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Abstract. We have studied the intensity squeezing of superposition state of excited coher-

ent states and proposed a new method to prepare superposition state of excited coherent

states of vibrational motion of trapped ion. This method is based on the interaction of a sin-

gle trapped ion with two traveling wave light fields with different frequencies. An obvious

merit of this method is that it works without application of the perturbation theory.

PACS: 42.50.Vk, 42.50.Ct

Key words: trapped ion, excited coherent states, intensity squeezing

1 Introduction

In the past years, great efforts has been made to prepare a variety of nonclassical states of

atoms and ion owing to their potential practical applications such as precision spectroscopy

[1] and quantum computation [2]. So far many schemes have been proposed to prepare Fock

states of the vibrational motion of the trapped ion, for example, by advantage of quantum

jump effects [3], or by applying two-color laser fields successively [4]. Squeezed states of

motion of trapped ion can be generated by applying two standing wave laser fields with

different frequency [5], or by Raman transition in two trapped ions [6]. The squeezed states

of light fields can be prepared in high-Q cavity [7,8]. The entanglement of coherent motional

states of multiple trapped ions can be generated [9,10]. In addition, the authors of Ref. [11]

have investigated the excitation coherent state and proposed a scheme for its preparation

based on perturbation theory. The authors of Ref. [12] investigated nonclassical properties

of states generated by the superposition of excitation coherent state. They found that effect

of the phase of coherence states on the evolution of mean photon number and squeezed

properties. The authors of Ref. [13] investigated Wigner function for the photon-added even
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and odd coherent state. Schemes for generation of these states have been proposed, but they

are all based on perturbation theory.

In this paper, we investigate the intensity squeezing of excited Schrödinger cat states

and propose a method to prepare the excited Schrödinger cat states of vibrational motion

of trapped ion. This method is based on interaction of a single trapped ion with carrier and

blue side traveling wave light fields. The excited coherent state of the motion of the ion can

be produced by controlling the interaction time of the ion with fields.

2 Intensity squeezing of excited Schrödinger cat states

The excited Schrödinger cat states is defined as

�

�ϕ(m)
¶

±=
1p
N
(a+)m
�

|α〉+eiφ |α〉
�

, (1a)

N =2m!
�

Lm(−|α|2)+cosφLm(|α|2)e−2|α|2�, (1b)

where N is a normalized constant, Lm(−x) is Laguerre polynomial, α= |α|eiθ = reiθ . Here

we study intensity squeezing of the excited Schrödinger cat states. For this goal we define

orthogonal Hermite operators X1 and X2 as

X1=
1

2
(a2+a+2), X2=

1

2
(a+2−a2). (2)

The fluctuation of the operators X i satisfies

∆X1∆X2≥
|〈C〉|

2
, (3a)

where

∆X i =
Æ

〈X 2
i
〉−〈X i〉2, C=[X ,Y ]. (3b)

If the fluctuation of the operator X i in a state satisfies the relation

Si =
∆X i−
�

�〈C〉
�

�

2
<0, (4)

we then say this state has the property of intensity squeezing. Using the formulae

an(a+)m=
m
∑

k=0

m!n!(a+)kak+n−m

(m−n)!(n−m+k)!k!
, (5)

and expression of the associated Laguerre polynomial

L
(l)
m (−x)=

m
∑

n=0

(m+ l)!

(m−n)!n!(l+n)!
(−x)n, (6)
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we easily compute the squeezing quantity of the operators X1 in the excited Schrödinger cat

state, which is represented as

S(m,α,φ)=∆X1−
〈C〉
2

=

�
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N
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+
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�

+
4N

m!

−m!
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− 4(m+1)!

