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Abstract. This paper presents a study of pressure and velocity relaxation in two-
phase flow calculations. Several of the present observations have been made else-
where, and the purpose of the paper is to strengthen these observations and draw
some conclusions. It is numerically demonstrated how a single-pressure two-fluid
model is recovered when applying instantaneous pressure relaxation to a two-
pressure two-fluid model. Further, instantaneous velocity relaxation yields a drift-
flux model. It is also shown that the pressure relaxation has the disadvantage of
inducing a large amount of numerical smearing. The comparisons have been con-
ducted by using analogous numerical schemes, and a multi-stage centred (MUSTA)
scheme for non-conservative two-fluid models has been applied to and tested on
the two-pressure two-fluid model. As for other, previously tested two-phase flow
models, the MUSTA schemes have been found to be robust, accurate and non-
oscillatory. However, compared to their Roe reference schemes, they consistently
have a lower computational efficiency for problems involving mass transport.

AMS subject classifications: 76T10, 76M12, 65M12, 35L65.
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1 Introduction

The modelling of dynamic two-phase flows has a large range of industrial applica-
tions, including the transport of oil and gas, energy processes, and safety analyses of
nuclear power plants. This kind of modelling is challenging in several ways. First,
the Navier–Stokes equations are averaged, see [12]. This brings forward unknown
terms for which it is necessary to find models. Unfortunately, the ”basic” two-fluid
model, in which as many closure terms as possible have been set to equal to zero, has
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complex eigenvalues [33]. Further, in its hyperbolic region, the two-fluid model has
several waves whose velocity may vary greatly. This, as well as the appearance of non-
conservative terms, makes it challenging to construct robust and accurate numerical
methods [5, 32, 45].

The two-pressure two-fluid model has an eigenstructure which lends itself much
more easily to analysis than that of the ”basic” single-pressure two-fluid model. Fur-
thermore, the two-pressure two-fluid model is hyperbolic everywhere, except at the
sonic points [35]. However, for a large class of two-phase flow problems of interest,
the phasic pressures are so strongly coupled that a pressure-relaxation procedure is
required.

Saurel and Abgrall [36] discussed a two-fluid model augmented by a volume-
fraction advection equation and so yielding a two-pressure model. It can be thought
of as an extension of the Baer and Nunziato [3] model. The two-pressures-with-
instantaneous-pressure-relaxation method has been investigated by several researchers
[2, 20, 22, 24]. Still, however, there is a need to clarify the potential advantages of this
approach, as opposed to using a more ”direct” flow model and then solving it using a
suitable numerical method for non-conservative balance laws.

The multi-stage centred (MUSTA) scheme [39,41,42] is aimed at coming close to the
accuracy of upwind schemes while retaining the simplicity of centred schemes. It does
not require any information of the eigenstructure of the model, except for an estimate
of the maximum eigenvalue for the Courant-Friedrichs-Lewy (CFL) criterion. Instead,
the Riemann problem at the cell interface is approximated numerically by employing
a first-order centred scheme on a local grid. The MUSTA scheme has been tested on
the Euler equations [39, 44], as well as on a drift-flux two-phase flow model [27] and
on the shallow-water equations [17]. Munkejord et al. [28] derived a MUSTA scheme
for the two-fluid model with or without an energy equation by using the framework
of formally path-consistent schemes of Castro et al. [32] and Parés [6].

The contribution of this paper is to clarify and strengthen previous observations by
several authors, that in some cases have not been explicitly stated. First, the MUSTA
scheme is applied to and tested on another equation system – a two-pressure two-fluid
model. The scheme is found to be robust and accurate, but not efficient. The efficiency
penalty is contrary to the hope of Toro [41] of presenting a non-costly scheme.

Next, a direct comparison between computations using a single-pressure and those
using a two-pressure two-fluid model can be performed due to the use of the MUSTA
scheme in each case. Different propositions have been set forth in the literature re-
garding the practical value of the pressure-relaxation approach, and the present direct
comparison is thought to contribute to more certain conclusions. Here it is clearly
seen that the two-pressure two-fluid model with instantaneous pressure relaxation
converges to the single-pressure two-fluid model, and it should be noted that this in-
cludes any instabilities due to complex eigenvalues in the single-pressure two-fluid
model. This observation is in agreement with the remarks of Karni et al. [20] and
Hérard [19]. A further point to note is that the pressure relaxation is prone to cause
significant numerical smearing. The present study therefore confirms the findings of
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Munkejord [26] for the Roe scheme. Roe methods for two-phase flow models have
been studied e.g. in [13, 20, 29, 45, 46].

Velocity relaxation will also be addressed. Instantaneous velocity relaxation in
the two-fluid model produces results equal to those of the drift-flux model. Here no
slip (equal gas and liquid velocity) is considered for simplicity, and it is seen that
the velocity relaxation introduces much less numerical smearing than the pressure
relaxation.

Section 2 briefly describes the two two-fluid models under consideration, and
shows how to put them in a canonical form which makes them suitable for applying
the MUSTA scheme of Section 3. Numerical simulations comparing the approaches to
relaxation and testing the numerical schemes are performed in Section 4, and Section
5 concludes the paper.

