension corresponding to a constant pressure drop can be written as







d2v∗

dx∗2
−

1

Da
v∗+p∗d =0,

v∗=0, at x∗=0 or x∗=1,
(6.1)

where

p∗d =−
∂P∗

∂y∗
.

Solution of the above equation gives

v∗ =
p∗dDa(e−α−1)

(eα−e−α)
(eαx∗−e−αx∗)+p∗d Da(1−e−αx∗),

where

α=

√

1

Da
.

To calculate pressure so that the consistency of the solution with numerical results is
preserved, the average velocity has to be equal to the input plug flow velocity. In the
present domain it is written as

1
∫

0

v∗dx∗ =v∗0 .

Solution of the above equation gives

p∗d =
1

Da
v∗0

[

1+
1

α

(

e−α−1
)

(

1+
Da(eα−e−α−2)

eα−e−α

)]−1

. (6.2)

Excess pressure loss due to the entrance region can be neglected [17].

7 Results

To investigate the effect of using bubble enriched finite elements we have conducted a
series of numerical experiments. These experiments cover a wide range of Darcy pa-
rameter (permeability) using both ordinary Lagrangian elements and bubble enriched
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Figure 2: Flow domain and boundaries with variable cross section width and curved sides (domain 2).
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elements. The performance of different types of bubble functions are studied. In order to
be able to use bubble enriched elements flexibly, an in-house developed computer code
in FORTRAN was used to carry out the finite element simulations. In all of the presented
simulations 4-noded Lagrangian elements are used. Three different domains are used to
evaluate the developed multi-scale method. A rectangular domain with constant mesh
density (30×30 rectangular elements) for numerical model validation (domain 1, Fig. 1),
a contracting and expanding domain with curvilinear boundaries (30×60 mesh density)
to study the effects of deviation from the most simple geometry and element (domain 2,
Fig. 2) and a sudden contracting domain (domain 3, Fig. 3) with constant mesh density
similar to domain 1.
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In order to discretise the domain with curved boundaries shown in Fig. 2 the rou-
tine procedure of isoparametric mapping is used [23]. As the results shown here proves
isoparametric mapping (elements) can be used in the context of bubble enriched discreti-
sations without any change to the normal implementation of the finite element method.

The first series of experiments are performed in domain 1 to compare the results of
different types of bubble functions and evaluate the accuracy with respect to analytical
solution. The comparison of the bubble function is carried out on this domain and on the
other domains only the bubble functions which are represented in Eqs. (4.13) and (4.15)
are evaluated. Fig. 1 shows the domain and its boundaries. Fig. 4 demonstrates a com-
parison between the 3rd and 5th-order bubble functions derived directly from residual
free method at Da=10−5. As Fig. 4 shows ordinary elements fail to generate a stable and
accurate solution while bubble enriched elements give stable and, in comparison with
analytical solution, accurate results. The accuracy increases when 5th-order bubble is
used. At other Darcy parameters the same trend is observed , however, to avoid rep-
etition they are not shown here. Fig. 5 shows the results for 2nd and 4th-order bubble
functions which are represented in Eqs. (4.13) and (4.15). It is seen that the same results
as Fig. 4 is achieved and by increasing the order of the bubble function the accuracy of
the numerical solution increases. The results for the bubble functions in Eq. (4.17) are
represented in Fig. 6. As the results show by increasing the degree of the bubble func-
tion the accuracy of the numerical solution decreases while the solution is stable. These
results show that although theoretically any bubble function has stabilizing effect on the
solution but it is not necessarily accurate.

Figs. 7-11 show the results for dimensionless velocity at different cross sections of the
domain 2. In this domain the boundary conditions are similar to domain 1, i.e. plug flow
at the inlet, no-slip boundary conditions at the solid walls and stress free conditions at
the outlet of the domain. Fig. 7 shows the result of 2nd-order bubble function at y*=0.667
and Da=10−4. It is obvious that the bubble enriched element gives a stable solution. Fig. 8
shows the same result at y*=1.33. Therefore, for both contracting and expanding sections
with curvilinear boundaries the bubble enriched elements give stable results. This im-
plies that the mapping error between the quadrilateral elements with curved sides into
master element has no deteriorating effect on the performance of the developed method.
Figs. 9-11 show the results at y*=1 and different Darcy parameters. By decreasing the
Darcy parameter, instability increases for ordinary elements, but using bubble functions
the solution remains stable and accurate. As expected, the 4th-order bubble function
gives more accurate results in comparison with the 2nd-order bubble function. Fig. 12
shows the dimensionless pressure field in domain 2 which matches the theoretically ex-
pected result.

An abruptly contracting domain, which includes a point of singularity, is also consid-
ered. Fig. 3 shows the domain and its boundaries discretised using the same mesh density
as the rectangular domain shown in Fig. 1. The ratio of contraction is 2:1. Simulations
are based on using the same boundary conditions as for the rectangular domain. Fig. 13
shows the 2D image of the flow field obtained using 2nd-order bubble functions. Fig. 14
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Figure 4: Comparison of the numerical and analytical velocity profiles at mid-height cross section for Da=10−5.
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Figure 7: Dimensionless velocity at the cross section y=0.667 (domain 2) for Da=10−4 and 2nd-order bubble
function.
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Figure 8: Dimensionless velocity at the cross section y = 1.33 (domain 2) for Da=10−4 and 2nd-order bubble
function.
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Figure 9: Dimensionless velocity at the cross section y=1 (domain 2). Comparison at Da=10−4 for 2nd-order
and 4th-order bubble functions.
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Figure 10: Dimensionless velocity at the cross section y=1 (domain 2). Comparison at Da=10−5 for 2nd-order
and 4th-order bubble functions.
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Figure 11: Dimensionless velocity at the cross section y=1 (domain 2). Comparison at Da=10−6 for 2nd-order
and 4th-order bubble functions.

represents the dimensionless velocity at the cross section corresponding to y*=0.5 and
Da=10−4. Using Da=10−5, as Fig. 15 shows, some slight instability through the whole
cross section is observed. These oscillations are eliminated using 2nd-order bubble en-
riched elements. The pressure field corresponding to Da=10−4 is illustrated in Fig. 16
which matches the theoretically expected result.

8 Conclusion

In the present paper different types of bubble functions are evaluated in the simulation
of flow in highly permeable porous media using the Brinkman equation. The derivation
of two dimensional bubble enriched shape functions, their implementation and perfor-
mances are presented. Static condensation method is used to incorporate the bubble func-
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Figure 12: Dimensionless pressure field for Da=10−4 in domain 2.
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Figure 13: 2D image of the flow field for domain 3.

tions with the ordinary shape functions to perform a multiscale finite element scheme.
The numerical results show that those bubble functions which are derived directly by
residual free method or have the same structure yield stable and accurate solution. For
other kind of the bubble function the solution is stable but the level of accuracy can not be
guaranteed. The successful bubble functions are used in other domains rather than the
simple rectangular domain. Discretisations using bubble enriched elements are shown
to generate stable accurate simulations for domains involving curved boundaries and
abrupt changes of geometry. Although the presented method was used to model the
flow in highly permeable porous media it should be considered as a general technique
for multiscale finite element solution of transport phenomena involving multiscale be-
haviour.
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Figure 16: 2D image of the dimensionless pressure field at Da=10−4 for domain 3.
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