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Abstract. Multidimensional tunneling appears in many problems at nano scale. The
high dimensionality of the potential energy surface (e.g. many degrees of freedom) poses
a great challenge in both theoretical and numerical description of tunneling. Numerical
simulation based on Schrödinger equation is often prohibitively expensive. We propose
an accurate, efficient, robust and easy-to-implement numerical method to calculate
the ground state tunneling splitting based on imaginary-time path integral (‘instanton’

formulation). The method is genuinely multi-dimensional and free from any additional
ad hoc assumptions on potential energy surface. It enables us to calculate the effects of
all coupling modes on the tunneling degree of freedom without loss. We also review in
this paper some theoretical background and survey some recent work from other groups
in calculating multidimensional quantum tunneling effects in chemical reactions.
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1 Introduction

Tunneling describes the phenomena that particles pass through potential energy barrier
with negative kinetic energy. It originates from the wave nature of quantum mechanics
where a wave cannot be completely confined in a bounded region by any finite potential.
It will leak out eventually. From corpuscle perspective, however, the tunneling behavior
is rather bizarre and has far-reaching implications. The characteristic length for wave
mechanics is the particle’s de Broglie wavelength λ = h/

√
2mE. For an electron it is 18 Å
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at the energy of 10kJ/mol and 0.5 Å for hydrogen H(protium). Therefore at nano-scale
when the de Broglie wavelength cannot be ignored, the wave/corpuscle duality nature of
matter forces one to cooprate with this ‘non-classical’ tunneling behavior.

Quantum tunneling found its very early application in nuclear physics, soon after the
discovery of the wave nature of particles. There has been considerable interest in tun-
neling in condensed matter physics, both in theory and applications. Most of it concerns
electron tunneling since it has longer de Broglie wave length therefore greater tunneling
effects. The examples include Cooper pair tunneling in super-conductor, tunneling tran-
sistor in semi-conductor, scanning tunneling microscopy, to name a few. For the past two
and half decades, tunneling of macroscopic degrees of freedom has been studied intensively
after the proposal of Leggett in [20]. A prototype example is magnetic flux tunneling in
superconducting quantum interface devices (SQUIDS). One of the central theme in these
studies is the many-body effects and the influence of environment on the behavior of
tunneling degree of freedom. Of particular interest is the survival (or lost) of quantum
mechanical behavior in the quantum-classical transition (the ‘decoherence’ problem). For
this purpose, field theory based method (path integral) has become quite popular. Com-
pared with wave function description of Schrödinger, path integral has the advantage in
handling many degrees of freedom (many dimensions), in both theoretical study and real
life computation. Reduction to effective few-body model can also be done in a relatively
easy way (see, for example, [41] for details).

In chemistry and biochemistry, the importance of tunneling in electron transfer has
been established after the work of Marcus. Recently hydrogen tunneling in proton transfer
has attracted much attention in chemical reaction, in both theory and experiments, where
the proton transfer is at the heart of acid-based reactions. It has been found tunneling play
an important role at low and even moderate temperature. For some recent experimental
discoveries, see [17,32] and series of reviews in [31].

In classical theory, the chemical reaction is conveniently described by reaction path-
way(s) on a potential energy surface (PES). PES describes interaction among nuclei and
is obtained after the Born-Oppenheimer approximation to separate the fast electronic mo-
tion and slow nuclear motion. Usually, the dimension (number of degrees of freedom) of
PES is very large. For a molecule of M atoms, the dimension of PES is d = 3M−6. By as-
suming the nuclear motion being classical, the reaction pathway is solved from Newtonian
dynamics on PES. Since Newtonian dynamics is based on trajectories, the realization is
relatively cheap (algebraic against d). When considering quantum mechanical behavior,
this is no longer the case. The full quantum mechanical behavior can certainly be deter-
mined if one solves Schrödinger equation with PES V (x) directly. But since there are d
independent variables, the computational cost is O(Nd) where N is the number of basis
functions in each dimension. It is prohibitively expensive beyond small d and N . Various
approximation schemes have been developed. Semi-classical approximation of WKB type
has been a major tool to handle the situation. However, since complete WKB approxi-
mation works only for 1D, in practice one still has to enforce various additional ad hoc

assumptions on potential to reduce the number of dimensions. It is hard to justify these
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assumptions.
WKB approximation can be generalized to multi-dimensions by path integral method.

In particular, for the ground state calculation, the so-called ‘instanton’ formulation was
developed in quantum field theory. Recently there have appeared many works using in-
stanton to study chemical reaction on high dimensional PES. However, some fundamental
difficulties exist in the application of instanton. Most of the computations do not fully
exploit the multi-dimension nature of instanton and resort to 1D calculation after fur-
ther ad hoc assumptions at some intermediate step. This makes the calculation results
less reliable. In this work, we present an accurate and efficient numerical scheme to deal
with one of the basic tunneling phenomena, tunneling splitting in multidimensional dou-
ble well potential. Compared to other approaches, our method avoids any additional ad

hoc assumptions on potential energy surface and can deal with any DOF which makes it
attractive in realistic computation.

In the following sections, theoretical background will be introduced (both direct WKB
and path integral approaches). Some of the recent numerical works on quantum tunneling
calculation in chemical reaction base on instanton approach will be discussed after that.
We propose our new numerical scheme to solve the problem of tunneling splitting followed
by some computational results. The conclusion will be drawn in the final section.