2 Model formulation

This paper studies the one-dimensional two-phase flow, focusing on some mathemat-
ical key parts of the models. Such a practise is common [2, 10, 13, 31]. An attempt
to include all possible two-phase flow phenomena would unnecessarily clutter the
discussion. The models under study are presented in the following.

2.1 Four-equation system

Consider a model consisting of a mass-conservation equation and a momentum-
balance equation for the gas (g) and liquid (`) phase:

∂

∂t
(αgρg) +

∂

∂x
(αgρgvg) = 0, (2.1)

∂

∂t
(α`ρ`) +

∂

∂x
(α`ρ`v`) = 0, (2.2)

∂

∂t
(αgρgvg) +

∂

∂x
(
αgρgv2

g
)
+ αg

∂p
∂x

+ ∆pi
∂αg

∂x
= αgρggx − τi, (2.3)

∂

∂t
(α`ρ`v`) +

∂

∂x
(
α`ρ`v2

`

)
+ α`

∂p
∂x

+ ∆pi
∂α`

∂x
= α`ρ`gx + τi. (2.4)

For k ∈ {g, `}, ρk denotes the density, vk the velocity, αk the volume fraction, gx the
gravitational acceleration in x direction, and p the common pressure.

∆pi = p− pi

is the interfacial pressure difference and τi is an interfacial momentum-exchange term
to be defined in the following. By default, we will use τi = 0.

The volume fractions satisfy
αg + α` = 1. (2.5)
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The equation of state
p = pk(ρk) = c2

k(ρk − ρ◦k ), (2.6)

is employed, where the speed of sound, ck, and the ”reference density”, ρ◦k are con-
stants for each phase, constituting an assumption of constant entropy or temperature.

In the following, the Eqs. (2.1)–(2.4) with (2.5) and (2.6) will be referred to as the
four-equation system.

2.2 Five-equation system

In Saurel and Abgrall [36], the two-fluid model was augmented with an advection
equation for the volume fraction – with an added pressure-relaxation term. Here we
do likewise, except that in the present case, the energy equation is disregarded for
simplicity. The model then reads:

∂αg

∂t
+ vi

∂αg

∂x
= rp(pg − p`), (2.7)

∂

∂t
(αgρg) +

∂

∂x
(αgρgvg) = 0, (2.8)

∂

∂t
(α`ρ`) +

∂

∂x
(α`ρ`v`) = 0, (2.9)

∂

∂t
(αgρgvg) +

∂

∂x
(
αgρgv2

g
)
+ αg

∂pg

∂x
+ ∆pig

∂αg

∂x
= αgρggx − τi, (2.10)

∂

∂t
(α`ρ`v`) +

∂

∂x
(
α`ρ`v2

`

)
+ α`

∂p`

∂x
+ ∆pi`

∂α`

∂x
= α`ρ`gx + τi. (2.11)

Herein, rp is a pressure-relaxation parameter, and vi is the average interfacial velocity,
to be defined in the following. We employ the same equation of state as for the four-
equation system, but here, the pressures in each phase are independent:

pk = pk(ρk) = c2
k(ρk − ρ◦k ). (2.12)

Eqs. (2.7)–(2.11) with (2.12) and (2.5) will in the following be referred to as the five-
equation system. There are two main differences compared to the four-equation sys-
tem, namely the presence of a volume-fraction advection Eq. (2.7), and independent
pressures in each phase.

The coefficient matrix of the five-equation system is diagonalizable with real eigen-
values almost everywhere, except at the sonic points, see e.g., [35]. Further, simple,
analytical expressions are available for the eigenvalues and eigenvectors. More de-
tails are also given in [26] for the current context. These are advantages for the five-
equation system compared to the four-equation system, where analytical expressions
for the eigenstructure are only available for particular choices for the constitutive re-
lations, and for which there are regions where the hyperbolicity is lost.
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2.2.1 Overview of the solution procedure

In this paper, the momentum-source term τi is included to act as an interfacial drag
term, or velocity-relaxation term in the current jargon:

τi = rv(vg − v`), (2.13)

where rv is a velocity-relaxation parameter.
The relaxation terms may become large. Therefore, the equation system (2.7)–(2.11)

is split in two, and solved using a fractional-step technique. The hyperbolic part of the
system is (2.7)–(2.11) with

rp ≡ 0, and rv ≡ 0.

The remainder is the relaxation part:

∂αg

∂t
= rp(pg − p`), (2.14)

∂

∂t
(αgρg) = 0, (2.15)

∂

∂t
(α`ρ`) = 0, (2.16)

∂

∂t
(αgρgvg) = rv(v` − vg), (2.17)

∂

∂t
(α`ρ`v`) = −rv(v` − vg). (2.18)

Let qn
j denote the numerical approximation to the cell average of the vector of un-

knowns q(x, tn) in control volume j at time step n. With qn
j as an initial value, the

solution at the next time step, qn+1
j , can be found as follows:

1. Find q∗j as the solution of the hyperbolic part of (2.7)–(2.11) at tn+1.

2. Find qn
j as the solution of the relaxation system (2.14)–(2.18) at tn+1 with q∗j as initial value.

For step 1, the MUSTA scheme will be employed, and it will be detailed in Section 3.
For step 2, a numerical solver for ordinary differential equations will be used for finite-
rate relaxation. For infinite/ instantaneous relaxation, it is more efficient to employ the
procedure detailed in the next two subsections.

