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Abstract. The Fisher information of Gaussian pure states is studied in this work. Based
on the definition of joint non-classical properties, we calculate the non-classical prop-
erties of Gaussian pure states. The results show that the Fisher information and Fisher
length are efficacious tools to study the non-classical properties of quantum states.
And the non-classical properties of states can be used to calculate the quantum prop-
erties quantificationally. Making use of Fisher information, one can obtain the corre-
lation between the Fisher information and quantum squeezing properties of Gaussian
pure states. Especially, it is significative that one can quantificationally describes the
fluctuation of quantum states by an alternative new method.
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1 Introduction

Gaussian pure states is an important quantum states in quantum optics domains, it can
describe the coherent output of laser and the squeezing optics field of parametric pro-
cess. In mathematical field Gaussian pure states represent a category distribution namely
Gaussian distribution [1]. The Hamiltonian operator of Gaussian pure states is a simple
quantum function. So some pursuer have been interested in Gaussian pure states over
the past few years and obtained some significative results. For example, Walls and Mil-
burn gave some results of standard forms and entanglement engineering of multimode
Gaussian states [2] and Xia et al. studied the higher-order squeezing and information
entropy for Gaussian pure states [3].

Fisher information was originally introduced by Fisher, as a measure of ”intrinsic ac-
curacy” in statistical estimation theory. It provides in particular a bound on the degree to
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which members of a family of probability distributions can be distinguished [4]. Quan-
tum generalizations of Fisher information may be also provide corresponding bounds
on the degree to which members of a family of quantum states can be distinguisher by
measurement [5–9]. These results show that Fisher information closely correlates to the
quantum properties of states. It is well-known that further studies on the quantum states
and properties of quantum states are very important to the creation of quantum optics
fields and entangled states [10, 11], which are the basic of quantum communication and
quantum computation [12].

In this work, based on the definitions of Fisher information and Fisher length, we
study the Fisher information and joint non-classical properties of Gaussian pure states.
We calculate the Fisher information and Fisher length of Gaussian pure states. The re-
sults show that there has been a close relationship between classical Fisher information
and quantum squeezing properties of Gaussian pure states. Thus we can investigate the
quantum properties of Gaussian pure states in a fire-new way.

2 Function of Gaussian pure states

In coordinate representation single mode Gaussian pure states is given by [1, 3]

ψg(x)= 〈x|µg〉= Ng exp
(1

2
iσx+

1
2

ix0 p0+ip0x
)

exp
[
− r

2
(x−x0)2

]
, (1)

where x0 and p0 are given by the function

p0 = p̄= 〈p〉=
+∞∫

−∞

dx〈µg|x〉
(
−i

∂
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)
〈x|µg〉, (2)

x0 = x̄= 〈x〉=
+∞∫

−∞

dx|〈x|µg〉|2x, (3)

where we assume h̄ = 1 and ω = 1 for the convenience of the study. σx denotes the im-
measurable phase angle, r=r1+ir2 is a complex number, in which r exerts a determining
influence on a specific Gaussian pure states and Re(r)= r1 >0. The normalized constant
Ng is defined as

Ng =(π/r1)−1/4. (4)

In momentum representation Gaussian pure states is given by

ψg(p)= 〈p|µg〉=ng exp
(
− 1

2
iσp+

1
2

ix0 p0−ipx0

)
exp

[
− r

2
(p−p0)2

]
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where the normalized constant ng is given by

ng =(π|r|2/r1)−1/4. (6)
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The phase angle σx and σp satisfy the flowing function

exp(iσp)=
r
|r| exp(−iσg). (7)

3 Classical Fisher information of Gaussian pure states

3.1 Fisher information and Fisher length

. The classical Fisher information associated with translations of a one-dimensional x
with corresponding probability density p(x) is given by [5, 6]

Fx =
+∞∫

−∞

dxp(x)[dlnp(x)/dx]2. (8)

The primary application of this quantity in classical estimation theory is the lower bound.
One may also define a corresponding Fisher length for x

δx =
{ +∞∫

−∞

dxp(x)[dlnp(x)/dx]2
}−1/2

= F−1/2
x , (9)

where δx is the length scale over which p(x) varies appreciably, known as the Cramer-Rao
inequality.

For the quantum states function ψ(x), we can calculate the Fisher information with
Eq.(8) simply

Fx =
+∞∫

−∞

dx|ψ(x)|2[dln|ψ(x)|2/dx]2 =16[〈p2〉ψ−〈p2
ci〉ψ]2, (10)

where
pci =

1
2i

(
ψ′(x)/ψ(x)−ψ∗

′
(x)/ψ∗(x)

)
, (11)

where, p = pci+pnc denotes the momentum conjugate to x, and pci is the classical part,
namely the system with momentum p has the classical and non-classical properties si-
multaneously. Using the seam definition we can obtain the Fisher information and Fisher
length in momentum space

Fp =
+∞∫

−∞

dpp(p)[dlnp(p)/dp]2, (12)

δp =
{ +∞∫

−∞

dpp(p)[dlnp(p)/dp]2
}−1/2

= F−1/2
p . (13)
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3.2 Fisher information and joint non-classical properties of Gaussian pure
states

Making use of the definition Eqs. (1), (5), (8) and (12), we can simply obtain the Fisher
information of Gaussian pure states in coordinate representation and momentum repre-
sentation