2 Theoretical background

2.1 WKB

In this section, we give a very brief review of the theoretical background of the semi-
classical description of quantum tunneling. For more details, we refer to [19].

After Born-Oppenheimer approximation, one reaches the potential energy surface
V (x). For the nuclear motion, one has either the time-dependent Schrödinger equation
for the wave function Φ(x)

i~
∂Ψ

∂t
= ĤΨ = −~

2

2
∆xΨ + V (x)Ψ. (2.1)

Here and after we use mass-weighted coordinates; therefore ~ is indeed a rescaled Planck
constant. Or for a system at total energy E, one solves the stationary state Schrödinger
equation

Ĥψ = −~
2

2
∆xψ + V (x)ψ = Eψ. (2.2)

WKB semi-classical approximation looks for the wave function of the form

ψ = exp
(

iW/~
)

, (2.3)

where W admits following semi-classical expansion

W = W0 + ~W1 + · · · . (2.4)
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The first two equations are

|∇W0(x)|2 = 2
(

E − V (x)
)

, (2.5)

∇W0(x) · ∇W1(x) =
i

2
∆W0(x). (2.6)

If the system has just a single DOF, the above equation can be solved trivially:

W0(x) = ±
∫

√

2
(

E − V (x)
)

dx. (2.7)

One can easily see that for the region where the total energy E is larger than potential

energy V (x) (classically allowed), ψ(x) is indeed a wave ψ = e±
i

~

R
p(x)dx where p(x) is

the local momentum p(x) =
√

2
(

E − V (x)
)

that is real. However when the total energy

E is lower than the potential energy V (x) which is classically forbidden since kinetic

energy is negative, ψ behaves like the exponential function ψ(x) = e±
1

~

R √
2|E−V (x)|dx

(

or
a wave with imaginary momentum p(x) in another word

)

. This exponentially small but
non-vanishing property characterizes the semi-classical behavior of the particle under the
potential barrier.

In 1D, the WKB wave function takes the general form

ψ = C1p
−1/2 exp

( i

~

∫

pdx
)

+ C2p
−1/2 exp

(

− i

~

∫

pdx
)

, (2.8)

where the local momentum is p(x) =
√

2
(

E − V (x)
)

. This form holds for both classically

allowed and forbidden waves. Indeed, classically forbidden wave can be regarded as an
analytical continuation of a classically allowed wave into imaginary momentum. Of course
the above general solution breaks down at the so-called turning point(s) where E = V (x)
thus p(x) = 0. One needs some connection formula to match classically allowed with
forbidden wave functions. For the one-dimensional case, using Stokes lines emanating
from turning point (isolated or finite many coalescent) one can do analytical continuation
to match non-uniform asymptotic expansions in different sections.

The generalization of 1D solutions to multi-dimensional non-separable potential is
non-trivial. Eq. (2.5) is now integrated along characteristics up to caustics which is now
a manifold that cannot be calculated a priori (in contrast to 1D turning points). The
form of the WKB wave function in classically forbidden region is difficult to determine. In
the seminal work [1], the concept of ‘most probable escape path’ (MPEP) was introduced
to simplify the construction of W0 in this region. The idea is that in the forbidden
region, W0(x) is purely imaginary and that iW0(x) =

√

2(V (x) − E) should be integrated
along a ‘real’ characteristic. By the exponential property, one should concentrate on the

tube around the path that minimizes
∫

P

√

2
(

V (x) − E
)

. However, this is actually a free

boundary problem with boundary condition (turning points) included in the path P. Some
very crude approximations are needed in practice to find P. The connection problems are
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Figure 1: Ground state energy splitting by tunneling in 1D.

yet to be solved in a satisfactory way. The exception is E = 0 which means the tunneling
out of the bottom of the well. We shall see later that this is closely related to the imaginary
time path integral approach (‘instanton’).

One of the basic problems in quantum tunneling is the symmetric double-well potential
problem. Classically, a particle stays in one well if its energy is not high enough. How-
ever, when considering quantum mechanical behavior, the particle will tunnel through the
potential barrier even at zero temperature. The two ‘localized’ wave functions have expo-
nentially small overlap which cause the tunneling and then the two original degenerated
ground state energy will split into two levels with exponentially small difference. The
resulting two lowest states will have opposite parity. This tunneling splitting has wide
and vital implications in quantum field theory, phase transition, chemical isomerization
reaction, among others.

Schematically, it is illustrated in Fig. 1.

Again for the 1D potential V (x) this problem can indeed be solved nicely by standard
WKB calculation ( [19]). Tunneling splitting is given by:

∆0 =
~ω

π
exp

(

− 1

~

∫ a′

−a′

√

2(V (x) − E)dx
)

, (2.9)

where E is single well energy level (not necessarily ground state) and ±a′ are two (sym-
metric) inner turning points associated with E. ω =

√

V ′′(a) where ±a are local minima
of V (x) can be thought as attempting frequency of the particle in one well with energy
E. This formula has been a workhorse for almost all tunneling splitting calculations. As
said, to generalize it to multi-dimensions needs great effort.