2.2.2 Infinite pressure relaxation

Specific values for the pressure-relaxation parameter, rp, are most often unknown.
However, the assumption of equal phasic pressures is widespread, and can be ac-
counted for by setting rp to a large value. It is then more efficient to solve the problem
directly than solving the system (2.14)–(2.18) of differential equations: After the hy-
perbolic step, the volume fraction is modified so as to render the two phasic pressures
equal, keeping αkρk and αkρkvk constant.
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Munkejord [26] solved a second-degree equation for the volume fraction. In this
study, however, it was found to be a more robust approach to solve a second-degree
equation for the pressure instead. Such an equation is commonly solved in single-
pressure two-fluid calculations, see e.g., [31]. The equation is derived by adding (2.6)
multiplied by αg, to (2.6) multiplied by α`, and using (2.5), and its positive solution is

p =
−ψ2 +

√
ψ2

2 − 4ψ1ψ3

2ψ1
, (2.19)

where

ψ1 = 1, (2.20)

ψ2 = c2
g
(
ρ◦g − αgρg

)
+ c2

`

(
ρ◦` − α`ρ`

)
, (2.21)

ψ3 = c2
gc2

`

(
ρ◦gρ◦` − αgρgρ◦` − α`ρ`ρ◦g

)
. (2.22)

The remaining variables are then found in a straightforward manner, using the equa-
tion of state.

Note that the present procedure is somewhat simpler than the one discussed in
[36], since in the present case, the energy equation is not considered.

It should be emphasized that for instantaneous pressure relaxation, the volume-
fraction advection Eq. (2.7) becomes singular, and the two phasic pressures become
equal. Hence it is expected that the equation system reduces to the four-equation
system.

2.2.3 Velocity relaxation

The instantaneous velocity-relaxation procedure can be applied after the hyperbolic
step, or after the instantaneous pressure-relaxation step, if applicable. Here we only
consider no slip (vg = v`), and we employ the procedure derived by Saurel and Ab-
grall [36], simplified to the case of no energy equation. The procedure simply consists
of changing αgρgvg and α`ρ`v` so that vg = v`, while keeping ∑k(αkρkvk), αgρg, α`ρ`

and αg constant. The relaxed (mixture) velocity is

v = vg = v` =
αgρgvg,0 + α`ρ`v`,0

αgρg + α`ρ`
, (2.23)

where the subscript 0 denotes the initial value supplied to the velocity-relaxation pro-
cedure. This is the mass-weighted velocity.

For computations with the five-equation system presented in this article, instanta-
neous pressure relaxation and no velocity relaxation will be employed, unless other-
wise stated.

If instantaneous velocity relaxation is employed in the four-equation system, or
in the five-equation system with instantaneous pressure relaxation, it is expected that
a drift-flux model is recovered [16]. The drift-flux model considered here consists



S. T. Munkejord / Adv. Appl. Math. Mech., 2 (2010), pp. 131-159 137

of a continuity equation for each phase, and a momentum-balance equation for the
mixture momentum, that is, the sum of (2.3) and (2.4). In addition, a constitutive
relation for the relative velocity between the phases (the slip) is needed. A MUSTA
scheme for the drift-flux model was discussed by Munkejord et al. [27].

2.2.4 Interface velocity

Following Saurel and Abgrall [36], we will also use the mass-weighted velocity as a
model for the average interfacial velocity in (2.7):

vi =
αgρgvg + α`ρ`v`

αgρg + α`ρ`
. (2.24)

2.3 Interfacial-pressure model

Both in the four-equation and the five-equation system, a model is needed for the
interfacial pressure difference. In this work, the model of Bestion [4] is employed:

pk − pik = ∆pik = δ
αgα`ρgρ`

αgρ` + α`ρg
(vg − v`)2. (2.25)

The main justification of the expression is to render the four-equation system hyper-
bolic for a reasonable range of parameters [4, 37]. Following Evje and Flåtten [13], we
take δ = 1.2, unless otherwise stated.

2.4 Canonical form of the equation systems

Both two-fluid models of the preceding subsections can be written in the following
form:

∂q
∂t

+
∂ f (q)

∂x
+ B(q)

∂w(q)
∂x

= s(q). (2.26)

2.4.1 Four-equation system

For the model of Section 2.1, we obtain

q =




αgρg
α`ρ`

αgρgvg
α`ρ`v`


 , f (q) =




αgρgvg
α`ρ`v`

αgρgv2
g + αg∆pi

α`ρ`v2
` + α`∆pi


 , s(q) =




0
0

αgρggx − τi
α`ρ`gx + τi


 , (2.27)

B(q) =




0
0
αg
α`


 , w(q) = p− ∆pi. (2.28)
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2.4.2 Five-equation system

The model of Section 2.2 can be expressed with

q =




αg
αgρg
α`ρ`

αgρgvg
α`ρ`v`




, f (q) =




0
αgρgvg
α`ρ`v`

αgρgv2
g + αg∆pi

α`ρ`v2
` + α`∆pi




, s(q) =




rp(pg − p`)
0
0

αgρggx − τi
α`ρ`gx + τi




, (2.29)

B(q) =




vi 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 αg 0
0 0 0 0 α`




, w(q) =




αg
0
0

pg − ∆pig
p` − ∆pi`




. (2.30)

3 The MUSTA scheme

A MUSTA scheme was derived for the four-equation system in Munkejord et al. [28]
by using the framework of formally path-consistent schemes of Parés [32]. In this
work, that scheme is applied to the five-equation system. With the canonical form of
the equation system given in Section 2.4.2, the scheme can be applied rather directly.

