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Abstract. Hyperbolic balance laws have steady state solutions in which the flux gradients are
nonzero but are exactly balanced by the source terms. In our earlier work [31–33], we designed
high order well-balanced schemes to a class of hyperbolic systems with separable source terms.
In this paper, we present a different approach to the same purpose: designing high order
well-balanced finite volume weighted essentially non-oscillatory (WENO) schemes and Runge-
Kutta discontinuous Galerkin (RKDG) finite element methods. We make the observation that
the traditional RKDG methods are capable of maintaining certain steady states exactly, if a
small modification on either the initial condition or the flux is provided. The computational
cost to obtain such a well balanced RKDG method is basically the same as the traditional
RKDG method. The same idea can be applied to the finite volume WENO schemes. We
will first describe the algorithms and prove the well balanced property for the shallow water
equations, and then show that the result can be generalized to a class of other balance laws.
We perform extensive one and two dimensional simulations to verify the properties of these
schemes such as the exact preservation of the balance laws for certain steady state solutions,
the non-oscillatory property for general solutions with discontinuities, and the genuine high
order accuracy in smooth regions.
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1 Introduction

In this paper, we are concerned with the construction of high order well balanced weighted essen-
tially non-oscillatory (WENO) finite volume schemes and Runge-Kutta discontinuous Galerkin
(RKDG) finite element methods for solving hyperbolic balance laws, which have attracted sig-
nificant attention in the past few years. Hyperbolic balance laws are hyperbolic systems of
conservation laws with source terms:

ut + f1(u, x, y)x + f2(u, x, y)y = g(u, x, y) (1.1)

or in the one dimensional case

ut + f(u, x)x = g(u, x) (1.2)

where u is the solution vector, f1(u, x, y) and f2(u, x, y) (or f(u, x)) are the fluxes and g(u, x, y)
(or g(u, x)) is the source term.

An essential part for these balance laws is that they often admit steady state solutions in
which the flux gradients are exactly balanced by the source term. A straightforward treatment
of the source terms in a numerical scheme will fail to preserve this balance. Many physical
phenomena come from small perturbations of these steady state solutions, which are very difficult
to capture numerically, unless the numerical schemes can preserve the unperturbed steady state
at the discrete level. Schemes which can preserve the unperturbed steady state at the discrete
level are the so called well balanced schemes. Our purpose is to design well balanced schemes
without sacrificing the high order accuracy and non-oscillatory properties of the scheme when
applied to general, non-steady state solutions.

Balance laws have many applications in the physical world. A typical and extensively consid-
ered example is the shallow water equations with a non flat bottom topology. Many geophysical
flows are modeled by the variants of the shallow water equations. In one space dimension, they
take the form







ht + (hu)x = 0

(hu)t +

(

hu2 +
1

2
gh2

)

x

= −ghbx,
(1.3)

where h denotes the water height, u is the velocity of the fluid, b represents the bottom topog-
raphy and g is the gravitational constant. The steady state solutions are given by

hu = constant and
1

2
u2 + g(h + b) = constant. (1.4)

People are particularly interested in the still water stationary solution, denoted by

u = 0 and h + b = constant. (1.5)

Bermudez and Vazquez [4] first introduced the concept of the “exact C-property”, which means
that the scheme is “exact” when applied to the still water stationary solution (1.5). Also,
they introduced the first order Q-scheme and the idea of source term upwinding to obtain such
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property. After this, many well balanced schemes for the shallow water equations have been
developed in the literature, mostly for first and second order accuracy, e.g. [2,17–19,22,28–30,34].

In our recent work [31–33], we have successfully developed high order well balanced finite
difference, finite volume WENO schemes and RKDG methods for a class of hyperbolic balanced
laws with separable source terms. This class of hyperbolic systems includes the shallow water
equations mentioned above, the elastic wave equation, the hyperbolic model for a chemosensitive
movement, the nozzle flow, a model from fluid mechanics and a two phase flow model. In [31],
we developed a well balanced high order finite difference WENO scheme for solving the shallow
water equations, which is non-oscillatory, well balanced (satisfying the exact C-property) for still
water, and genuinely high order in smooth regions. In [32], we extended the process to a general
class of balance laws with separable source terms, allowing the design of well balanced high
order finite difference WENO scheme for all balance laws falling into this category. In [33], well
balanced high order finite volume WENO schemes and finite element discontinuous Galerkin
schemes on general triangulations were designed for the same class of balance laws as those
in [32], which are more suitable for computations in complex geometry and / or for using
adaptive meshes. The key ingredient of the technique used in [31–33] to obtain well balanced
property is a special decomposition of the source term, allowing a discretization to the source
term to be both high order accurate for general solutions and exactly well balanced with the
flux gradient for some steady states.

In this paper, we consider RKDG methods first, and show that the traditional RKDG meth-
ods can achieve the well balanced property with a small modification of either the initial value
or the flux. This is by far the simplest approach to obtain a high order well balanced scheme.
Very little additional computational cost over the traditional RKDG methods is involved to
obtain a well balanced property. Similar ideas are then applied to obtain well balanced finite
volume WENO schemes. We emphasize that the setup in this paper for well balanced schemes
is completely different from the one used in our previous paper [33], rather it is a generalization
of a well-balanced high order scheme recently developed by Noelle et al. [21], see Remark 4.3 in
Section 4. Comparing with the schemes in our previous work [33], the schemes presented here
require less computational cost, and are easier to understand and to code, at least for the RKDG
methods. For the cases we have tested, this simpler approach seems to yield comparably good
numerical results. We will first describe the algorithms and prove the well balanced property
for the shallow water equations, and then generalize the result to a class of other balance laws.

The paper is organized as follows. In Section 2, we give a brief review of finite volume
WENO schemes and RKDG schemes. In Section 3, we develop genuine high order well-balanced
RKDG schemes for the shallow water equations. The well-balanced generalization of finite vol-
ume WENO schemes is presented in Section 4. Section 5 contains extensive numerical simulation
results to demonstrate the behavior of our well balanced schemes for one and two dimensional
shallow water equations, verifying high order accuracy, the exact C-property, and good resolu-
tion for smooth and discontinuous solutions. Application of these ideas to other balance laws,
together with some selective numerical tests, are presented in Section 6. In Section 7, we give
the concluding remarks.
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2 A review of high order finite volume WENO and discontinu-

ous Galerkin schemes

In this section, we briefly review the basic ideas of finite volume WENO schemes and discontin-
uous Galerkin methods. For further details about these subjects, we refer to [3, 5–10, 15, 16, 20,
23,25–27].

We consider a scalar hyperbolic conservation law equation in one dimension

ut + f(u)x = 0, (2.1)

and discretize the computational domain with cells Ii = [xi− 1
2
, xi+ 1

2
], i = 1, · · · , N . We denote

the size of the i-th cell by 4xi and the center of the cell by xi = 1
2

(

xi− 1
2

+ xi+ 1
2

)

.

In a finite volume scheme, our computational variables are ūi(t), which approximate the cell
averages ū(xi, t) = 1

4xi

∫

Ii
u(x, t) dx. The conservative numerical scheme is given by:

d

dt
ūi(t) = − 1

4xi

(

f̂i+ 1
2
− f̂i− 1

2

)

(2.2)

with f̂i+ 1
2

= F (u−

i+ 1
2

, u+
i+ 1

2

) being the numerical flux. Here u−

i+ 1
2

and u+
i+ 1

2

are the high order

pointwise approximations to u(xi+ 1
2
, t), obtained from the cell averages by a high order WENO

reconstruction procedure. The numerical flux F (a, b) needs to be monotone. The simplest and
most inexpensive monotone flux is the Lax-Friedrichs flux:

F (a, b) =
1

2
(f(a) + f(b) − α(b − a)), (2.3)

where α = maxu |f ′(u)|.
The approximations u−

i+ 1
2

and u+
i+ 1

2

are computed through the neighboring cell average values

ūj . Basically, for a (2k-1)-th order WENO scheme, we first compute k reconstructed boundary

values u
(k),±

i+ 1
2

corresponding to different candidate stencils. Then by providing each value a

weight which indicates the smoothness of the corresponding stencil, we define the (2k-1)-th
order WENO reconstruction u±

i+ 1
2

as a convex combination of all these k reconstructed values.