2.2 Instanton

We now turn to the path integral formalism (see e.g., [11, 30] for more details). For the
description of a quantum system with many degrees of freedom, this is the most versatile
tool.
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Instead of solving for the wave function from the Schrödinger equation (either station-
ary or time-dependent), the path integral solves for the propagator (Green’s function) of
Eq. (2.1):

G(x, t;y, 0) = 〈y|e−iHt/~|x〉. (2.10)

The critical step is to express the propagator as a path integral:

G(x, t;y, 0) =

∫

x,t

y,0
exp

(

iS[u(s)]/~
)

Du, (2.11)

where Du is understood as summation over all the paths that connect two end-points
u(0) = y,u(t) = x. S[u] is the classical action defined via the classical Lagrangian:

S[u] =

∫ t

0
L(u, u̇, t′)dt′ =

∫ t

0

(1

2
u̇2 − V (u)

)

dt′.

The path integral is most effective in the semi-classical regime where the action S ≫ ~.
It is then evaluated by the stationary phase method. Heuristically, because of the fast
oscillation of the phase, the dominant contribution to the integral should come from the
stationary point of the phase which is now a path u(t) that satisfies the Euler-Lagrange
equation,

δS

δu
= −ü(t) −∇V

(

u(t)
)

= 0, (2.12)

with boundary conditions
u(0) = y, u(t) = x. (2.13)

This is nothing but the equation for the classical Newtonian trajectory. Higher order terms
are included by formal Taylor’s expansion of S[u]. Usually, one stops at the second-order
term which will be integrated by Gaussian integration. Some special treatment is necessary
if it is singular. This is indeed what we shall encounter later. Quantum fluctuation around
the classical path is thus given. In this way, the path integral bridges quantum description
and the classical one.

Barrier tunneling (we do not consider the dynamical tunneling here) is classically
forbidden and the kinetic energy of the system is negative. Formally, the momenta can
be thought of as analytically continued into complex value. They are assumed to be
purely imaginary and the imaginary-time path integral is therefore used to describe the
process ( [7]). This scheme indeed follows the seminal work of [1] in multidimensional
WKB. There is however criticism on this assumption, especially in the so-called ‘mixed
tunneling’ (see [38]). More complicated ‘phase-space’ tunneling can be found in e.g., [9].
However, this ‘imaginary-time’ path integral is probably still the most practical tool to
study the ground state behavior in tunneling of a system with large number of DOF and
the whole ‘Euclidean field’ theory has been built on it.

After transforming t→ τ = it, the (imaginary-time) propagator now reads

GE(x, τ ;y, 0) = 〈x|e−Hτ/~|y〉 =

∫

e−SE [u]/~Du, (2.14)
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where SE[u] is now the Euclidean action defined as:

SE[u] =

∫

LE(u, u̇, τ ′)dτ ′ =

∫
(

1

2
u̇2(τ) + V (u(τ))

)

dτ. (2.15)

This path integral can be evaluated by the steepest decent method for functional integra-
tion when SE ≫ ~. The dominant contribution comes from the path ū that minimizes
SE. It satisfies

δSE

δu
= ü(τ) −∇V (u(τ)) = 0, (2.16)

with appropriate boundary conditions. For ground state tunneling, we are interested in
the trajectory that connects two local minima of the potential V , xL and xR. Therefore
the boundary conditions are naturally

u(τ → −∞) = xL,u(τ → +∞) = xR. (2.17)

This solution ū is termed instanton (or kink) [7] after the work of Polyakov, ’t Hooft
and Coleman in field theory. Indeed, before that it had already appeared in the work
of Langer [18] in the study of phase transition in statistical physics. The instanton can
be viewed as a classical trajectory in the up-side down potential U(x) = −V (x). The
particle would spend most of the time near two local minima of V and traverses quickly
crossing the potential barrier. The imaginary time τ is indeed linked to the temperature by
τ = ~β = ~/(kBT ) where T is the absolute temperature and kB the Boltzmann constant.
The ground state is the zero temperature limit.

It is not hard to see that along instanton path one has

1

2
˙̄u2 = V (ū), (2.18)

which means the total energy E = 0. Consequently,

S0 := SE[ū] =

∫ ∞

−∞

˙̄u2dτ =

∫ ∞

−∞
2V
(

ū(τ)
)

dτ =

∫ L

0

√
2V ds, (2.19)

where s is the intrinsic coordinate of the instanton path and L is its total length in
configuration space. One can see here the link with MPEP approach in [1]. The advantage
here is that since E = 0 one avoids the very complicated problems associated with turning
points.

Formally, one would include the second-order expansion term of SE[u] around ū and
evaluate it by Gaussian integration. Let u(τ) = ū(τ) + v(τ) where v = v(τ) is the
fluctuation around instanton path ū. One has

SE [u] = SE[ū + v]

= SE[ū] +
1

2
〈v,H(ū)v〉 + O(|v|3),
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where H is the Hessian of SE:

H(u) =
δ2SE

δu2
= − ∂2

∂τ2
I +D2V (u). (2.20)

In (2.20), I is the d× d identity matrix and D2V is the Hessian of V . The expansion gives

GE(x, τ ;y, 0) =

∫

e−SE [u]/~Du

=

∫

e−SE [ū]/~− 1

2~
〈v,H(ū)v〉Dv

= e−SE [ū]/~

∫

e−
1

2~
〈v,H(ū)v〉Dv. (2.21)

The integral over Dv is done by Gaussian integration where one expands the operator H(ū)
in its complete set of eigen-basis φn (v obeys the homogeneous boundary condition):

v(τ) =
∑

n≥0

cnφn(τ), (2.22)

and the integration is transformed to

Dv = N
∏

n≥0

dcn. (2.23)

Formally, one obtains
∫

e−
1

2~
〈v,H(ū)v〉Dv = N

∫

exp

(

− 1

2~

∑

n≥0

λnc
2
n

)

∏

n≥0

dcn

= N
(

det(H(ū))
)−1/2

e−SE [ū], (2.24)

where N is some global renormalization factor to be fixed at the end of computation as a
common practice in formal path integral manipulation.