The derivations in [28] will not be repeated here, but the MUSTA building blocks
and algorithm will be recalled for convenience.

3.1 Building blocks

Consider the equation system

∂q
∂t

+
∂ f (q)

∂x
+ B(q)

∂w(q)
∂x

= 0. (3.1)

It can be discretized as

1
∆t

(qn+1
j − qn

j ) +
1

∆x

(
( f j+ 1

2
− f j− 1

2
) + (d+

j− 1
2
+ d−j+ 1

2
)
)

= 0, (3.2)

with

d+
j+ 1

2
= Bj+ 1

2

(
wj+1 −wj+ 1

2

)
, (3.3)

d−j+ 1
2

= Bj+ 1
2

(
wj+ 1

2
−wj

)
. (3.4)

Herein, expressions are needed for f j+ 1
2
, wj+ 1

2
and Bj+ 1

2
, as will be detailed in the

following.
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3.1.1 The FORCE scheme

The basic building block of MUSTA is the first-order centred (FORCE) scheme of Toro
[40] see also [8, 43]. It has the least numerical dissipation of the first-order central
schemes that are stable for all CFL numbers less than unity [8].

The FORCE numerical flux is defined as the arithmetic mean of the Lax–Friedrichs
flux and the Richtmyer Lax–Wendroff flux:

f FORCE
j+ 1

2
=

1
2

(
f LF

j+ 1
2
+ f LW

j+ 1
2

)
. (3.5)

It is then natural to assume the same averaging for the cell-interface value of the non-
conservative variables vector, wj+1/2:

wFORCE
j+ 1

2
=

1
2

(
wLF

j+ 1
2
+ wLW

j+ 1
2

)
. (3.6)

3.1.2 The Lax–Friedrichs scheme

For the non-conservative system (3.1), De Vuyst [11] proposed the Lax–Friedrichs dis-
cretization

f LF
j+ 1

2
=

1
2

(
f (qj) + f (qj+1)

)
+

1
2

∆x
∆t

(qj − qj+1), (3.7)

with

d±j+ 1
2

=
1
2

Bj+ 1
2
(wj+1 −wj), (3.8)

that is

wLF
j+ 1

2
=

1
2
(wj + wj+1). (3.9)

3.1.3 The Richtmyer scheme

It is the two-step Richtmyer version of the Lax–Wendroff scheme that is employed
in the FORCE scheme. First, the cell-interface solution is evolved one half time step
using a simple Lax–Friedrichs scheme:

qn+ 1
2

j+ 1
2

=
1
2

(
qn

j + qn+ 1
2

j+1

)
− 1

2
∆t
∆x

(
f
(
qn

j+1
)− f

(
qn

j
))

− 1
2

∆t
∆x

Bn
j+ 1

2

(
wn

j+1 −wn
j
)
. (3.10)

Then the numerical cell-interface values to be plugged into (3.5) and (3.6) are given as:

f LW
j+ 1

2
= f

(
qn+ 1

2
j+ 1

2

)
, (3.11)

wLW
j+ 1

2
= w

(
qn+ 1

2
j+ 1

2

)
. (3.12)
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3.1.4 The cell-interface matrix

As shown in [28], a formally path-consistent scheme can be achieved by calculating
the cell-interface matrix, Bj+1/2, from an appropriate average state between the cells j
and j + 1. Here, that can be done by simply choosing

Bj+ 1
2

=




0
0

αg,j+ 1
2

α`,j+ 1
2


 , (3.13)

for the four-equation system, and

B(q) =




vi,j+ 1
2

0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 αg,j+ 1

2
0

0 0 0 0 α`,j+ 1
2




, (3.14)

for the five-equation system. Herein, αg,j+1/2 and vi,j+1/2 are calculated by arithmetic
averaging, and α`,j+1/2 = 1− αg,j+1/2, as always.

We are now equipped to delve into the MUSTA algorithm.

3.2 Algorithm

In the multi-stage (MUSTA) approach [39,44], the numerical flux, f j+1/2, at the cell in-
terface is found by employing a two-step procedure: First, a numerical approximation
to the solution of the cell-interface Riemann problem produces two modified states at
either side of the interface. These states are then fed into a numerical flux function
to obtain the sought flux, f j+1/2. There are several conceivable choices for the nu-
merical flux function. Titarev and Toro [39] employed the FORCE flux, whereas Toro
and Titarev [44] promoted a development termed the GFORCE flux. We prefer the
”classical” FORCE flux, which is slightly simpler and seems to be more robust.

The MUSTA procedure employed here is similar to the previous ones for the Euler
equations [39,44] and for the drift-flux model [27], but it is extended to account for the
non-conservative terms in the governing equations. The present exposition is from
[28].