The complete algorithm can be found in [16,23,25].
For hyperbolic systems, we usually use the local characteristic decomposition, which is more

robust than a component by component version. Together with a TVD high order Runge-Kutta
time discretization [26], this completes the description of a high order finite volume WENO
scheme.

Finite volume WENO schemes in the two dimensional case have the same framework but are
more complicated to implement. In this paper, we consider only rectangular cells for simplicity.
For the two dimensional homogeneous conservation law

ut + f1(u, x, y)x + f2(u, x, y)y = 0, (2.4)
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together with a spatial discretization of the computational domain by cells Iij = [xi− 1
2
, xi+ 1

2
] ×

[yj− 1
2
, yj+ 1

2
], i = 1, · · · , Nx, j = 1, · · · , Ny, we use the notations as usual:

4xi = xi+ 1
2
− xi− 1

2
, 4yj = yj+ 1

2
− yj− 1

2

to denote the grid sizes.
By taking the integral of the equation, we can obtain the conservative scheme

d

dt
ūij(t) = − 1

4xi

(

(f̂1)i+ 1
2
,j − (f̂1)i− 1

2
,j

)

− 1

4yj

(

(f̂2)i,j+ 1
2
− (f̂2)i,j− 1

2

)

, (2.5)

where the numerical flux (f̂1)i+ 1
2
,j is defined by

(f̂1)i+ 1
2
,j =

∑

α

wαF

(

u−

x
i+1

2
,yj+βα4yj

, u+
x

i+1
2

,yj+βα4yj

)

(2.6)

where βα and wα are the Gaussian quadrature nodes and weights, to approximate the integration
in y:

1

4yj

∫ y
j+1

2

y
j− 1

2

f1(u(xi+ 1
2
, y, t))dy.

The monotone flux F (a, b) is the same as above (for example, Formula (2.3)). u±

x
i+1

2
,yj+βα4yj

are the (2k − 1)-th order accurate reconstructed values obtained by a WENO reconstruction
procedure. Similarly, we can compute the flux (f̂2)i,j+ 1

2
.

In a high order RKDG scheme, we seek an approximation uh to u which belongs to the finite
dimensional space

Vh = V k
h ≡ {v : v|Ij

∈ P k(Ij), j = 1, ..., N}, (2.7)

where P k(I) denotes the space of polynomials in I of degree at most k. The numerical scheme
is given by

∫

Ij

∂tuh(x, t)vh(x)dx −
∫

Ij

f(uh(x, t))∂xvh(x)dx + f̂j+ 1
2
vh(x−

j+ 1
2

) − f̂j− 1
2
vh(x+

j− 1
2

) = 0, (2.8)

As before, f̂j+ 1
2

= F (uh(x−

j+ 1
2

, t), uh(x+
j+ 1

2

, t)), and F (a, b) is chosen as a monotone flux. We

could, for example, again use the simple Lax-Friedrichs flux (2.3).
Another important ingredient for the RKDG method is that a slope limiter procedure might

be needed after each inner stage in the Runge-Kutta time stepping, when the solution contains
discontinuities. In this paper we use the total variation bounded (TVB) limiter in [6, 8, 9, 24];
we refer to these references for the details of this limiter.

Together with a TVD high order Runge-Kutta time discretization [26], we have then finished
the description of the RKDG method.

Multi-dimensional problems can be handled in the same fashion. The main difference is
that the fluxes are now integrals along the cell boundary, which can be calculated by Gauss-
quadrature rules.
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3 Construction of well balanced RKDG schemes for shallow wa-

ter equations

The traditional high order RKDG method has been presented in Section 2. In this section, we
claim that, for one-dimensional and two-dimensional shallow water equations, this method is
indeed a well balanced scheme for still water, based on a suitable choice of the initial value or
the flux. This choice will not affect the property of the scheme, such as high order accuracy
in smooth region and non-oscillatory shock resolution, and it increases the computational cost
only slightly.

For the shallow water equations (1.3), we are interested in preserving the still water stationary
solution (1.5). For this still water, the first equation (hu)x = 0 is satisfied exactly for any
consistent scheme since hu = 0. Let us concentrate on the second equation, which can be
denoted by

(hu)t + f(U)x = g(h, b)

where U = (h, hu)T with the superscript T denoting the transpose.
As described in Section 3, in a RKDG method U is approximated by the piecewise polynomial

Uh, which belongs to Vh defined in (2.7). We project the bottom function b into the same space
Vh, to obtain an approximation bh. This implies that hh + bh = constant if h + b = constant.

Following the idea first introduced by Audusse et al. [1], and later used in the recent paper
by Noelle et al. [21], our numerical scheme has the form:
∫

Ij

∂t(hu)hvhdx −
∫

Ij

f(Uh)∂xvhdx + f̂ l
j+ 1

2

vh(x−

j+ 1
2

) − f̂ r
j− 1

2

vh(x+
j− 1

2

) =

∫

Ij

g(hh, bh)vhdx. (3.1)

Comparing with the standard RKDG scheme (2.8), we can see that the single valued fluxes f̂j+ 1
2

and f̂j− 1
2

have been replaced by the left flux f̂ l
j+ 1

2

and the right flux f̂ r
j− 1

2

, respectively. We can

rewrite the above scheme as:
∫

Ij

∂t(hu)hvhdx −
∫

Ij

f(Uh)∂xvhdx + f̂j+ 1
2
vh(x−

j+ 1
2

) − f̂j− 1
2
vh(x+

j− 1
2

) = (3.2)

∫

Ij

g(hh, bh)vhdx + (f̂j+ 1
2
− f̂ l

j+ 1
2

)vh(x−

j+ 1
2

) − (f̂j− 1
2
− f̂ r

j− 1
2

)vh(x+
j− 1

2

),

where f̂j+ 1
2

= F (Uh(x−

j+ 1
2

, t), Uh(x+
j+ 1

2

, t)). The left side of (3.2) is the traditional RKDG scheme,

and the right side is our approximation to the source term. The design of the left flux f̂ l
j+ 1

2

and the right flux f̂ r
j− 1

2

will be explained later, however we point out here that f̂j+ 1
2
− f̂ l

j+ 1
2

and

f̂j− 1
2
− f̂ r

j− 1
2

are high order correction terms at the level of O(4xk+1). Therefore, the scheme

(3.1) is a (k + 1)-th order conservative scheme and will converge to the weak solution.
In order to obtain the well balanced property, we need the residue

R = −
∫

Ij

f(Uh)∂xvhdx + f̂ l
j+ 1

2

vh(x−

j+ 1
2

) − f̂ r
j− 1

2

vh(x+
j− 1

2

) −
∫

Ij

g(hh, bh)vhdx (3.3)
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to be zero if the still water stationary state (1.5) is reached. The following three conditions,
which only need to be valid for the still water stationary state, are sufficient to guarantee this
zero residue property.

• All the integrals in formula (3.3) should be calculated exactly for the still water. This
can be easily achieved by using suitable Gauss-quadrature rules since hh, bh and vh are
polynomials in each cell Ij , hence f , g are both polynomials. Note that (hu)h = 0 for the
still water.

• We assume that

f̂ l
j+ 1

2

= f(Uh(x−

j+ 1
2

, t)), f̂ r
j− 1

2

= f(Uh(x+
j− 1

2

, t)) (3.4)

for the still water. Note that this condition is not obvious. Later we will comment on how
to make it possible for the RKDG method.