However, it can be shown that the operator H(ū) has a zero eigen-value; therefore
the integral in Eq. (2.24) is not defined. Indeed, ˙̄u(τ) is the eigen-vector associated with
the zero eigen-value of H(ū). To see this, one simply differentiates Eq. (2.16) and by
noticing the boundary conditions for v ask for τ → ±∞. This zero mode comes from the
translational invariance of the instanton motion.

The definition of prefactor therefore must be modified accordingly. One needs to single
out

∫

dc0 (which is associated with the zero mode) and transform it to the integration over
the position of the center of the instanton. For details, we refer to [7]. After some work
(which also has multiple instanton and harmonic approximation of well bottom to take
care of), it can be concluded that the ground state energy level splitting is given by

∆0 = 2~

(

S0

2π~

)1/2(

det′(H(ū))

det(H(xL))

)−1/2

e−S0/~, (2.25)
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where det′ is the determinant with the zero eigen-value removed.
For the 1D symmetric double-well potential V (x) as in the previous section, the pref-

actor in Eq. (2.25) can be evaluated and it can be shown that this result matches the
standard WKB calculation in Eq. (2.9) (by a factor of

√

e/π which is attributed to the
harmonic approximation for the ground state in the instanton rather than the linear con-
nection in Eq. (2.9)). To prove it, one associates det

(

− ∂2
τ +W (τ)

)

(from homogeneous
boundary value problem) with the Jacobi field that is given by the solution of initial value
problem of the following 2nd-order ODE:

(

− ∂2
τ +W (τ)

)

f(τ) = 0, (2.26)

f(τa) = 0,

∂τf(τa) = 1.

More specifically, it can be shown ( [7], [21]) that

det
(

− ∂2
τ +W1(τ) − z

)

det
(

− ∂2
τ +W2(τ) − z

) =
f1(τb)

f2(τb)
, (2.27)

where the fi solve the Jacobi field Eqs. (2.26) with W (τ) = Wi(τ)−z. By using Eq. (2.18)
in 1D, one can indeed get asymptotic behavior of the instanton trajectory u(τ) (now a
scalar function) for τ → ∞ since V (x) is approximated by a harmonic potential near the
bottom. For more details, see [7].

The advantage of Eq. (2.25) is that it avoids completely the use of turning points and
the formula holds for arbitrary dimensions. However, the price to pay is that the computa-
tion of the functional determinants is extremely difficult. This is indeed the bottleneck of
the application of the instanton. Most of the current instanton based computations resort
to 1D formula after finding the instanton path by some further ad hoc assumptions on
the potential. Some adiabatic or weak coupling assumption make it possible to separate
the longitudinal motion from the transverse motion. However, it is not satisfying. In this
work, we are able to compute the prefactor in Eq. (2.25) in an accurate and efficient way.
This enables us to study the genuine multi-dimensional effects in a much more accurate
way.

Remark 2.1. The instanton action is termed Agmon distance in some of the mathematical
literature. The leading order behavior (exponential factor e−S0/~) of the splitting was
proved rigorously by Simon in [34] and Helffer & Sjostrand in [14] independently in 80’s.
For the prefactor, see the recent work by Helffer & Nier in [15].

We next survey some of the existing instanton based calculation on multi-dimensional
tunneling effects in molecular reactions. Before that, some discussion of other relevant
approaches to include the tunneling effect in reaction dynamics is appropriate.

The oldest one belongs to Wigner, which assumes the tunneling take place at the
classical transition state that is the saddle point on PES. Therefore the calculation reduces
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to the tunneling through the top of the classical Minimal Energy Path (MEP) which is
a 1D problem (in the reaction coordinate). This over-simplified hybridization approach
works only for very high temperatures and is fundamentally flawed for low temperature
where the quantum effect is more critical. A number of methods have since appeared to
include the tunneling effect in a more systematical way.

Along the approach of MEP, there has been developed the so-called ‘small curvature
tunneling approximation’ (or ‘slow-flip’, ‘adiabatic’) by assuming that the motion in the
reaction coordinate (longitudinal mode) is much slower than the transverse modes. An
effective 1D potential V (s) along the reaction coordinate (with mass renormalization)
is established. However, this is valid only in very limited situations. For details, see
e.g., [22, 25, 40]. Indeed, tunneling along MEP without mass renormalization has been
used in a number of cases as first trial approximation.

The above ‘adiabatic’ approximation certainly fails in the tunneling in heavy-light-
heavy tri-atomic system, for example hydrogen transfer in Oxygen-Hydrogen-Oxygen.
The light atom moves much faster. For this ‘large curvature tunneling’ approximations
(or ‘fast-flip’, ‘sudden’, ‘straight line’) have been developed. It assumes the tunneling
occurs ‘suddenly’ and along a straight line between turning points.

Based on the above straight line tunneling model, Makri & Miller in [24] developed
a method to calculate tunneling splitting which is very influential. It is built upon the
real-time path integral for the potential well region and straight line tunneling between
turning points (therefore Eq. (2.9) can be used directly). In this way, it avoids any usage
of analytical continuation to the complex plane which would otherwise result in a much
more complicated algorithm. It is not hard to see the situation where the straight line
approximation breaks down. Some improvements have been suggested in e.g., [13], with
some success.