N

�

Lm+1(−|α|2)+cos(φ)e−2|α|2 Lm+1(|α|2)
�

+1. (7)

In the following numerical computation, for simplicity we select θ=0. Fig. 1(a) shows evo-

lution of the squeezing quantity of excited odd coherent states with mean photon number r

with different m. The lager the parameters m and r are, the deeper the squeezing of this

state is. For evolution of the squeezing quantity of the excited even coherent states, the same

properties also occurs, which is shown in Fig. 1(b). But, unlike excited odd coherent states,

the excited even coherent states dos not show squeezing when the parameters m and r are

small (see Fig. 1(b)).

3 Preparation of excited coherent states

The excited coherent states is defined as [11]

|Φ〉= 1
p

|α|2+1
a†|α〉. (8)

With application of displacement operator and its properties, we obtain

|Φ〉= 1
p

|α|2+1
a†D(α)|0〉

=
1
p

|α|2+1
D(α)
�

|1〉+α∗|0〉
�

. (9)

The excitation coherent states exhibit nonclassical properties such as sub-Poissonian photon

statistics [11].

Here we propose a new scheme for generation of the excited coherent states. Let’s consider

a two-level trapped ion with energy difference h̄ωa, which interacts with two traveling wave
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(a)

(b)Figure 1: The evolution of the squeezing quantity S(m,r,φ) via the parameter r for di�erent pa-rameter m,φ, (a) φ=π, (b) φ=0.
light fields with frequency ωL, ωL−ω, respectively, ω is the vibrational frequency of the ion.

After rotating wave approximation, the Hamiltonian of the system can be written as ( h̄=1)

H=ωa+a+
δ

2
σZ+

�

Ω1

2
eiη(a+a+)σ++

Ω2

2
eiη(a+a+)+iωtσ++H.c.

�

, (10)

where δ=ωa−ωL, a+ and a are the creation and annihilation operators of motion of the

ion, σZ and σ± are Pauli’s operators, σz = |e〉〈e|−|g〉〈g| and σ+= |e〉〈g|, σ−= |g〉〈e|, and
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Ω1,2 is the coupling constant of traveling wave light fields. With application of the Lamb-

Dicke approximation, we can obtain the interaction Hamiltonian in the interaction picture as

follows

H ′I =
δ

2
σZ+i g(aσ+−a+σ−)+

Ω1

2
σx , (11)

where σx =σ++σ−g = iηΩ2/2. The dynamics of the anti-JC model corresponding to the

Hamiltonian (11) can be solved exactly. For this we make a unitary transformation on Eq. 11,

H”I =D+(iα)H ′I D(iα), D(iα)= eiα(a++a), α=Ω1/2Ω2, the interaction Hamiltonian can be

represented as

H ′′I =
δ

2
σZ+i g(aσ+−a+σ−). (12)

The unitary evolution operator corresponding to the interaction Hamiltonian (12) reads

U ′1=U ′11|e〉〈e|+U ′12|e〉〈g|+U ′21|g〉〈e|+U ′22|g〉〈g|, (13)

where

U ′11(t)=cos(Kn+1t)−iδ
sin(Kn+1t)

2Kn+1

, (14)

U ′12(t)= ga
sin(Knt)

Kn

, (15)

U ′21(t)=−ga+
sin(Kn+1t)

Kn+1

, (16)

U ′22(t)=cos(Knt)+iδ
sin(Knt)

2Kn

, (17)

Kn=

r

δ

4
+g2a+a. (18)

We now proceed to give a solution to the Hamiltonian (11), which reads

|ψ(t)〉=UI |ψ(0)〉, (19)

where |ψ(0)〉 is the initial wave vector

UI =D(iα)U ′I D+(iα). (20)

Now we assume that at initial time the atom is located in the ground state |g〉 and cavity field

prepared in the coherent state |iα〉. After interaction time τ, we can obtain the state vector of

the system as

|ψ(τ)〉= 1p
2

D(iα)
�

�

U ′11(τ)+U ′12(τ)
��

|e〉+
�

U ′21(τ)+U ′22(τ)
�

|g〉
�

|0〉

=
1p
2

D(iα)