• We assume that Uh, which is the numerical approximation of U , is a steady state solution
of the equation (hu)t + f(U)x = g(h, bh), where bh has substituted b. This is true since
hh + bh = constant and (hu)h = 0, which imply

(

1
2gh2

h

)

x
= −ghh(bh)x, or

∂xf(Uh) = g(hh, bh). (3.5)

Proposition 3.1: RKDG schemes which satisfy the above three conditions for the shallow
water equations are exact for the still water stationary state (1.5).

Proof: If these three conditions are satisfied, the residue R in (3.3) for still water reduces to

R = −
∫

Ij

f(Uh)∂xvhdx + f̂ l
j+ 1

2

vh(x−

j+ 1
2

) − f̂ r
j− 1

2

vh(x+
j− 1

2

) −
∫

Ij

g(hh, bh)vhdx

= −
∫

Ij

f(Uh)∂xvhdx + f(Uh(x−

j+ 1
2

, t))vh(x−

j+ 1
2

) − f(Uh(x+
j− 1

2

, t))vh(x+
j− 1

2

) −
∫

Ij

g(hh, bh)vhdx

=

∫

Ij

∂xf(Uh)vhdx −
∫

Ij

g(hh, bh)vhdx

=

∫

Ij

(∂xf(Uh) − g(hh, bh))vhdx = 0

where the second equality is due to (3.4), the third equality follows from a simple integration
by parts, and the last equality follows from (3.5).

Remark 3.2: For discontinuous solutions, the limiter on the function Uh is usually performed
after each Runge-Kutta stage. This limiter procedure might destroy the preservation of the still
water steady state h + b = constant. Therefore, following the idea presented in [1,34], we apply
the limiter procedure on the function (hh + bh, (hu)h)T instead. The modified RKDG solution is

then defined by hmod
h ≡ (h+b)mod

h −bh. Since hh
mod

= (h + b)h
mod−bh = (h + b)h−bh = hh, we
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observe that this procedure will not destroy the conservativity of hh, which should be maintained
during the limiter process.

For shallow water equations, the first and third conditions are obviously true, hence the only
one remaining for us to check is the second condition. In order to fulfill it, we have two choices.

Choice A: Define the initial value and the approximation bh by continuous piecewise polyno-
mials. We would then have bh(x−

j+ 1
2

, t) = bh(x+
j+ 1

2

, t). If the steady state hh + bh = constant is

reached, we will have a continuous hh, i.e. hh(x−

j+ 1
2

, t) = hh(x+
j+ 1

2

, t), which makes

f̂j+ 1
2

= F (Uh(x−

j+ 1
2

, t), Uh(x+
j+ 1

2

, t)) = f(Uh(x−

j+ 1
2

, t)) = f(Uh(x+
j+ 1

2

, t))

We can therefore simply define the left and right fluxes as

f̂ l
j+ 1

2

= f̂j+ 1
2
, f̂ r

j− 1
2

= f̂j− 1
2
,

which will fulfill the second condition. This make our scheme (3.1) to be identical to the
traditional RKDG scheme without any modification.

In order to define the continuous piecewise polynomial approximations to the initial value
and b, we can use the idea of essentially non-oscillatory (ENO) procedure [13]. Based on the
values uj+ 1

2
, we can choose suitable stencils for each individual cell Ij by an ENO procedure,

and then obtain a polynomial on Ij through an interpolation. This polynomial equals to uj− 1
2

and uj+ 1
2

at the two cell boundaries. Hence the global piecewise polynomial is continuous.

Choice B: Here we follow the idea of Audusse et al. [1]. After computing boundary values
U±

h,j+ 1
2

, we set

h∗,+

h,j+ 1
2

= max

(

0, h+
h,j+ 1

2

+ b+
h,j+ 1

2

− max(b+
h,j+ 1

2

, b−
h,j+ 1

2

)

)

(3.6)

h∗,−

h,j+ 1
2

= max

(

0, h−

h,j+ 1
2

+ b−
h,j+ 1

2

− max(b+
h,j+ 1

2

, b−
h,j+ 1

2

)

)

(3.7)

and redefine the left and right values of U as:

U∗,±

h,j+ 1
2

=

(

h∗,±

h,j+ 1
2

(hu)±
h,j+ 1

2

)

(3.8)

Then the left and right fluxes f̂ l
j+ 1

2

and f̂ r
j− 1

2

are given by:

f̂ l
j+ 1

2
= F (U∗,−

h,j+ 1
2

, U∗,+

h,j+ 1
2

) +

(

0
g
2(h−

h,j+ 1
2

)2 − g
2(h∗,−

h,j+ 1
2

)2

)

(3.9)



Xing and Shu / Commun. Comput. Phys., 1 (2006), pp. 100-134 108

f̂ r
j− 1

2

= F (U∗,−

h,j− 1
2

, U∗,+

h,j− 1
2

) +

(

0
g
2(h+

h,j− 1
2

)2 − g
2(h∗,+

h,j− 1
2

)2

)

(3.10)

Here F is a monotone flux as mentioned in Section 2. It is easy to check that f̂j+ 1
2
− f̂ l

j+ 1
2

and

f̂j− 1
2
− f̂ r

j− 1
2

are indeed at the level of O(4xk+1) for general solutions, hence the original (k+1)-

th order of accuracy is maintained. Under the still water stationary state, hh + bh = constant,
hence it is easy to see U∗,−

h,j+ 1
2

= U∗,+

h,j+ 1
2

. The left flux then returns to:

f̂ l
j+ 1

2

=

(

0
g
2(h∗,−

h,j+ 1
2

)2

)

+

(

0
g
2(h−

h,j+ 1
2

)2 − g
2(h∗,−

h,j+ 1
2

)2

)

=

(

0
g
2(h−

h,j+ 1
2

)2

)

= f(U−

h,j+ 1
2

)

(3.11)
Similarly,

f̂ r
j+ 1

2
= f(U+

h,j+ 1
2

). (3.12)

Remark 3.3: Clearly Choice A provides a simpler scheme with smaller computational cost,
hence it would be preferred if it provides comparable numerical results to that of Choice B.
Unfortunately, although it works well for small perturbation solutions from still water for a
smooth bottom, the numerical resolution for a discontinuous bottom is not ideal. On the other
hand, Choice B provides good numerical results for all the test cases we have experimented. In
Section 5, we will report only the results obtained by Choice B to save space.

We now consider the extension of the well-balanced high order RKDG schemes to 2-D shallow
water equations























ht + (hu)x + (hv)y = 0

(hu)t +

(

hu2 +
1

2
gh2

)

x

+ (huv)y = −ghbx

(hv)t + (huv)x +

(

hv2 +
1

2
gh2

)

y

= −ghby

(3.13)

where again h is the water height, (u, v) is the velocity of the fluid, b represents the bottom
topography and g is the gravitational constant. The still water stationary solution we are
interested to preserve is

h + b = constant, hu = 0, hv = 0. (3.14)

It is straightforward to extend our well balanced RKDG schemes to this two-dimensional prob-
lem. Also, the scheme can be applied on any triangulation.

4 Construction of well balanced finite volume WENO schemes

for shallow water equations

In this section, we generalize the idea used in Section 3 to design a well balanced finite volume
WENO schemes for the shallow water equations. The basic idea is the same as that for the
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RKDG methods. The only extra step is due to the fact that we only have the reconstructed
pointwise values U±

j+ 1
2

and would need to first define an approximation function Uh. We can

then follow the procedure as before.
As before, we denote U±

j+ 1
2

as the reconstructed left and right values at the interface xj+ 1
2
.