Benderskii et al. in [3] pioneered using instanton to study 2D quantum tunneling. To
find the instanton trajectory which is the zero temperature limit, they started from finite
temperature and by solving finite period minimization problem with increasing period
(decreasing temperature) they found the instanton trajectory. The prefactor is factorized
as a product of longitudinal factor and transverse one. Standard 1D splitting is employed
for the longitudinal factor. Stability parameters (eigen-values of monodromy matrix) are
sought for every finite temperature in order to calculate the transverse factor. The method
works only for 2D and is very limited in practical usage.

In a series of papers [35–37] which leads eventually to a software package named ‘DOIT’
(dynamics of instanton tunneling), Smedarchina et al. simplified the prefactor calculation
of Benderskii [3] by assuming that the potential is vibrational adiabatic. They reached a
renormalized effective 1D potential for the calculation of transverse factor. However, for
tunneling path they use classical MEP. Some additional parameter fits for the effective
1D potential are performed in order to match experimental results when calculating the
tunneling splitting.

Benderskii et al. developed the so-called ‘perturbative instanton approximation’ method
in [5]. It assumes that the coupling between the longitudinal motion and transverse vi-
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bration is weak enough (compared with the transverse frequency) to admit a series of
perturbation expansions. However, the validity of this assumption is in question for some
realistic problems.

Tautermann et al. in [39] performed minimization of
∫
√

2V in configuration space
directly in order to find the tunneling path connecting two local minima, The splitting
is calculated by a 1D splitting formula. after some rather crude curve fitting of the 1D
potential (a degree 6 polynomial) along the tunneling path.

Milnikov and Nakamura recently presented the first genuine multi-dimensional in-
stanton calculation without additional ad hoc assumption on transverse mode coupling
( [26, 27]). The path is calculated by direct minimization of Euclidean action in config-
uration space. The novelty of their approach is to use a variant of Jacobi fields as in
Eqs. (2.26) and (2.27) to compute the prefactor. One needs to integrate an IVP for an
ODE system for matrices from −∞ to ∞. Some of their parameters in the system become
singular.

Finally we want to mention that another basic problem that deals with decay of a
metastable state by quantum tunneling out of a potential well can also be studied under
instanton formulation ( [7]). There, the instanton (now the so-called bounce) uB is a
periodic trajectory starting from local minimum of the potential well and runs at the
exiting point. Apart from a zero eigen-value, the Hessian H(uB) now has one negative
eigen-value which contributes to the decay. The bounce is thus not a minimum of the
Euclidean action but rather a ‘saddle point’. The decay rate can be defined in a way
similar to Eq. (2.25) by a certain analytical continuation procedure of the negative mode
of H(uB).

3 Numerical method

We present an simple yet accurate method to compute the tunneling splitting ∆0. Firstly
the instanton trajectory is found in an accurate and efficient way. We then calculate the
prefactor directly.

3.1 Instanton trajectory

As commonly assumed in all the current work, there is only one instanton trajectory. It
is valid for the double-well potential where there is only one saddle point of PES. As
discussed, the instanton solution minimizes Euclidean action. Very naturally, one tries
some minimization methods. Since the Hessian H(ū) is singular (or nearly singular in
practice), the Newton type methods are not expected to work well. We find the following
gradient descent approach accurate and efficient.
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The instanton trajectory is computed by solving the non-linear gradient system

∂u

∂t
= F (u) := −δSE

δu

=
∂2u

∂τ2
−∇V (u), (3.1)

with u(τ → −∞) = xL, u(τ → ∞) = xR for the steady state as t → ∞. This is nothing
but a 1D reaction-diffusion system.

For time advancing, we would like to have large time steps. Both the semi-implicit and
linear implicit Euler scheme have been used and they offer comparable numerical results.
They can be written as

uk+1 = uk + ∆tkδuk, (3.2)

(I − ∆tkA(uk))δuk = F (uk), (3.3)

where for the semi-implicit scheme A(u) = ∂2
τ and for the linear implicit scheme A(u) =

δF/δu = ∂2
τ −D2V (u).

For the linear implicit scheme, one can adopt the following residual based adaptive
time step control( [10,16]):

1. Given uk and ∆tk, if ‖F (uk+1)‖ > ‖F (uk)‖, replace ∆tk by a new value

∆tnew
k =

|(δuk , F (uk) − δuk)|
2‖δuk‖‖F (uk+1) − δuk‖

∆tk

and repeat for solving δuk until success.

2. If success, set for next step

∆tk+1 =
‖F (uk)‖
‖F (uk+1)‖

∆tk

and repeat step 1 for uk+1 7→ uk+2.

The advantage of it is superlinear convergence and globalization in minimization. The
drawback is that one needs to evaluate (or approximate) the Hessian H(u) and solve a
linear system which is non-tridiagonal. For the semi-implicit scheme, no information from
H(u) is needed and only tri-diagonal systems are to be solved at every time step. However,
it has only first order convergence.