For calculating the numerical flux, f j+1/2, and the non-conservative variables vec-
tor, wj+1/2, the Riemann problem at the cell interface, xj+1/2, is transformed to a local
grid:

∂q
∂t

+
∂ f (q)

∂ξ
+ B(q)

∂w(q)
∂ξ

= 0, (3.15a)

q(ξ, 0) =

{
qj = qL, if ξ < 0,

qj+1 = qR, if ξ ≥ 0,
(3.15b)
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where the position ξ = 0 corresponds to xj+1/2. This local Riemann problem is then
solved approximately by employing the FORCE scheme, where the local grid is in-
dexed by n, and, following Titarev and Toro [39], we set ∆ξ ≡ ∆x:

1
∆tloc

(qm+1
n − qm

n ) +
1

∆x
(

f FORCE
n+ 1

2
− f FORCE

n− 1
2

)

+
1

∆x

(
Bn− 1

2

(
wn −wFORCE

n− 1
2

)
+ Bn+ 1

2

(
wFORCE

n+ 1
2

−wn
))

= 0. (3.16)

Herein, f FORCE
n+1/2 , wFORCE

n+1/2 and

Bn+ 1
2

= Bn+ 1
2
(qn, qn+1)

are calculated as described in the preceding subsections, while

wn = w(qn).

Terms without a time index are evaluated at stage m. The local pseudo-time step, ∆tloc,
is calculated using the Courant–Friedrichs–Lewy (CFL) criterion on the local grid:

∆tloc =
Cloc∆x

max
1≤n≤2N

(
max

1≤p≤d
|λp

n|
) , (3.17)

where d is the dimension of the system (2.26), and the local CFL number, Cloc, is a
parameter in the method. In this work we follow [39] and set Cloc = 0.9 for all the
computations. For the four-equation system, the maximum eigenvalues, λ, are ap-
proximated using the estimates of [13].

The initial conditions and the numbering of the local grid are illustrated in Fig. 1.
The M-stage MUSTA algorithm for the flux f and the vector w can be summarized

as follows:

1. For each local cell n = 1, . . . , 2N, compute the flux f FORCE,m
n+1/2 from (3.5), the vector

wFORCE,m
n+1/2 from (3.6) and the coefficient matrix Bm

n+1/2 from (3.13) or (3.14) using data
from stage m.

2. If m = M, then return f FORCE,M
N+1/2 and wFORCE,M

N+1/2, else continue.

3. Update the local solution using (3.16) for n = 1, . . . , 2N.

4. Apply extrapolation boundary conditions; qm
0 = qm

1 , and qm
2N+1 = qm

2N. Augment m and
repeat from 1.

Thus, when the MUSTA scheme is used to solve (3.2)–(3.4), f j+1/2 and wj+1/2 are
found using the above algorithm, whereas Bj+1/2 and the other quantities are calcu-
lated using data from the global grid, as usual. As shown in [28], the above procedure
reduces to the standard conservative MUSTA algorithm [39, 44] when B is constant in
time and space.
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. . .. . .

x j+1/2q j q j+1

0 1 N N + 1 2N 2N + 1

Figure 1: Initial values and cell numbering for the local MUSTA grid.

It should be noted that to avoid spurious oscillations, it is necessary to choose
M ≤ 2N in the MUSTA algorithm [27]. In the following, we will denote the M-stage
MUSTA scheme with 2N local cells by MUSTAM−2N . Further, we refer to the MUSTA
scheme for the four-equation system as MUSTA4 (see Section 2.4.1), and to that of the
five-equation system as MUSTA5 (see Section 2.4.2).

It is possible to save some computational time by refining the above MUSTA algo-
rithm. In fact, since we are solving a Riemann problem, and since we are only inter-
ested in the solution at the mid cell interface, it is not necessary to include all the local
cells n = 1, . . . , 2N in all the local time steps, as noted by Titarev and Toro [39,44]. For
instance, in the first local time step, only the two mid cells enter into the calculation. In
the next step, one cell has to be added at each side, as the waves propagate at most one
cell per time step. When the waves have reached the boundary of the local grid, one
cell can be excluded at each side, etc. This ”diamond optimization” was suggested by
Toro and Titarev [44] and has been used for all the computations presented here.

3.3 Second-order extension

To obtain second-order spatial accuracy for smooth solutions, a semi-discrete version
of the monotone upwind-centred scheme for conservation laws (MUSCL) [30, 50] has
been employed. Herein, a piecewise linear function is constructed by using the data
{qj(t)}. At each side of the interface, xj+1/2, we have values from the linear approxi-
mations in the neighbouring cells. These are denoted by

qR
j = qj +

∆x
2

σ j, (3.18)

qL
j+1 = qj+1 −

∆x
2

σ j+1, (3.19)

where σ j are the slopes calculated using a suitable slope-limiter function. Some are
listed in [23, Section 9.2]. The minmod slope is

σj = minmod
(qj − qj−1

∆x
,

qj+1 − qj

∆x

)
, (3.20)
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where the minmod function is defined by

minmod(a, b) =





0, if ab ≤ 0,
a, if |a| < |b| and ab > 0,
b, if |a| ≥ |b| and ab > 0.