�

cos(K1τ)−iδ
sin(K1τ)

2K1

�

|0〉|e〉

+
1p
2

D(iα)

�

−g
sin(K1τ)

K1

|1〉+eiδτ/2|0〉
�

|g〉, (21)
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where K1 =
p

δ2/4+g2. If detection on the ground state |g〉 of the atom is done, we then

obtain

|ψc〉=−
gsin(K1τ)p

2K1

D(iα)

�

|1〉− K1

gsin(K1τ)
eiδτ/2|0〉
�

|g〉. (22)

Here we select the interaction time τ and the detuning parameter g, δ to satisfy the equations

δτ=3π, (23)

K1

gsin(K1τ)
=α. (24)

We can obtain

|ψc1〉=−
gp
2K1

sin(K1τ)D(iα)
�

|1〉−iα|0〉
�

. (25)

After operation of normalization, we have

|ψc1〉=
1p
N

D(iα)
�

|1〉−iα|0〉
�

. (26)

From Eq. 26 we can see that the atom is prepared in the excitation coherent state. If we detect

on the excitation state |e〉 of the atom, we then obtain

|ψc2〉=
1p
2

�

cos(K1τ)−i
δsin(K1τ)

2K1

�

D(iα)|0〉. (27)

This is a coherent state, not an excitation coherent state. Therefore the success probability for

this scheme is 50%.

4 Preparation of excited Schr odinger cat states

Here we give a procedure to prepare excited Schrödinger cat states. The excited Schrödinger

cat states is defined as

|ϕ〉±=
1p
N

�

|α〉±|−α〉
�

=
1p
N

�

�

D+(α)±D(α)
�

|1〉+α∗
�

D(α)∓D+(α)
�

|0〉
�

, (28)

where N is normalized constant. The preparation procedure for this state contains the follow-

ing steps:

(i) We assume the initial state of vibrational motion of the trapped ion has been prepared in

excitation coherent state, and the initial state of electric motion of the ion is the ground

state |g〉, namely

|ψ(0)〉= 1p
N

D(iα)
�

iα|0〉
�

|g〉. (29)
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(ii) Applying the carrier frequency π/2 light pulse to excite the trapped ion, we can obtain

the state vector of the system as

|ψ1〉=eiπσx /4|ψ(0)〉
=

1p
2N

D(iα)
�

|1〉−iα|0〉
�

|g〉+ ip
2N

D(iα)
�

iα|0〉
�

|e〉. (30)

(iii) Applying a π/4 light pulse to excite dispersively the trapped ion with the evolution

operation U2= eiπa+aσZ /2, we can obtain the state vector of the system as

|ψ2〉=U2|ψ1〉 (31)

=− ip
2N

D(α)
�

|1〉+α|0〉
�

|g〉− 1p
2N

D(−α)
�

|1〉−α|0〉
�

|e〉. (32)

(iv) Further applying the carries frequency π/2 light pulse to excite the trapped ion, we can

obtain the state vector of the system as

|ψ3〉=eiπσx /4|ψ2〉
=− ip

2N

�

D(−α)
�

|1〉−α|0〉
�

+D(α)
�

|α〉+α|0〉
�

�

|g〉

+
1p
2N

�

D(−α)
�

|1〉−α|0〉
�

−D(α)
�

|1〉+α|0〉
�

�

|e〉

=− ip
2N
|ϕ〉+|g〉+

1p
2N
|ϕ〉−|e〉. (33)

(v) The measurement on the trapped ion is made. If detection result is that the ion is located

in the ground state |g〉, then the ion can prepared in the |ϕ〉+. If detection result is that

the ion is in the excitation state |e〉, then the ion can prepared in the |ϕ〉−.

In conclusion, we have investigated theoretically a scheme to prepare excitation coherent

states of the trapped ion and its superposition states. This scheme is based on interaction of

the trapped ion with classical traveling wave light fields.
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