‘Spatial’ discretization (in τ) in Eq. (3.1), is handled by the standard 2nd-order central
finite difference scheme. The infinite domain in τ is truncated to [−K,K]. The simplest
estimates can give K ∼ ln(10m)/ω1 where ω1 is the square root of the smallest eigen-
value of D2V (xL) (slowest vibration frequency in the bottom of the well) if one wants
‖ū(K)‖ ∼ 10−m. This comes from Eq. (2.18) and by noticing the harmonic approximation
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of V (x) at the bottom of the well. This truncation introduces slight regularization to the
Hessian in practice.

For initial condition, several different choices have been tried and the method is insen-
sitive to it.

We want to point out that for realistic problems (complicated PES), the most ex-
pensive step is to compute (approximately) H(u)δu. Nevertheless, we found computing
the instanton path is of no more difficulty than finding the transition pathway in clas-
sical transition state theory. This is to the contrary of the common belief as expressed
in [3, 26, 35–37, 39]. It is certainly superior to the direct solution method for Schrödinger
equations of which the computational cost is exponential against the DOF. Even for very
high-dimensional PES, full resolution of the instanton trajectory is practical.

3.2 Prefactor

Computing prefactor in multi-dimensions is indeed a formidable task. This very fact
prevent the wide application of instanton. Most of the existing work bypassed it by
resorting to 1D splitting formula in one way or another. Some rather ad hoc assumptions
on the potential are necessary for this purpose alone which makes the calculations less
reliable.

The functional determinants (indeed the ratio between them)

det
(

H(xL)
)

det′
(

H(ū)
) =

det
(

− ∂2
τ I +D2V (xL)

)

det′
(

− ∂2
τ I +D2V (ū)

) (3.4)

cannot be computed in an straightforward way (say, by computing the spectrum directly).
Although it can be reformulated into Jacobi field as implemented in [26,27], numerically,
that is not an appealing approach, in our opinion.

We offer an efficient and robust algorithm to calculate Eq. (3.4) by using thermody-
namic integration. The method is based on the following theorem ( [12]).

Theorem 3.1. Let H,G be two symmetric positive definite matrices. Then

detH

detG
= exp

(

ε−1

∫ 1

0
Q(α)dα

)

, (3.5)

where

Q(α) = E
(

〈q, (H −G)q〉
)

. (3.6)

The expectation is taken with respect to the invariant measure of the stochastic process

q̇ = −∇V α(q) +
√

2εẆ (t), (3.7)

where

V α(q) =
1

2
〈q,
(

(1 − α)H + αG
)

q〉 (3.8)
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and Ẇ is a white noise with δ covariance in both space and time:

〈Ẇ (x, t)Ẇ (y, s)〉 = δ(x− y)δ(s − t).

In practice, Q(α) is evaluated by time averaging:

Q(α) =
1

T

∫ T

0
〈q, (H −G)q〉dt (3.9)

for sufficient large T by the ergodicity of q.
Noticing that H(ū) has one zero eigenvalue which should be removed from the deter-

minant, we have therefore G = H(ū) + u1 ⊗ u1 where u1 = ˙̄u/‖ ˙̄u‖ is the normalized
zero-eigenvector. Then

det
(

H(xL)
)

det′
(

H(ū)
) =

det
(

H(xL)
)

det
(

G
)

and H(xL) and G are now SPD and the above algorithm can be applied.
Now Eq. (3.7) takes the specific form

∂q

∂t
=
∂2q

∂τ2
+ α

(

D2V (xL) −D2V (ū) − u1 ⊗ u1

)

q +
√

2εẆ , (3.10)

which is a linear variable coefficient stochastic PDE. For simplicity, the standard finite
difference discretization in τ is used following the calculation of instanton in previous
section. Although the coefficient matrix in RHS of Eq. (3.10) appears to be full because
of the u1 ⊗ u1 term, the matrix-vector product of RHS can nevertheless be realized at a
cost of O(d2M + dM) = O(d2M).

In simulating Eq. (3.10) one can use either explicit or implicit time advancing scheme.
For fine mesh in τ , implicit scheme is preferred for larger time step in t. Then iterative
linear solvers should be used. Both explicit and implicit schemes have been implemented
with comparable outcomes.

The integrations in Eq. (3.5) and Eq. (3.9) are computed by quadratures using the
mid-point rule.

We have following remarks:

1. From the numerical viewpoint, boundary value problems are more appealing than
initial value problems. Therefore, it is better to compute Eq. (3.4) from BVP than
to solve the Jacobi field as in [26,27].

2. For simplicity, we use ū as computed from previous section which has uniform mesh
in τ space. However, this is not necessarily the most efficient way in general since the
action of instanton is rather concentrated in a small τ region. For a better efficiency,
one could use a non-uniform or even adaptive mesh when solving for the instan-
ton trajectory. Since computing the instanton trajectory is normally the cheaper
step, another strategy is to fully resolve the instanton trajectory using fine mesh
and re-interpolate it using for example arclength of instanton path in configuration
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space (see for example [29]). In any case, it results in a non-uniform mesh for q in
Eq. (3.10). It should be handled by finite element discretization in τ . The scheme
is currently under consideration.

3. For the tunneling decay problem (bounce), the prefactor in the tunneling decay rate
can be calculated in a similar fashion. However, solving the bounce trajectory needs
some extra work since it it no more a minimization problem. We have developed
a so-called ‘Quantum String Method’ for locating the ‘saddle point’ of SE [u] which
gives the bounce. For the numerical treatment of bounce and decay rate using the
quantum string method, with the application in SQUIDS, see [28].

