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Abstract. We present theoretical diamagnetic spectra of Barium using R-matrix method

combined with quantum defect theory. The nonhydrogenic character of the spectra is an-

alyzed for Ba. Comparisons are made with similar calculations for hydrogen and with

data of experiments in the l-mixing region and n-mixing region. The result shows that the

theoretical results are in good agreement with the experimental ones.
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1 Introduction

Hydrogen and nonhydrogenic atoms are real physical systems whose behavior in external

fields belongs to the fundamental problems in atomic physics. Over the past decades a great

number of investigations on the atomic systems in magnetic fields have been carried out

theoretically and experimentally and remarkable progresses have been made [1–4]. For ex-

ample in 1969, Garton and Tomkins [5] in 1969 performed the first experiment on atoms

in highly excited Rydberg states in an externally applied magnetic field and discovered the

quasi-Landau resonances. These early experiments on alkaline-earth elements were impor-

tant because they led to the discovery of many fundamental features of the quadratic Zee-

man problem, including in particular those related to the chaotic behaviour of the underlying

classical dynamics. However, they suffered from a hidden blemish, which was not initially

appreciated. In all the early papers (both experimental and theoretical) it was assumed that
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the motional Stark effect, whose existence was uncovered and explained by Fano and Cross-

white [6], would have no significant influenced over the spectra of such heavy atoms. This has

turned out not to be true. In fact, experiments with beams have shown that, under the condi-

tions of the experiment performed by Garton and Tomkins [5], the spectra were strongly con-

taminated by motional Stark effects, to the extent that they do not really represent quadratic

Zeeman structures. In fact, the first observation of a purely diamagnetic spectrum for Ba was

reported by Elliott et al. [7] and to verify its interpretation. So far, there has been only one

set of calculations since the work of Elliott et al., namely those of Rao and Taylor [8]. In

the present paper, we report a new set of calculations, which are based on similar principles,

and we compare them both with earlier theoretical work and with the experimental data.

We also note that recent experiments by Connerade and co-workers have led to new data on

diamagnetic Stark spectra [9,10]. In absence of electric fields, however, the system possesses

rotational symmetry. This allows us to reduce the problem to a two-dimensional one, but

the remaining two-dimensional system is still nonseparable. Especially if the influence of the

external field and the inner-atomic forces are comparable, which is the case for highly excited

atoms under laboratory field strengths, the system becomes highly nonintegrable, and classi-

cally behaves chaotically [11]. Semiclassical techniques and full quantum theories have been

developed to study the highly excited Rydberg atoms in magnetic fields. Du et al. [12] pre-

sented semiclassical closed orbit theory and studied the hydrogen atom in a magnetic field by

semiclassical methods. A series of papers have been published [8,13] using the full quantum

theories.

2 Model and method

In this work we study the spectra of Ba in a magnetic field by the R-matrix method with

quantum defect theory that was developed by Halley, Delande and Taylor [14] and compare

theoretical result with experimental one. This method combines a variant of the R-matrix

method with quantum defect theory. The configuration space is divided into an inner region

(r≤a) and an outer region (r≥a). The boundary must be chosen large enough to encompass

the multi-electron core, but also small enough for magnetic field terms in Hamiltonian to

be neglected. In the outer region, we consider this system as a one-electron system. The

Hamiltonian for outer electron of Ba in magnetic fields directed along the z-axis is given by

(in atomic units)

H=−
1

2
∇2−

1

r
+
γLz

2
+
γ2

8
(x2+ y2), a≤ r≤∞, (1)

where γ= B/B0 and B0 = 2.35×105 Tesla, γLz/2 and γ2(x2+ y2)/8 are the linear and

quadratic Zeeman terms, respectively. The linear term γLz/2 provides a uniform shift for

all the energy levels in a specified subspace of magnetic quantum number m, and so can be

omitted. The physics in the inner region where r≤a, is very complicated, but according to

quantum defect theory we only require the wavefunction solutions on the boundary r=a. This
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allows us to write each component of the inner region solution at a, as a linear combination

of Coulomb functions,

Fl(a)=sl(a)+tan(µlπ)cl(a). (2)

Here sl(a) and cl(a) are energy normalized regular and irregular Coulomb functions respec-

tively, evaluated at r=a and µl is the quantum defect for angular momentum l. At energy E

the Hamiltonian satisfies
�
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Ψ(r,θ ,ϕ)=EΨ(r,θ ,ϕ), a≤ r≤∞. (3)

We use a spherical basis set expansion of the eigenfunctions Ψ in terms of radial functions

Fl(r) for angular momentum l, multiplied by spherical harmonic functions Ylm(θ ,ϕ). We

therefore have

Ψ=
∑

l

Fl(r)

r
Ylm(θ ,ϕ). (4)

Substituting this expansion into the Schrodinger equation yields

∑

l

�

−
d2

dr2
+

l(l+1)

r2
−

2

r
+

1

4
γ2r2sin2θ

�

Fl(r)Ylm(θ ,ϕ)

=2E
∑

l

Fl(r)Ylm(θ ,ϕ). (5)

To make the Hamiltonian in Eq. (5) hermitian in this reduced radial space, we must replace
d2

dr2 in each partial wave by d2

dr2 +δ(r−a)( d

dr
−Bl). We thus arrive at the new equation,
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Here we let
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1
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where Fl(r) is the solution to Eq. (5) at energy E. It can be proved that an eigenvalue Ek

of Eq. (6) is coincident with E and that the corresponding eigenfunction components F k
l
(r)

coincide with Fl(r). Multiplying Eq. (6) from the left by Y ∗
l ′m

and integrating over the solid

angle dΩ gives,
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where

Kl l ′=

∫

Y ∗lmsin2θYl ′mdΩ.