(3.21)

The monotonized central-difference (MC) slope [49] is

σj = minmod
(( qj+1 − qj−1

2∆x

)
, 2

( qj − qj−1

∆x

)
, 2

( qj+1 − qj

∆x

))
. (3.22)

We also have the van Leer [48] [see 49] limiter

σj =





2
(
qj − qj−1

)(
qj+1 − qj

)
(
qj − qj−1

)
+

(
qj+1 − qj

) , if sgn
(
qj − qj−1

)
= sgn

(
qj+1 − qj

)
,

0, otherwise.
(3.23)

The slope limiting is applied component-wise to the variable-vector. There are sev-
eral possible choices of variables to use. Here, the choice has been made to employ
[αg, p, vg, v`] for the four-equation system and [αg, ρg, vg, ρ`, v`] for the five-equation
system. After this procedure, the flux f j+1/2 and the vector wj+1/2 can be computed
from (qR

j , qL
j+1), precisely as described in the preceding subsections. That is, it is only

the Riemann problem (3.15) to be solved on the local grid that is modified accord-
ing to (3.18). It should be noted that the cell-interface matrix is still a function of the
non-reconstructed variables. That is, (qR

j , qL
j+1) are not involved in the evaluation of

Bj+1/2.
For use with the MUSCL scheme, the system of balance Eq. (2.26) is semi-

discretized:
dqj

dt
+

f j+ 1
2
− f j− 1

2

∆x
+

d+
j− 1

2
+ d−j+ 1

2

∆x
= sj. (3.24)

To obtain a second-order solution in time, the two-stage second-order strong-stability-
preserving (SSP) Runge–Kutta (RK) method is employed (see for instance [21]). With
(3.24) of the form

dqj

dt
= L (qj), (3.25)

the two-stage second-order SSP-RK scheme can be written as

q(1)
j = qn + ∆tL (qn), (3.26a)

qn+1 =
1
2

qn +
1
2

q(1) +
1
2

∆tL (q(1)). (3.26b)

Herein, qn
j is the vector of unknowns from time step n, qn+1

j is the sought values at the

next time step, while q(1)
j represents intermediate values.

In conjunction with the first-order MUSTA scheme, the time stepping is performed
using the Forward Euler method.
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Table 1: Parameters employed in the equation of state.

ck (m/s) ρ◦k (kg/m3)
gas (g)

√
103 0

liquid (`) 1000 999.9

4 Numerical simulations

In this section, the MUSTA4 and MUSTA5 schemes will be analysed by performing
numerical benchmark tests from the literature. In particular, effects of pressure and
velocity relaxation will be discussed.

Independent numerical schemes will be employed for reference. For the four-
equation system, the Roe4 scheme presented by Evje and Flåtten [13] and further dis-
cussed by Munkejord [26] will be used. The reference for the five-equation system is
the Roe5 scheme by Munkejord [26]. The Roe scheme for the drift-flux model, Roe3,
of Flåtten and Munkejord [15] will also be used for benchmarking.

All the presented calculations have been performed employing the equation-of-
state parameters given in Table 1.

4.1 Moving discontinuity

It is essential that numerical schemes ”disturb” the flow as little as possible. In par-
ticular, for a uniform pressure and velocity flow, the pressure and velocities should
remain uniform, even if there is a jump in the volume fraction [1].

This basic test was done by performing a calculation in a 12 m long horizontal
tube, where the initial state consists of uniform velocities and pressures, see Table 2. A
similar case was considered in [7]. At the middle of the tube, the gas volume fraction
jumps from 1− ε to ε, where ε = 1× 10−6. This gives practically single-phase flow on
each side of the discontinuity, even though pure phases are not explicitly accounted
for in the present framework. Due to the numerical calculations for the equation of
state, ε cannot go too close to zero. A similar limitation was also reported in [36].

Calculations were performed for both the four-equation and the five-equation sys-
tem. For the former, the MUSCL-MUSTA44−4 scheme (four local steps and four local
cells) was employed with the van Leer slope slope (3.23). For the latter, the MUSCL-
MUSTA54−4 scheme is somewhat less robust, and was employed with the minmod
slope (3.20). All the calculations were run using a CFL number of C = 0.5 on a 200-cell
grid. The gas volume fraction at time t = 0.03 s is displayed in Fig. 2. Ideally, the
volume fraction should be advected, but not smeared. As shown in the figure, some
smearing takes place, and more so for MUSTA5 than for MUSTA4. In both cases, the
results are oscillation-free.

No disturbances are introduced in the other variables to plotting accuracy. How-
ever, it is interesting to evaluate the disturbances quantitatively. Let us define the
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Table 2: Initial state for the moving-discontinuity problem.

Quantity Symbol (unit) Left Right
Gas volume fraction αg (–) 1− ε ε
Pressure p (MPa) 0.1 0.1
Gas velocity vg (m/s) 100 100
Liquid velocity v` (m/s) 100 100

maximum relative pressure disturbance for the calculation as

Ep =
1
p0 max

∀n

{
|max

∀j
pn

j −min
∀j

pn
j |

}
, (4.1)

where p0 is the initial pressure, j is the spatial index and superscript n denotes the
time step. In this case Ep ≈ 7× 10−9 for MUSTA4, while Ep ≈ 1× 10−8 for MUSTA5.
These are thought to be satisfactory values.