4 Numerical results

We report numerical results for 2D calculation for the purpose of demonstration and
preliminary comparison. For the 2D Schrödinger equation, very accurate low lying eigen-
values can be calculated by pseudo-spectral discretization (termed ‘Discrete Variable Rep-
resentation’ in the computational chemistry literature). These results can serve as bench-
marks for various approximation schemes. For large DOF, usually only experimental
measurements are available for comparison. There is danger in assessing an approxima-
tion method based on this kind of comparison because the underlying PES may not be
good enough. Good agreements with experimental results may not necessarily indicate
good approximation and vice versa. There are examples in the past that demonstrate this.

For our method, one can see there is no obstacle to generalize it to higher dimensions.
The work is currently undergoing and the result will be reported subsequently.

4.1 Separable potential

We consider a toy model

V (x, y) =
1

8

(

(x+ y)2/2 − 1
)2

+
ω2

4

(

x− y)2, (4.1)

with ω=8 which comes from a rotation of the separable potential V = 1
8(x2 − 1)2 + ω2

2 y
2.

The instanton is just a straight line and splitting ∆0 =12 from 1D calculation. Our
instanton calculation gives ∆0 =12.12 which compares very well with the exact value. The
exact Euclidean action S0 = 2/3 while from our calculation S0=0.6676. The calculation
uses 128 mesh points in τ domain [−15, 15]. For stochastic process simulation we use
the one-step Euler forward method with ∆t = 0.002 and the time averaging in Eq. (3.9)
is taken over 2 × 105 steps. The quadrature in Eq. (3.5) is by the mid-point rule with
∆α = 1/40 and ε is set to be 1.

This result is comparable in accuracy with the similar separable model test in Milnikov
[26]. However, it is much simpler since there is neither a matrix ODE to be solved nor a
singular parameters involved as in [26].
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Figure 2: Hydrogen transfer in Malonaldehyde molecule.

4.2 Non-separable potential

4.2.1 Symmetric coupling PES

We consider the following non-separable Hamiltonian

H = −~
2

2

(

∂2

∂x2
+

∂2

∂y2

)

+
1

8

(

x2 − 1
)2

+
ω2

2

(

y +
γ

ω2
(x2 − 1)

)2

. (4.2)

This potential is a simplified model for hydrogen transfer in the isomerization of Malon-
aldehyde which is depicted in Fig. 2. It has an intramolecular hydrogen bond O — H · · ·
O where the tunneling of a hydrogen atom between two oxygen atoms causes the splitting
in the vibrational energy level. This is a prototype for transfer in hydrogen-bond systems.
Numerically, this simple model serves as a benchmark for multi-dimensional tunneling
calculation (see e.g., [3, 6, 24,38]).

In this 2D PES Eq. (4.2), x represents roughly the motion of hydrogen atom transfer
from O to O which is is modeled by symmetric double-well potential. It is coupled sym-
metrically with the motion of O—C—C—C—O skeleton that is represented by y. γ is
the coupling constant between tunneling and non-tunneling modes and ω is the frequency
of frame vibration. This is a reduction from full 21D PES for a 9-atom molecule. The
parameters have been obtained by Bosch et al. in [6] as ω = 0.48, γ = 0.39, ~ = 0.1.
One of the characteristic features of this reaction is the coupling of proton transfer degree
of freedom and intramolecular modes. The multi-dimensionality of this model lies in the
reorganization of the skeleton during the hydrogen transfer.

Different tunneling paths have been sought in the past and tunneling splitting calcu-
lated. In Fig. 3 we plot the PES and the instanton path computed by our method. It can
be seen clearly that the tunneling path lies between two extreme limits: straight line and
MEP, as we discussed before. This tunneling shows a genuinely multidimensional effect.
Indeed, it can be thought of as a compromise between tunneling length and barrier height.
For MEP, the particle travels through longer distance but lower barrier. For a straight
line the particle travels through much shorter distance but at the cost of higher potential
barrier. The optimal path, instanton, which minimizes the action, lies in between. As one
can observe, the path demonstrates a large ‘corner cutting’ behavior which was suggested
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Figure 3: 2D PES and instanton trajectory for Malonaldehyde. Left: contour plot, right: surface.

in [23] by Marcus & Coltrin as a generic feature of multidimensional tunneling. It is not
easy to separate various modes; therefore a unified approach is desired.

Direct diagonalization of the 2D Schrödinger operator using pseudo-spectral discretiza-
tion gives ∆0 = 10.6cm−1 ( [6]). Our calculation shows ∆0 = 10.27cm−1 which is in perfect
agreement with the quantum value. We use M=256 mesh points in the truncated τ do-
main [−30, 30]. The initial u is a straight line and convergence of the instanton path
is achieved in 16 steps when using the linear implicit scheme with time step adaptivity,
while in 327 steps using the semi-implicit scheme with fixed ∆t = 0.5. Both were stopped
when ‖F (u)‖ < 10−6. Other initial values have been tried resulting in the same instanton
path (with different number of steps however). For stochastic process simulation we use
the one-step Euler forward method with ∆t = 2E-3 and the time averaging in Eq. (3.9)
is taken over 2 × 105 steps. The quadrature in Eq. (3.5) is by the mid-point rule with
∆α = 1/40 and ε is set to be 1. For comparison, Benderskii et al. in [3] gives ∆0 = 13cm−1

using their instanton algorithm. Using a slightly different PES (different parameter fit),
Makri & Miller in [24] calculated ∆0 = 2.8cm−1 (exact quantum value for their PES is
11.9cm−1). Both MEP and straight line tunneling give the estimation one or two orders
of magnitude smaller ( [6]).