This is an eigenvalue equation which can be solved for (real) eigenvalues Ek and correspond-

ing eigenfunction components F k
l
(r).

3 Results and discussion

We present the p- and f -wave quantum defects of barium in Fig. 1, where the solid squares

indicate the quantum defects which are obtained by the following methods from the free-field

experiment [15]. The full curves are the results of a least squares fitting to these values.

Unlike other Rydberg series, the barium 1P0 series in the energy region near the ionization

threshold are strongly influenced by an intruder 5d8p 1P0 level [16]. We used a function to

fit the quantum defect of the 1P0 series as follows,

δ(E)=
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��

, if E>ER,

a+bE+
1

π
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�
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ER−E

�

, if E≤ER,

where ER=42000±1 cm−1, Γ/2=75±1 cm−1. The energy E is in cm−1 and where parameters

a,b are found by fitting the experimental data. ER and Γ/2 are the position of the 5d8p

perturbing resonance and its half-width, respectively. The 1Fo series quantum defect could

be fitted to a simple 2nd-order polynomial. Considerably the Ba atoms are excitated from the
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Figure 1: The p-wave and f -wave quantum defets of barium. The full urve in eah ase is the resultof a least-squares �tting of the �eld-free experimental data. The solid squares represent the �eld-freeexperimental data.
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singlet ground state in experiment, and in the case of the pure magnetic field, where parity

is a good quantum number. Dipole transitions from the initial 61S0 states are only allowed

for odd total parity states but not even total parity states for the matrix element of the dipole

operator to be non-vanishing.

Only odd l may exist in the final state, so the values of the p- and f-wave quantum defect

are required. For higher l series the quantum defects can be considered to be zero.

We calculate the even z-parity spectra of barium and hydrogen with m=±1 in a magnetic

field strength of B = 2.87 Tesla. Note that this is different from the experimental data of

B=2.89 Tesla [7]. We adopt different magnetic field strength in calculating the spectra and

found best agreement between calculation and experiment for a magnetic field strength of

B=2.87 Tesla which is within the experimental error B=2.89±0.03. Figs. 2 and 3 show the

numerically computed σ± spectra of barium. The σ+ spectrum can be obtained by displacing

spectra σ− an appropriate paramagnetic shift. The l- and n-mixing regions were covered in

the energy region of interest in this work. In the l-mixing region, the states with different l

are strongly mixed, but the principal quantum number n is still can be considered as a good

quantum number. The positions and intensities of the lines are in good agreement with those

from the experiment in this region. In the n-mixing region, n can no longer be regarded as

good quantum number, the spectrum becomes much more complicated in this region. The

degree of agreement with the experiment is not quite as good as compared to the l-mixing

region. Fig. 4 displays the computed spectrum of barium, together with those for hydrogen in

the same field strength and over approximately same ranges of principal quantum numbers.

We can see the spectra of barium has similarities with that of hydrogen in the l-mixing region.

This is due to the small p and f quantum defects of barium in that range. There are more

differences in the n-mixing region than in the l-mixing region. This embodies the effect of the

muti-electron structure of barium. Over the whole wavelength range under consideration, the

spectra in each cluster fall off monotonically in strength as one goes to shorter wavelengths
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Figure 2: Upper frame: the theoretial σ+ photoabsorption spetrum for barium in a magneti �eld strengthof 2.87 Tesla. Lower frame: the experimental spetrum with a magneti �eld strength of 2.89 Tesla.
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Figure 3: Upper frame: the theoretial σ− photoabsorption spetrum for barium in a magneti �eld strengthof 2.87 Tesla. Lower frame: the experimental spetrum with a magneti �eld strength of 2.89 Tesla.
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 Figure 4: Upper frame: the theoretial σ− photoabsorption spetrum for barium in a magneti �eld strengthof 2.87 Tesla. Lower frame: the theoretial spetrum of hydrogen in a magneti �eld strength of 2.87 Tesla.
and becomes increasingly complicated and dense. For the same principal quantum number

n (e.g. n=34) the corresponding wavelengths are different for barium and hydrogen since

each has a different first ionization energy. The ionization energy of barium and hydrogen are

42034.90 cm−1 and 109678.82 cm−1, respectively.

In summary, we have calculated the diamagnetic spectra of alkaline earth barium in a

magnetic field encompassing the l-mixing, and n-mixing regions and have compared the re-

sults with those for the hydrogen atom. Since the ratio of the diamagnetic shift to the spacing

between adjacent field free Rydberg states scales as γn7/2, the spectra increase in complexity

considerably as n increases. The difference between Ba and H is due to the fact that Ba has
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the core-effect and the character of many electrons. This system can help us to understand

the relationship between classical mechanics and quantum mechanics.
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