αg (–)

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

M-Musta4
M-Musta5
Analytical

x (m)

Figure 2: Gas volume fraction for the moving discontinuity. MUSCL-MUSTA4−4, 200
cells, C = 0.5.

4.2 Water faucet

The water-faucet test case is one of the most common benchmark cases for numerical
methods for one-dimensional two-fluid models. It was introduced by Ransom [34]
and has been studied for instance in [9, 13, 16, 26, 31, 47]. In particular, this test reveals
the ability of the method to capture mass transport. The calculated pressure profiles
are sensitive to the boundary conditions, but the velocities and the volume fraction
are not [25].

The initial flow field is uniform, and the values are given in Table 3. The inlet
boundary conditions are equal to the initial values for the gas volume fraction and for
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Table 3: Initial state in the water-faucet test problem.

Quantity Symbol (unit) Value
Gas vol. f rac. αg (–) 0.2
Pressure p (MPa) 0.1
Gas velocity vg (m/s) 0.0
Liquid velocity v` (m/s) 10.0

the gas and liquid velocities. A pressure equal to the initial pressure is specified at
the outlet. At time t = 0, gravity (g = 9.81 m/s2) is turned on, and the liquid column
starts thinning as a discontinuity moves towards the exit. In the following, the results
are given at t = 0.6s. An approximate analytical solution can be found for instance
in [13]. Even though there is a difference between the solution of the two-fluid model
obtained on very fine grids and this approximate solution, it is customarily used as a
reference in the volume-fraction plots.

Let us first consider the effect of the number of local time steps (M) and local cells
(2N) in the MUSTA solver. As noted by Munkejord et al. [27], M and 2N cannot be
varied independently. We need to take M ≤ 2N to avoid oscillations due to boundary
effects in the MUSTA procedure. Fig. 3 shows volume-fraction profiles obtained on
a 100-cell grid for a CFL number of C = 0.9 without using MUSCL reconstruction,
that is, for the first-order schemes. In Fig. 3(a), the results for the MUSTA4 scheme
for the four-equation system are shown. The volume-fraction profile calculated using
the first-order Roe4 scheme for the same conditions has been plotted for reference.
As can be seen, for an increasing number of local cells and time steps, the volume-
fraction profiles of the MUSTA4 scheme become sharper. However, as many as 200
local steps are needed for the MUSTA4 scheme to produce a volume-fraction profile
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Roe4
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x (m)

(a) MUSTA4

αg (–)

0 2 4 6 8 10 12
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(b) MUSTA5

Figure 3: Gas volume fraction for the water faucet. Effect of increasing number of
stages and local cells in the MUSTA4 and MUSTA5 schemes. 100 cells, C = 0.9.
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comparable to that of the Roe4 scheme. The many local steps lead to a substantial
CPU-time consumption.

An analogous comparison for the MUSTA5 scheme for the five-equation system is
given in Fig. 3(b). Two main differences with respect to the MUSTA4 scheme can be
observed. First, the MUSTA5 scheme is significantly more diffusive than the MUSTA4
scheme. This is due to the pressure relaxation, as will be further illustrated in the
following. Second, even with 200 local steps, the MUSTA5 procedure is more diffusive
than the corresponding Roe5 procedure.

The faucet case has also been calculated with the more accurate MUSCL schemes.
Herein, various slope-limiter functions have been tested, namely the superbee (see
[23], Section 9.2) and the minmod slope (3.20), the van Leer slope slope (3.23) and
the monotonized central-difference (MC) slope (3.22). The latter three slopes gave
acceptable results, whereas the superbee slope gave oscillations. The MC slope gave
the best results in this case.

Volume-fraction profiles for MUSCL-MUSTA4−4 (M = 4 local time steps and 2N =
4 local cells in the MUSTA procedure) are given in Fig. 4. The profiles in Fig. 4(a)
obtained using the MUSCL-MUSTA4 scheme are sharp and non-oscillatory, albeit not
quite as good as the results presented in [26] for the Roe4 scheme with characteristic
flux limiting.

Fig. 4(b) shows volume-fraction profiles calculated using the MUSCL-MUSTA5
scheme. They are also non-oscillatory, but they are much more smeared than the ones
of MUSCL-MUSTA4. Indeed, by comparing for instance the 100-cell solution in Fig.
4(b) with the one for MUSTA44−4 in Fig. 3(a), one can see that the MUSCL version of
the MUSTA5 method gives less resolution than the first-order MUSTA4 scheme.

Pressure profiles for the faucet case are given in Fig. 5. Here, no analytical solution
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(a) MUSCL-MUSTA4
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(b) MUSCL-MUSTA5

Figure 4: Gas volume fraction for the water faucet. Convergence of the MUSCL-
MUSTA44−4 and -MUSTA54−4 schemes using the MC slope. C = 0.5.
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Figure 5: Pressure for the water faucet. Convergence of the MUSCL-MUSTA44−4 and
-MUSTA54−4 schemes using the MC slope. C = 0.5.

is available, so a calculation with the MC-limited Roe4 scheme on a fine grid (10 000
cells) has been plotted as reference. In Fig. 5(a), the solution of MUSCL-MUSTA4 on a
3200-cell grid is quite close to the reference solution. In Fig. 5(b), the MUSCL-MUSTA5
solution still is a bit off, even for 10 000 cells. In general, MUSTA5 needs a much finer
grid than MUSTA4 to capture the pressure profile inherent in the solution of the faucet
problem.