From spectroscopy experiments, it has been measured that ∆0 is about 21.6cm−1 actu-
ally. The discrepancy is attributed to the over-simplification of the above 2D PES. However
for full 21D semi-empirical PES, rather contradictory results of ∆0 have been obtained
from different semi-classical calculations. Milnikov in [26] calculated ∆0 = 57.7cm−1 using
the semi-empirical PES from [33] while it was calculated, by using Makri-Miller method,
that ∆0 = 21.8cm−1 in [33]. The coupling with ab initio PES calculation also depends
strongly on the ab initio computational levels it employs ( [8,27]). It will be very interesting
to see how our method performs on full PES.

Next we give some computational results for different sets of parameters and show the
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Table 1: Tunneling splitting in symmetric coupling potential.

(a) (b) (c) (d)
(ω, γ,~) (0.5, 0.25, 0.04) (0.8, 0.32, 0.04) (1.5, 1.125, 0.04) (0.6, 0.2, 0.08)

∆Q 5.73E-9 1.49E-8 1.75E-8 1.19E-4
∆i 6.19E-9 1.64E-8 1.97E-8 1.42E-4
∆ib 6.4E-9 1.7E-8 2.0E-8 1.46E-4
∆LSLA 5.8E-9 1.6E-8 2.9E-8 1.16E-4
∆MM 2.31E-9 0.73E-8 0.00437E-8 1.61E-4
∆EMM 6.80E-9 1.03E-8 3.74E-8 1.90E-4
∆SUD 0.016E-9 0.12E-8 2.0E-14 0.22E-4
∆MEP 0.015E-9 0.016E-8 0.19E-8 0.10E-4

comparison in Table 1. The contour plots and instanton trajectories are in Fig. 4.

The datum are taken from [13, 38] except our computation ∆i. ∆Q is ∆0 from exact
quantum calculation. ∆ib is the instanton calculation taken from [38] attributed to method
of Benderskii [3]. ∆LSLA is from an interesting algorithm from [38]. It computes approxi-
mately the 2D WKB wave function. The potential is assumed to be locally separable and
linear near the intersection point of two caustics lines. Therefore a 1D linear connection
formula (using the Airy function as usual) can be used when crossing them. ∆MM is by
the Makri-Miller model as in [24] and ∆EMM is from an extended Makri-Miller method
in [13]. Finally, ∆SUD and ∆MEP stand for sudden approximation and tunneling along
MEP (without potential renormalization).

From the plots, we can see that in case (a) the tunneling path is much closer to a
straight line, thus the Makri-Miller method performs reasonably well. The case (c) is much
closer to the adiabatic limit and the M-M method gives very bad result, as expected, while
primitive MEP tunneling gives its best performance here. Both primitive sudden and MEP
approximation give ∆0 one or two orders lower in magnitude. Our instanton algorithm
consistently out-performs the old instanton calculations as well as all the others. The
performance of LSLA depends strongly on the validity of its assumption on the potential
and it is very difficult to assess it a priori . To implement it one needs to compute the
classical wave by doing Huygens type wave propagation which is not feasible in more than
2D (there is yet no implementation beyond 2D).

4.2.2 Anti-symmetric coupling PES

We take

V (x, y) =
1

8

(

x2 − 1
)2

+
ω2

2

(

y − γx

ω2

)2
. (4.3)

This potential is also used in modeling Malonaldehyde. Here it describes the coupling
between H transfer mode (x coordinate) and C—O stretching mode (y coordinate). We
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Figure 4: 2D symmetric coupling PES and instanton with the parameters as in (a), (b), (c) and (d) from Table
1.
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Figure 5: 2D anti-symmetric PES and instanton, anti-symmetric PES, ω = 0.5, γ = 0.25.
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take ω = 0.5, γ = 0.25, ~ = 0.04. From quantum calculation ∆0 =1.4E-10 ( [38]). Our
instanton calculation gives ∆0 =1.5E-10. The PES and instanton are plotted in Fig. 5.

5 Conclusion

In summary, we have developed a new method to calculate ground state tunneling splitting
based on the path integral instanton formulation. The main feature is an efficient scheme
to compute the tunneling path by using gradient flow and prefactor by using thermody-
namic integration which is a stochastic method. Both instanton path and prefactor in
the splitting are computed in a highly accurate and efficient way. Some preliminary com-
parison using hydrogen tunneling models demonstrated the effectiveness of the method.
Compared with other approaches, this method is genuinely multi-dimensional without ad-
ditional ad hoc assumptions on the potential (mode coupling and/or adiabaticity). Thus
it includes the effects from all the modes coupled to tunneling degree of freedom without
over-simplification. This shall give us a better understanding of the quantum tunneling in
molecular reactions. The method is easy to implement and suitable for realistic problems
with large number of degrees of freedom.

The algorithm is undergoing further development for better efficiency. Calculation
based on full dimensional PES is also being carried out and will be reported subsequently.

There are shortcomings of the instanton approach. One of the most prominent one
is that instanton is based on imaginary-time formulation. Therefore it cannot account
for the behavior of positive kinetic energy. Hence, generalization to finite temperature
requires some nontrivial analytic continuation into complex time. It is currently under
investigation.
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