The still water is given by h̄j + b̄j = constant where as before the overbar denotes the cell
average. We would like to have the reconstructed values to satisfy hj+ 1

2
+ bj+ 1

2
= constant

as well. This can be achieved by the approach that we used in [33]. Basically, the WENO
reconstruction can be eventually written out as

U+
j+ 1

2

=
r

∑

k=−r+1

wkŪj+k, U−

j+ 1
2

=
r−1
∑

k=−r

w̃kŪj+k. (4.1)

where r = 3 for the fifth order WENO approximation and the coefficients wk and w̃k depend
nonlinearly on the smoothness indicators involving the cell average ū and satisfy

∑r
k=−r+1 wk =

∑r−1
k=−r w̃k = 1. We then use the same coefficients wk and w̃k computed from above on B =

(b, 0)T to obtain

B+
j+ 1

2

=

r
∑

k=−r+1

wkB̄j+k, B−

j+ 1
2

=

r−1
∑

k=−r

w̃kB̄j+k. (4.2)

Hence,

U+
j+ 1

2

+ B+
j+ 1

2

=
r

∑

k=−r+1

wk(Ūj+k + B̄j+k), U−

j+ 1
2

+ B−

j+ 1
2

=
r−1
∑

k=−r

w̃k(Ūj+k + B̄j+k),

from which we know that the reconstructed values satisfy h±

j+ 1
2

+b±
j+ 1

2

= constant for still water.

For the well balanced property, we only need to consider the second equation of (1.3). Our
well balanced finite volume WENO scheme is given by

4xj
d

dt
huj(t) = −

(

f̂ l
j+ 1

2

− f̂ r
j− 1

2

)

+

∫

Ij

g(h, b)dx (4.3)

where f̂ l
j+ 1

2

and f̂ r
j− 1

2

are the left and right fluxes as defined in Section 3. The residue R is

denoted by the right side of the equation (4.3).
Here we also give three conditions which need to be valid for the still water stationary state

(1.5):

• We use interpolation to obtain a high order polynomial hh on the cell Ij , based on the
boundary values h+

j− 1
2

, h−

j+ 1
2

and several other neighboring boundary values. For example,

we can use h−

j+ 3
2

, h−

j+ 1
2

, h+
j− 1

2

and h+
j− 3

2

to interpolate a third degree polynomial. Similarly,

we can use the same interpolation on b to obtain a polynomial bh, and then use them
to compute

∫

Ij
g(hh, bh)dx exactly by using a suitable Gauss quadrature. In order to
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obtain (2k)-th order accuracy for the approximation of the source term, hh and bh need
to approximate h and b with (k + 1)-th order accuracy. We observe from the definition of
hh and bh that the interpolated polynomials satisfy the following properties:

hh(xj+ 1
2
) = h−

j+ 1
2

, hh(xj− 1
2
) = h+

j− 1
2

, bh(xj+ 1
2
) = b−

j+ 1
2

, bh(xj− 1
2
) = b+

j− 1
2

,

hh + bh = constant if h±

j+ 1
2

+ b±
j+ 1

2

= constant.

• We assume that the left and right fluxes f̂ l
j+ 1

2

and f̂ r
j− 1

2

satisfy (3.4).

• We assume that interpolated polynomial Uh(x, t) above, is a steady state solution of the
equation (hu)t +f(U)x = g(h, bh), where bh has substituted b. As before, this is true since
hh + bh = constant and (hu)h = 0.

Proposition 4.1: Finite volume WENO schemes which satisfy the above three conditions for
shallow water equations are well balanced for still water stationary state (1.5).

Proof: If these three conditions are satisfied, the residue R for still water reduces to

R = −f̂ l
j+ 1

2

+ f̂ r
j− 1

2

+

∫

Ij

g(hh, bh)dx

= −f(Uh(x−

j+ 1
2

, t)) + f(Uh(x+
j− 1

2

, t)) +

∫

Ij

g(hh, bh)dx

= −
∫

Ij

∂xf(Uh)dx +

∫

Ij

g(hh, bh)dx

= −
∫

Ij

(∂xf(Uh) − g(hh, bh))dx = 0

where the second equality is due to (3.4), and the last equality follows from (3.5).

Note that the first and third conditions are obviously true for the still water of the shallow
water equations. As to the second one, we follow Choice B in Section 3, i.e. (3.8), (3.9) and
(3.10).

Remark 4.2: During the WENO reconstruction, we reconstruct k polynomials on the cell
Ij , based on different stencils, and then define the boundary values u−

j+ 1
2

and u+
j− 1

2

as convex

combinations of those polynomials. We emphasize that such convex combination, when viewed
as a function, is not a polynomial on Ij , due to the nonlinear nature of the weights. Therefore, the
interpolated polynomial uh is not that convex combination and must be recomputed. However,
if we use ENO instead of WENO schemes, we can directly take uh as the ENO reconstructed
polynomial on Ij , thereby saving the computational cost to obtain it again by interpolation.
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Remark 4.3: Audusse et al. [1] introduced a second order well balanced finite volume scheme,
and recently, Noelle et al. [21] generalized it to higher order accuracy. The idea proposed here is
a generalization of these schemes, by allowing more freedom in defining the polynomials hh and
bh to save computational cost. If we interpolate hh and bh based on the two boundary values
plus the center value of the cell Ij (which must be reconstructed), this will give us the fourth
order discretization of the source term as introduced in [21].

Now let us consider the 2D shallow water equations (3.13) with the still water stationary
solution (3.14) to be balanced. It is straightforward to extend our well balanced WENO schemes
to this two-dimensional problem, at least for rectangular meshes. Let us look at the second
equation in (3.13) for instance. As we mentioned in Section 2, the numerical scheme is given by:

d

dt
ūij(t) = − 1

4xi

(

(f̂1)
l
i+ 1

2
,j
− (f̂1)

r
i− 1

2
,j

)

− 1

4yj

(

(f̂2)
l
i,j+ 1

2

− (f̂2)
r
i,j− 1

2

)

+ gi,j , (4.4)

with
(f̂1)

l,r

i+ 1
2
,j

=
∑

α

wα(f̂1(·, yj + βα4yj))
l,r

i+ 1
2

(4.5)

and similarly for (f̂2)
l,r

i,j+ 1
2

, and

gi,j = − 1

4xi

∑

α

wα

(
∫

Ii

g (hbx)(x, yj + βα4yj)dx

)

(4.6)

≈ − 1

4xi4yj

∫

Ii

∫

Ij

ghbxdxdy

where the first quadrature summation in the y direction must be accurate to the order of the
scheme and the integration in the x direction must be computed exactly (by Gauss-quadrature
with enough exactness). If the still water stationary solution (3.14) is given, the right side of
the numerical scheme (4.4) becomes:

− 1

4xi

(

(f̂1)
l
i+ 1

2
,j
− (f̂1)

r
i− 1

2
,j

)

− 1

4xi

∑

α

wα

(
∫

Ii

g (hbx)(x, yj + βα4yj)dx

)

= − 1

4xi

∑

α

wα

(

(f̂1(·, yj + βα4yj))
l
i+ 1

2

− (f̂1(·, yj + βα4yj))
r
i− 1

2

)

− 1

4xi

∑

α

wα

(
∫

Ii

g (hbx)(x, yj + βα4yj)dx

)

,

We can balance (f̂1(·, yj +βα4yj))
l
i+ 1

2

− (f̂1(·, yj +βα4yj))
r
i− 1

2

with
∫

Ii
g (hbx)(x, yj +βα4yj)dx

for each fixed α, by the same technique used in the 1D case. This means that at each Gauss
point in the y direction, we interpolate polynomials as functions of x, and use them to compute
the source term. Well balanced property is thus obtained. Similarly, we can handle the third
equation in (3.13) in the same fashion.
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Remark 4.4: Both the well-balanced RKDG and finite volume WENO schemes are developed
here. The RKDG schemes involve less modification for the well balanced property to hold, and
are more flexible for general geometry, adaptivity and parallel implementation. On the other
hand, the RKDG schemes rely on limiters to control spurious oscillations for discontinuous
solutions, which are less robust than the WENO reconstruction procedure in the capability of
maintaining accuracy in smooth regions and controlling oscillations for strong discontinuities
simultaneously. We refer to [35] for a comparison of these two types of schemes.