Fg
x =

+∞∫

−∞

dxN2
g exp[−r(x−x0)2]

{ d
dx

lnN2
g exp[−r(x−x0)2]

}2
=

2|r|2
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, (14)

Fg
p =

+∞∫
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dpn2
g exp[−r(p−p0)2]

{ d
dp

lnn2
g exp[−r(p−p0)2]

}2
=

2
r1

. (15)

The parameter r can determine the properties of a Gaussian pure states uniquely.
Consequently, Eqs. (14)-(15) indicate clearly that the Fisher information of a Gaussian
pure states only relates to the parameter r. Similarly we can obtain the Fisher length of
the Gaussian pure states determined by the parameter r

δ
g
x =

√
2r1

2|r| , δ
g
p =

√
2r1

2
. (16)

According to the definition of Hall [5], the joint non-classical properties of quantum
states is given by

Jnc =
1

2δxδp
=

1
2

√
FxFp, (h̄=1). (17)

So we can see that joint non-classical properties Jnc is related to the Fisher information
or Fisher length, namely Jnc direct ratio to product of Fisher length of a couple conjugate
variables and inverse ratio to its square root of Fisher information. So making use of Eqs.
(14), (15) and (17), or Eqs. (16)-(17), we can obtain the joint non-classical properties of a
Gaussian pure states

Jg
nc =

1
2δxδp

=
1
2

√
FxFp =

√
1+

( r2

r1

)2
. (18)

According to the Eq. (18), we can see that the joint non-classical properties of a Gaus-
sian pure states only relate to the parameter r, if only a Gaussian pure states has been
determined by a parameter r, its non-classical properties has a determined value. The re-
sult given by Eq. (18) also shows that Jg

nc direct ratio to |r| and inverse ratio t r1 that is the
real part of the parameter r. Here we point out emphatically that the joint non-classical
properties of a Gaussian pure states is not less than 1, namely, Jnc≥1. When r2 =0 Gaus-
sian pure states degenerate into coherent states and the Jnc =1 accordingly, here it is the
minimum uncertain states of quantum fluctuation. The joint states with smaller real part
r1 and bigger imaginary part r2 have more non-classical properties. So these results indi-
cate evidently that the joint non-classical properties of Gaussian pure states can measure
its quantum properties quantificationally.
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3.3 Quantum squeezing of Gaussian pure states and its Fisher length

One of the most striking features of quantum mechanics is the property that certain ob-
servables cannot simultaneously be assigned arbitrarily precise values. This property
does not compromise claims of completeness for the theory, since it may consistently be
asserted that such observables cannot simultaneously be measured to an arbitrary accu-
racy [6]. For example the quantum fluctuation of coordinate x and momentum p flow the
Heisenberg inequality

4xnc4pnc≥ 1
2

, (h̄=1), (19)

where 4xnc and 4pnc denote the quantum fluctuation of coordinate x and momentum
p accordingly. Eq. (19) describes the intrinsic relation of a couple of conjugated physical
quantities. The intrinsic quantum fluctuation stem from the essential principle of quan-
tum mechanics and the characteristic of unmeasured synchronously can not be overcome.
Making use of the Fisher information and Fisher length we can rewrite the Heisenberg
inequality as quality

δx4pnc =
1
2

or δp4xnc =
1
2

. (20)

For all wave functions, we can regard Eq. (20) as an exact uncertainty relation. Thus,
the uncertainty principle of quantum mechanics may be given by a precise form. So for
a determined Gaussian pure states, we can describe the quantum fluctuation of conju-
gated physical quantities just making use of Fisher length and joint non-classical prop-
erties of Gaussian pure states obtained above. When δx >

√
0.5, conjugated momentum

is squeezed, on the other hand, δp >
√

0.5, conjugated coordinate is squeezed. Thus the
Fisher length and joint non-classical properties of a state provide alternative new method
for us to describe the quantum squeezing properties of conjugated physical quantities.
While δx = δp =

√
0.5, accordingly 4xnc =4pnc =

√
0.5, it is indicated that the quantum

states is a coherent states. For the Gaussian pure states we can obtain obviously
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1
2

1
δp
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1
2

√
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√
1

2r1
, (21)

4pnc =
1
2

1
δx

=
1
2
√

Fx = |r|
√

1
2r1

. (22)

So from the result above, it is shown that we can calculate the quantum fluctuation ex-
actly by the use of the Fisher length we have obtained, and we obtain an unanimous
result with Refs. [3, 6] in a new way. For other characters and use of Fisher information
and Fisher length of some quantum states we will give further research.
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4 Conclusions

We have calculated the Fisher information and Fisher length of Gaussian pure states.
From general Gaussian pure states wave function joint non-classical properties have been
studied. The results show that the Fisher information and Fisher length are determined
by the parameter r of a determined Gaussian pure state. Joint non-classical property of
states is an advantageous tool to study the non-classical properties of quantum states
quantitatively. Especially, joint non-classical properties can be used for the mixed states
that have non-classical properties and classical properties simultaneously. Fisher infor-
mation defined can be used to obtain the correlation between Fisher length and quantum
squeezing properties of Gaussian pure states. Moreover, we can quantitatively describe
the fluctuation of quantum states in an alternative new approach.
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