5 Numerical results for the shallow water equations

In this section we provide numerical results to demonstrate the good properties of the well
balanced finite volume WENO and finite element RKDG schemes when applied to the shallow
water equations. Fifth order finite volume WENO scheme and third order finite element RKDG
scheme are implemented as examples. In all numerical tests, time discretization is by the third
order TVD Runge-Kutta method in [26]. For finite volume WENO schemes, the CFL number
is taken as 0.6, except for the accuracy tests where smaller time steps are taken to ensure that
spatial errors dominate. For the third order RKDG scheme, the CFL number is 0.18. For
the TVB limiter implemented in the RKDG scheme, the TVB constant M (see [8, 24] for its
definition) is taken as 0 in most numerical examples, unless otherwise stated. The gravitation
constant g is taken as 9.812m/s2 during the computation.

5.1 Test for the exact C-property

The purpose of the first test problem is to verify that the schemes indeed maintain the exact
C-property over a non-flat bottom. We choose two different functions for the bottom topography
given by (0 ≤ x ≤ 10):

b(x) = 5 e−
2
5
(x−5)2 , (5.1)

which is smooth, and

b(x) =

{

4 if 4 ≤ x ≤ 8
0 otherwise,

(5.2)

which is discontinuous. The initial data is the stationary solution:

h + b = 10, hu = 0.

This steady state should be exactly preserved. We compute the solution until t = 0.5 using
N = 200 uniform cells. In order to demonstrate that the exact C-property is indeed maintained
up to round-off error, we use single precision, double precision and quadruple precision to perform
the computation, and show the L1 and L∞ errors for the water height h (note: h in this case is
not a constant function!) and the discharge hu in Tables 1 and 2 for the two bottom functions
(5.1) and (5.2) and different precisions. For the RKDG method, the errors are computed based
on the numerical solutions at cell centers. We can clearly see that the L1 and L∞ errors are at
the level of round-off errors for different precisions, verifying the exact C-property.
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Table 1: L1 and L∞ errors for different precisions for the stationary solution with a smooth bottom (5.1).

L1 error L∞ error
precision h hu h hu

single 3.00E-05 1.10E-04 4.39E-05 5.19E-04
FV double 5.04E-14 2.99E-13 1.12E-13 1.26E-12

quadruple 6.48E-33 3.45E-32 2.17E-32 1.54E-31

single 8.41E-06 3.15E-05 3.72E-05 2.06E-04
RKDG double 3.02E-15 3.59E-15 1.60E-14 7.22E-14

quadruple 8.06E-31 2.92E-33 8.05E-29 1.07E-31

Table 2: L1 and L∞ errors for different precisions for the stationary solution with a nonsmooth bottom

(5.2).

L1 error L∞ error
precision h hu h hu

single 1.80E-05 1.40E-04 3.24E-05 2.41E-04
FV double 4.41E-14 2.57E-13 1.05E-13 1.30E-12

quadruple 4.27E-32 3.71E-31 1.07E-31 1.46E-30

single 5.72E-07 1.22E-07 9.54E-07 3.41E-07
RKDG double 1.40E-15 3.16E-16 3.55E-15 7.77E-15

quadruple 8.06E-31 1.65E-34 8.06E-29 4.12E-33

We have also computed stationary solutions using initial conditions which are not the still
water stationary solutions and letting time evolve into a still water stationary solution, obtaining
similar results with the exact C-property, i.e. the errors are at the level of round-off errors for
different precisions.

5.2 Testing the orders of accuracy

In this example we will test the high order accuracy of our schemes for a smooth solution. We
have the following bottom function and initial conditions

b(x) = sin2(πx), h(x, 0) = 5 + ecos(2πx), (hu)(x, 0) = sin(cos(2πx)), x ∈ [0, 1]

with periodic boundary conditions, see [31]. Since the exact solution is not known explicitly for
this case, we use the fifth order finite volume WENO scheme with N = 12, 800 cells to compute
a reference solution, and treat this reference solution as the exact solution in computing the
numerical errors. We compute up to t = 0.1 when the solution is still smooth (shocks develop
later in time for this problem). Table 3 contains the L1 errors for the cell averages and numerical
orders of accuracy for the finite volume and RKDG schemes, respectively. We can clearly see
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Table 3: L1 errors and numerical orders of accuracy for the example in Section 5.2.

FV schemes RKDG schemes
No. of CFL h hu h hu
cells L1 error order L1 error order L1 error order L1 error order

25 0.6 1.28E-02 1.16E-01 2.35E-03 2.12E-02

50 0.6 2.25E-03 2.50 2.25E-02 2.37 1.14E-04 4.36 1.01E-03 4.39

100 0.4 3.26E-04 2.79 2.75E-03 3.03 1.24E-05 3.20 1.09E-04 3.21

200 0.3 2.33E-05 3.80 2.00E-04 3.79 1.02E-06 3.59 8.97E-06 3.60

400 0.2 9.54E-07 4.61 8.20E-06 4.60 1.12E-07 3.19 9.79E-07 3.19

800 0.1 2.99E-08 4.99 2.58E-07 4.99 1.30E-08 3.09 1.14E-07 3.08
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Figure 1: The initial surface level h+b and the bottom b for a small perturbation of a steady-state water.

Left: a big pulse ε=0.2; right: a small pulse ε=0.001.

that fifth order accuracy is achieved for the WENO scheme, and third order accuracy is achieved
for the RKDG scheme. For the RKDG scheme, the TVB constant M is taken as 32. Notice
that the CFL number we have used for the finite volume scheme decreases with the mesh size
and is recorded in Table 3. For the RKDG method, the CFL number is fixed at 0.18.

5.3 A small perturbation of a steady-state water

The following quasi-stationary test case was proposed by LeVeque [19]. It was chosen to demon-
strate the capability of the proposed scheme for computations on a rapidly varying flow over a
smooth bed, and the perturbation of a stationary state.
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Figure 2: FV scheme: Small perturbation of a steady-state water with a big pulse. t=0.2s. Left: surface

level h + b; right: the discharge hu.

The bottom topography consists of one hump:

b(x) =

{

0.25(cos(10π(x − 1.5)) + 1) if 1.4 ≤ x ≤ 1.6
0 otherwise

(5.3)

The initial conditions are given with

(hu)(x, 0) = 0 and h(x, 0) =

{

1 − b(x) + ε if 1.1 ≤ x ≤ 1.2
1 − b(x) otherwise

(5.4)

where ε is a non-zero perturbation constant. Two cases have been run: ε = 0.2 (big pulse) and
ε = 0.001 (small pulse). Theoretically, for small ε, this disturbance should split into two waves,
propagating left and right at the characteristic speeds ±

√
gh. Many numerical methods have

difficulty with the calculations involving such small perturbations of the water surface [19]. Both
sets of initial conditions are shown in Figure 1. The solution at time t=0.2s for the big pulse ε
= 0.2, obtained on a 200 cell uniform grid with simple transmissive boundary conditions, and
compared with a 3000 cell solution, is shown in Figure 2 for the FV scheme and in Figure 4 for
the RKDG scheme. The results for the small pulse ε = 0.001 are shown in Figures 3 and 5. At
this time, the downstream-traveling water pulse has already passed the bump. We can clearly
see that there are no spurious numerical oscillations.

5.4 The dam breaking problem over a rectangular bump

In this example we simulate the dam breaking problem over a rectangular bump, which involves
a rapidly varying flow over a discontinuous bottom topography. This example was used in [29].
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Figure 3: FV scheme: Small perturbation of a steady-state water with a small pulse. t=0.2s. Left:

surface level h + b; right: the discharge hu.
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Figure 4: RKDG scheme: Small perturbation of a steady-state water with a big pulse. t=0.2s. Left:

surface level h + b; right: the discharge hu.

The bottom topography takes the form:

b(x) =

{

8 if |x − 750| ≤ 1500/8
0 otherwise

(5.5)

for x ∈ [0, 1500]. The initial conditions are

(hu)(x, 0) = 0 and h(x, 0) =

{

20 − b(x) if x ≤ 750
15 − b(x) otherwise

(5.6)
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Figure 5: RKDG scheme: Small perturbation of a steady-state water with a small pulse. t=0.2s. Left:

surface level h + b; right: the discharge hu.

The numerical results obtained by the FV scheme with 400 uniform cells (and a comparison
with the results using 4000 uniform cells) are shown in Figures 6 and 7, with two different ending
time t=15s and t=60s. Figures 8 and 9 demonstrate the numerical results by the RKDG scheme,
with the same number of uniform cells. In this example, the water height h(x) is discontinuous
at the points x = 562.5 and x = 937.5, while the surface level h(x)+ b(x) is smooth there. Both
schemes work well for this example, giving well resolved, non-oscillatory solutions using 400 cells
which agree with the converged results using 4000 cells.

5.5 Steady flow over a hump

The purpose of this test case is to study the convergence in time towards steady flow over a
bump. These are classical test problems for transcritical and subcritical flows, and they are
widely used to test numerical schemes for shallow water equations. For example, they have been
considered by the working group on dam break modelling [12], and have been used as a test case
in, e.g. [28].

The bottom function is given by:

b(x) =

{

0.2 − 0.05(x − 10)2 if 8 ≤ x ≤ 12
0 otherwise

(5.7)

for a channel of length 25m. The initial conditions are taken as

h(x, 0) = 0.5 − b(x) and u(x, 0) = 0.

Depending on different boundary conditions, the flow can be subcritical or transcritical with or
without a steady shock. The computational parameters common for all three cases are: uniform
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Figure 6: FV scheme: The surface level h + b for the dam breaking problem at time t=15s. Left: the

numerical solution using 400 grid cells, plotted with the initial condition and the bottom topography;

Right: the numerical solution using 400 and 4000 grid cells.
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Figure 7: FV scheme: The surface level h + b for the dam breaking problem at time t=60s. Left: the

numerical solution using 400 grid cells, plotted with the initial condition and the bottom topography;

Right: the numerical solution using 400 and 4000 grid cells.

mesh size ∆x = 0.125 m (200 cells), ending time t= 200 s. Analytical solutions for the various
cases are given in Goutal and Maurel [12].

a): Transcritical flow without a shock.

• upstream: The discharge hu=1.53 m2/s is imposed.
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Figure 8: RKDG scheme: The surface level h + b for the dam breaking problem at time t=15s. Left: the

numerical solution using 400 grid cells, plotted with the initial condition and the bottom topography;

Right: the numerical solution using 400 and 4000 grid cells.
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Figure 9: RKDG scheme: The surface level h + b for the dam breaking problem at time t=60s. Left: the

numerical solution using 400 grid cells, plotted with the initial condition and the bottom topography;

Right: the numerical solution using 400 and 4000 grid cells.

• downstream: The water height h=0.66 m is imposed when the flow is subcritical.

The surface level h + b and the discharge hu, as the numerical flux for the water height h in
equation (1.3), are plotted in Figures 10 and 11, which show very good agreement with the
analytical solution. The correct capturing of the discharge hu is usually more difficult than the
surface level h + b, as noticed by many authors.



Xing and Shu / Commun. Comput. Phys., 1 (2006), pp. 100-134 120

x

su
rf

ac
e

le
ve

lh
+

b

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
analytic h+b
numerical h+b
bottom b

x

d
is

ch
ar

ge

0 5 10 15 20 25
1.525

1.5275

1.53

1.5325

1.535
analytic discharge
numerical discharge

Figure 10: FV scheme: Steady transcritical flow over a bump without a shock. Left: the surface level

h + b; right: the discharge hu as the numerical flux for the water height h.
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Figure 11: RKDG scheme: Steady transcritical flow over a bump without a shock. Left: the surface level

h + b; right: the discharge hu as the numerical flux for the water height h.

b): Transcritical flow with a shock.

• upstream: The discharge hu=0.18 m2/s is imposed.

• downstream: The water height h=0.33 m is imposed.

In this case, the Froude number Fr = u/
√

gh increases to a value larger than one above the
bump, and then decreases to less than one. A stationary shock can appear on the surface. The
surface level h+ b and the discharge hu, as the numerical flux for the water height h in equation
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Figure 12: FV scheme: Steady transcritical flow over a bump with a shock. Left: the surface level h + b;

right: the discharge hu as the numerical flux for the water height h.
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Figure 13: RKDG scheme: Steady transcritical flow over a bump with a shock. Left: the surface level

h + b; right: the discharge hu as the numerical flux for the water height h.

(1.3), are plotted in Figure 12 and 13. In Figure 12 for the FV scheme, some minor oscillations
can be observed near the jump. Here we also plot the numerical result with 400 uniform cells
in Figure 14, where we can observe that the oscillation is completely removed. The reason for
this phenomenon is still not known.

c): Subcritical flow.

• upstream: The discharge hu=4.42 m2/s is imposed.
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Figure 14: FV scheme with 400 uniform cells: Steady transcritical flow over a bump with a shock. Left:

the surface level h + b; right: the discharge hu as the numerical flux for the water height h.
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Figure 15: FV scheme: Steady subcritical flow over a bump. Left: the surface level h + b; right: the

discharge hu as the numerical flux for the water height h.

• downstream: The water height h=2 m is imposed.

This is a subcritical flow. The surface level h + b and the discharge hu, as the numerical flux
for the water height h in equation (1.3), are plotted in Figure 15 and 16, which are in good
agreement with the analytical solution.
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Figure 16: RKDG scheme: Steady subcritical flow over a bump. Left: the surface level h + b; right: the

discharge hu as the numerical flux for the water height h.

5.6 Test for the exact C-property in two dimensions

This example is used to check that our schemes indeed maintain the exact C-property over a
non-flat bottom for 2D shallow water equations. The two-dimensional hump

b(x, y) = 0.8e−50((x−0.5)2+(y−0.5)2), x, y ∈ [0, 1] (5.8)

is chosen to be the bottom. h(x, y, 0) = 1−b(x, y) is the initial depth of the water. Initial velocity
is set to be zero. This surface should remain flat. The computation is performed to t = 0.1
using single, double and quadruple precisions with a 100× 100 uniform mesh. Table 4 contains
the L1 errors for the water height h (which is not a constant function) and the discharges hu
and hv for both schemes. We can clearly see that the L1 errors are at the level of round-off
errors for different precisions, verifying the exact C-property.

5.7 Testing the orders of accuracy

In this example we check the numerical orders of accuracy when the schemes are applied to the
following two dimensional problem. The bottom topography and the initial data are given by:

b(x, y) = sin(2πx) + cos(2πy), h(x, y, 0) = 10 + esin(2πx) cos(2πy),

(hu)(x, y, 0) = sin(cos(2πx)) sin(2πy), (hv)(x, y, 0) = cos(2πx) cos(sin(2πy))

defined over a unit square, with periodic boundary conditions. The terminal time is taken as
t=0.05 to avoid the appearance of shocks in the solution. Since the exact solution is also not
known explicitly for this case, we use the same fifth order WENO scheme with an extremely
refined mesh consisting of 1600 × 1600 cells to compute a reference solution, and treat this
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Table 4: L1 errors for different precisions for the stationary solution in Section 5.6.

L1 error
precision h hu hv

single 8.77E-07 7.49E-07 6.93E-07
FV double 1.49E-15 2.31E-15 2.30E-15

quadruple 1.04E-33 9.87E-34 1.01E-33

single 9.43E-08 4.84E-07 4.94E-07
RKDG double 6.98E-17 2.31E-15 2.31E-15

quadruple 6.14E-34 1.52E-33 1.53E-33

Table 5: FV scheme: L1 errors and numerical orders of accuracy for the example in Section 5.7.

Number h hu hv
of cells CFL L1 error order L1 error order L1 error order

25 × 25 0.6 7.91E-03 2.12E-02 6.52E-02

50 × 50 0.6 1.13E-03 2.81 2.01E-03 3.40 9.22E-03 2.82

100 × 100 0.6 8.89E-05 3.66 1.25E-04 4.00 7.19E-04 3.68

200 × 200 0.4 4.07E-06 4.45 5.19E-06 4.59 3.30E-05 4.45

400 × 400 0.3 1.42E-07 4.84 1.84E-07 4.82 1.15E-06 4.84

800 × 800 0.2 4.38E-09 5.02 5.99E-09 4.94 3.63E-08 4.99

reference solution as the exact solution in computing the numerical errors. The TVB constant
M in the limiter for the RKDG scheme is taken as 40 here. Tables 5 and 6 contain the L1 errors
and orders of accuracy for the cell averages. We can clearly see that, in this two dimensional
test case, fifth order accuracy is achieved for the finite volume WENO scheme and close to third
order accuracy is achieved for the RKDG scheme.

5.8 A small perturbation of a two dimensional steady-state water

This is a classical example to show the capability of the proposed scheme for the perturbation
of the stationary state, given by LeVeque [19]. It is analogous to the test done previously in
Section 5.3 in one dimension.

We solve the system in the rectangular domain [0, 2] × [0, 1]. The bottom topography is an
isolated elliptical shaped hump:

b(x, y) = 0.8 e−5(x−0.9)2−50(y−0.5)2 . (5.9)
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Table 6: RKDG scheme: L1 errors and numerical orders of accuracy for the example in Section 5.7.

Number h hu hv
of cells L1 error order L1 error order L1 error order

25 × 25 2.45E-03 1.36E-02 2.05E-02

50 × 50 5.73E-04 2.10 2.92E-03 2.22 4.75E-03 2.11

100 × 100 1.06E-04 2.43 5.31E-04 2.46 8.51E-04 2.48

200 × 200 1.71E-05 2.63 8.81E-05 2.60 1.39E-04 2.61

400 × 400 2.53E-06 2.75 1.32E-05 2.74 2.11E-05 2.72

800 × 800 3.52E-07 2.84 1.88E-06 2.81 3.01E-06 2.81

The surface is initially given by:

h(x, y, 0) =

{

1 − b(x, y) + 0.01 if 0.05 ≤ x ≤ 0.15
1 − b(x, y) otherwise

hu(x, y, 0) = hv(x, y, 0) = 0
(5.10)

So the surface is almost flat except for 0.05 ≤ x ≤ 0.15, where h is perturbed upward by 0.01.
Figures 17 and 18 display the right-going disturbance as it propagates past the hump, on two
different uniform meshes with 200 × 100 cells and 600 × 300 cells for comparison. The surface
level h + b is presented at different times. The results indicate that both schemes can resolve
the complex small features of the flow very well.

6 Other applications

In this section, we generalize high order well balanced schemes, designed in Sections 3 and 4, to
other balance laws introduced in [32], including the elastic wave equation, the hyperbolic model
for a chemosensitive movement, the nozzle flow, a model of fluid mechanics and a two phase flow
model. Due to page limitation, only the elastic wave equation and chemosensitive movement
model are investigated here, however our technique can also be applied to the other three cases.
Some selective numerical tests are presented to show the good properties of our well balance
schemes.

6.1 Elastic wave equation

We consider the propagation of compressional waves [2, 30] in an one-dimensional elastic rod
with a given media density ρ(x). The equations of motion in a Lagrangian frame are given by
the balance laws:

{

(ρε)t + (−ρu)x = −u
dρ

dx
(ρu)t + (−σ)x = 0,

(6.1)
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Figure 17: FV scheme: The contours of the surface level h+b for the problem in Section 5.8. 30 uniformly

spaced contour lines. From top to bottom: at time t = 0.12 from 0.99942 to 1.00656; at time t = 0.24

from 0.99318 to 1.01659; at time t = 0.36 from 0.98814 to 1.01161; at time t = 0.48 from 0.99023 to

1.00508; and at time t = 0.6 from 0.99514 to 1.00629. Left: results with a 200×100 uniform mesh. Right:

results with a 600 × 300 uniform mesh.
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Figure 18: RKDG scheme: The contours of the surface level h + b for the problem in Section 5.8. 30

uniformly spaced contour lines. From top to bottom: at time t = 0.12 from 0.99942 to 1.00656; at time

t = 0.24 from 0.99318 to 1.01659; at time t = 0.36 from 0.98814 to 1.01161; at time t = 0.48 from 0.99023

to 1.00508; and at time t = 0.6 from 0.99514 to 1.00629. Left: results with a 200 × 100 uniform mesh.

Right: results with a 600 × 300 uniform mesh.
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where ε is the strain, u is the velocity and σ is a given stress-strain relationship σ(ε, x). The
equation of linear acoustics can be obtained from above if the stress-strain relationship is linear,

σ(ε, x) = K(x) ε

where K(x) is the given bulk modulus of compressibility. The steady state we are interested to
preserve for this problem is characterized by

a1 ≡ σ(ε, x) = constant, a2 ≡ u = constant.

Here we only show the well balanced property for the RKDG schemes. Similar idea can be
used for the finite volume WENO schemes.

First, we project the initial value to obtain Uh = ((ρε)h, (ρu)h)T , and also apply the same
procedure for ρ to obtain ρh. Then, we check the three conditions in Section 3 one by one. Only
the first equation in (6.1) must be considered for the well balanced property.

1: If the steady state is reached, uh ≡ (ρu)h

ρh
is constant and ρh is a polynomial, hence the

integral of the source term can be calculated exactly.
2: We set

(ρu)∗,+
h,j+ 1

2

=
(ρu)+

h,j+ 1
2

ρ+
h,j+ 1

2

max(ρ+
h,j+ 1

2

, ρ−
h,j+ 1

2

) (6.2)

(ρu)∗,−
h,j+ 1

2

=
(ρu)−

h,j+ 1
2

ρ−
h,j+ 1

2

max(ρ+
h,j+ 1

2

, ρ−
h,j+ 1

2

) (6.3)

and redefine the left and right values of U as:

U∗,±

h,j+ 1
2

=

(

(ρε)±
h,j+ 1

2

(ρu)∗,±
h,j+ 1

2

)

(6.4)

Then we define the left and right fluxes as:

f̂ l
j+ 1

2

= F (U∗,−

h,j+ 1
2

, U∗,+

h,j+ 1
2

) +

(

−(ρu)−
h,j+ 1

2

+ (ρu)∗,−
h,j+ 1

2

0

)

(6.5)

f̂ r
j− 1

2

= F (U∗,−

h,j− 1
2

, U∗,+

h,j− 1
2

) +

(

−(ρu)+
h,j− 1

2

+ (ρu)∗,+
h,j− 1

2

0

)

. (6.6)

The max in (6.2)-(6.3) was chosen in [1] to guarantee positive water height and was referred to
as “hydrostatic reconstruction” there. Here it does not have a clear physical meaning and could
be replaced by minimum or average as well.

3: (ρu)h, satisfying uh = constant, is also a steady state solution of :

(−ρu)x = −u
dρh

dx
.
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With these three conditions, we can repeat the proof of Proposition 3.1 to show that our
schemes are indeed well balanced and high order accurate.

Remark 6.1: When performing the limiting on the function (ρu)h after each Runge-Kutta
stage to control spurious oscillations, we keep in mind that our purpose is to maintain the
steady state solution (ρu)h which satisfies uh = constant. Here we follow the idea used in [33],
and first check whether any limiting is needed based on the function uh in each Runge-Kutta
stage. If the answer is yes, then the actual limiter is implemented on (ρu)h.

Next, we present the numerical result for a linear acoustic test [2]. The properties of the
media are given by

c(x) =

√

K(x)

ρ(x)
= 1 + 0.5 sin(10πx), Z(x) = ρ(x)c(x) = 1 + 0.25 cos(10πx).

The initial conditions are given by

ρ ε(x, 0) =











−1.75 + 0.75 cos(10πx)

c2(x)
, if 0.4 < x < 0.6

−1

c2(x)
, otherwise

, u(x, 0) = 0.

It is test cases where the impedance Z(x) and hence the eigenvectors are both spatially varying.
We perform the computation with 200 uniform cells, with the ending time t = 0.4s. An “exact”
reference solution is computed with the same scheme over a 2000 grid point uniform cells. The
simulation results are shown in Figure 19. The numerical resolution shows very good agreement
with the “exact” reference solution.

6.2 Chemosensitive movement

Originated from biology, chemosensitive movement [11, 14] is a process by which cells change
their direction reacting to the presence of a chemical substance, approaching chemically favorable
environments and avoiding unfavorable ones. Hyperbolic models for chemotaxis are recently
introduced [14] and take the form

{

nt + (nu)x = 0

(nu)t + (nu2 + n)x = nχ′(c)
∂c

∂x
− σnu

(6.7)

where the chemical concentration c = c(x, t) is given by the parabolic equation

∂c

∂t
− Dc4c = n − c.

Here, n(x, t) is the cell density, nu(x, t) is the population flux and σ is the friction coefficient.



Xing and Shu / Commun. Comput. Phys., 1 (2006), pp. 100-134 130

x

st
re

ss

0 0.25 0.5 0.75 1
-3

-2.5

-2

-1.5

-1

-0.5

initial stress
nx=200
nx=2000

x

st
re

ss

0 0.25 0.5 0.75 1
-3

-2.5

-2

-1.5

-1

-0.5

initial stress
nx=200
nx=2000

Figure 19: The numerical (symbols) and the “exact” reference (solid line) stress σ(x) at time t = 0.4s.

Left: FV schemes; right: DG schemes.

We would like to preserve the steady state solution to (6.7) with a zero population flux,
which satisfies

n

eχ(c)
= constant, nu = 0. (6.8)

where c = c(x) does not depend on t in steady state.
Here we only show the well balanced property for the RKDG schemes. Similar idea can be

used for the finite volume WENO schemes.
First, we project the initial value to obtain Uh = (nh, (nu)h)T , and also project eχ(c) to

obtain (eχ(c))h. Then, we check the three conditions in Section 3 one by one. Only the second
equation in (6.7) is relevant for the well balanced property.

1: The source term can be written as: n
eχ(c)

d
dx

eχ(c)−σnu. If the steady state is reached, n
eχ(c)

is constant and (eχ(c))h is a polynomial, hence the integral of the source term can be calculated
exactly.

2: We set

n∗,+

h,j+ 1
2

=
n+

h,j+ 1
2

(eχ(c))+
h,j+ 1

2

max((eχ(c))+
h,j+ 1

2

, (eχ(c))−
h,j+ 1

2

) (6.9)

n∗,−

h,j+ 1
2

=
n−

h,j+ 1
2

(eχ(c))−
h,j+ 1

2

max((eχ(c))+
h,j+ 1

2

, (eχ(c))−
h,j+ 1

2

) (6.10)

and redefine the left and right values of U as:

U∗,±

h,j+ 1
2

=

(

n∗,±

h,j+ 1
2

(nu)±
h,j+ 1

2

)

(6.11)
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Table 7: L1 errors and numerical orders of accuracy for the example in Section 6.2.

FV schemes DG schemes
No. of CFL ρε ρu ρε ρu
points L1 error order L1 error order L1 error order L1 error order

20 0.6 1.10E-002 8.76E-003 1.13E-004 1.13E-004

40 0.6 1.20E-003 3.20 1.02E-003 3.10 1.56E-005 2.86 1.42E-005 2.99

80 0.5 1.19E-004 3.34 9.81E-005 3.38 1.06E-006 3.88 9.58E-007 3.89

160 0.4 6.27E-006 4.25 5.32E-006 4.20 8.91E-008 3.57 8.09E-008 3.56

320 0.3 2.48E-007 4.66 2.12E-007 4.65 8.93E-009 3.32 8.10E-009 3.32

640 0.1 8.09E-009 4.95 6.85E-008 4.96 1.06E-009 3.07 9.59E-0010 3.08

Then we define the left and right fluxes as:

f̂ l
j+ 1

2

= F (U∗,−

h,j+ 1
2

, U∗,+

h,j+ 1
2

) +

(

0

n−

h,j+ 1
2

− n∗,−

h,j+ 1
2

)

(6.12)

f̂ r
j− 1

2

= F (U∗,−

h,j− 1
2

, U∗,+

h,j− 1
2

) +

(

0

n+
h,j− 1

2

− n∗,+

h,j− 1
2

)

(6.13)

3: We note that (nu)h = 0 and nh, satisfying nh

(e
χ(c)
h

= constant, is the steady state solution

of :

(nu2 + n)x =
n

(eχ(c))h

d

dx
(eχ(c))h − σnu.

With these three conditions, we can repeat the proof of Proposition 3.1 to show that our
new schemes are indeed well balanced and high order accurate.

The limiter procedure is performed similarly as in Section 6.1. We refer to [33] for more
details.

The following example is to test the fifth order accuracy for smooth solutions, for which we
take the initial conditions as

n(x, 0) = 1 + 0.2 cos(πx), u(x, 0) = 0, x ∈ [−1, 1]

with
c(x) = e−16x2

, χ(c) = log(1 + c), σ = 0

with a periodic boundary condition. Since the exact solution is not known explicitly for this
problem, we use the same fifth order WENO scheme with N = 5120 points to compute a
reference solution and treat it as the exact solution when computing the numerical errors. Final
time t = 1.0s is used to avoid the development of shocks. The constant M is taken as 13 and the
CFL number is 0.18 in the RKDG code. Table 7 contains the L1 errors and numerical orders of
accuracy. We can clearly see that the expected order accuracy is achieved for this example.
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7 Concluding remarks

In this paper we have presented a new class of high order well balanced finite volume WENO and
finite element discontinuous Galerkin schemes to several hyperbolic balance laws including the
shallow water equations, the elastic wave equation, and the hyperbolic model for a chemosensitive
movement. Our technique can also be applied to other application problems such as the nozzle
flow problem and a two phase flow model [32], but we have not included them in this paper
to save space. Traditional RKDG methods with a special treatment of the flux are proven to
be well balanced for certain steady state solutions, and can maintain their original high order
accuracy and essentially non-oscillatory property for general solutions. Finite volume WENO
schemes can be modified due to similar ideas to obtain those properties. Extensive numerical
examples are given to demonstrate the exactness property, accuracy, and non-oscillatory shock
resolution of the proposed numerical method. The approach used in this paper is different from
that used in [33]. Comparing with the well balanced schemes developed in [33], the well balanced
RKDG schemes in this paper are simpler and involve less modification to the original RKDG
methods, while the well balanced WENO finite volume schemes in this paper and that in [33]
are comparable in computational cost.
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