The effect of reducing the time-step length on a fixed grid of 200 cells is studied in
Figs. 6–7. Herein, M = 2 and N = 8 has been used in the MUSTA procedure to obtain
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Figure 6: Gas volume fraction for the water faucet. Effect of time-step length on the
MUSCL-MUSTA48−8 scheme using the MC slope. 200 cells.
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Figure 7: Gas volume fraction for the water faucet. Effect of time-step length on the
(MUSCL-) MUSTA58−8 scheme with and without using the MC slope. 200 cells.

a somewhat higher resolution. For the MUSTA4 and the MUSCL-MUSTA4 schemes,
time-step refinement gives only a miniscule effect. The solutions for C = 0.9 and for
C = 0.001 are the same to plotting accuracy. This is shown in Fig. 6 for the MUSCL-
MUSTA4 scheme.

The MUSTA5 method is a bit peculiar. For the first-order MUSTA5 scheme, the
results shown in Fig. 7(a) are smeared, but non-varying as the CFL number is re-
duced. For the MUSCL-MUSTA5 scheme, on the other hand, a large improvement
in the resolution is achieved for small CFL numbers, see Fig. 7(b). A similar effect
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Figure 8: Gas volume fraction for the water faucet. Grid refinement for the MUSCL-
MUSTA54−4, method employing δ = 0 in (2.25), the MC slope and C = 0.5.
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was observed in [26] for the Roe5 scheme. It goes without saying, however, that keep-
ing the CFL number in the order of 1× 10−4 is not particularly efficient. Further, as
Fig. 7(b) shows, MUSCL-MUSTA5 never quite attains the reference profile calculated
using the MUSCL-MUSTA4 scheme using a CFL number of C = 0.5.

One of the perceived advantages of performing calculations using the five-
equation system with instantaneous pressure relaxation instead of keeping the four-
equation system, is that the former equation system is hyperbolic everywhere, except
at the sonic points. The justification of the Eq. (2.25) for the interfacial pressure dif-
ference is to render the four-equation system hyperbolic in a reasonable range, rather
than physical considerations. Fig. 8 shows the volume-fraction profiles from calcula-
tions having been performed with the MUSCL-MUSTA54−4 method on various grids
and with a constant CFL number of C = 0.5. In these calculations, the parameter δ
was set equal to zero in (2.25). In this case, the four-equation system is non-hyperbolic
with complex eigenvalues, while the five-equation system is not. Even so, the figure
clearly shows that at fine grids, an instability develops. This kind of instability is nor-
mally associated with a non-hyperbolic model [37]. Further grid refinements leads to
a breakdown of the simulation.

A similar observation was made by Karni et al. [20] employing a Roe-type method
with pressure relaxation for a two-fluid model including an energy equation.

4.3 Toumi’s shock tube

This shock-tube problem was introduced by Toumi [45] and it has been studied e.g.,
in [14, 26, 31, 38]. A tube of length 100 m is divided by a membrane in the middle. At
t = 0, the membrane ruptures, and the flow starts evolving. The initial conditions are
displayed in Table 4. For this problem, δ = 2 has been employed in the Eq. (2.25),
as was also done in [14, 31]. No source terms were considered, except for relaxation
terms, where noted.

4.3.1 Instantaneous pressure relaxation

Fig. 9 shows the physical variables calculated at t = 0.08 s. The MUSCL-MUSTA5
method with the van Leer slope has been employed, using a CFL number of C = 0.5.
A reference solution has been calculated using the Roe4 scheme on a fine grid of 10 000
cells. For Toumi’s shock tube, the Roe scheme needs an entropy fix to converge to a
physically plausible solution. Here, the fix of Harten [18] [see also e.g., 23, Section
5.3.5] was employed.

Table 4: Initial state in Toumi’s shock tube.

Quantity Symbol (unit) Left Right
Gas vol. f rac. αg (–) 0.25 0.10
Pressure p (MPa) 20 10
Gas velocity vg (m/s) 0 0
Liquid velocity v` (m/s) 0 0
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Figure 9: Toumi’s shock tube at t = 0.08 s. Convergence of the MUSCL-MUSTA5
method using the van Leer slope. C = 0.5.

As can be seen from the plots, the results of the MUSCL-MUSTA5 method con-
verge towards those of the Roe4 scheme. This also indicates that the five-equation
system with instantaneous pressure relaxation converges to the four-equation system.
The figures further show that the MUSCL-MUSTA5 method converges quite slowly in
the middle of the tube, where volume-fraction waves are present.

4.3.2 Finite pressure relaxation

In the computations presented so far, instantaneous pressure relaxation was always
used in the MUSTA5 method. We will now study the effect of finite pressure relaxation
in the five-equation system. That is, the pressure-relaxation parameter, rp, will attain
finite values, while the velocity-relaxation parameter still is rv = 0.
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Figure 10: Toumi’s shock tube at
t = 0.045s. Effect of the pressure-
relaxation parameter rp in the
MUSTA5 (first-order) method
on a 2000-cell grid. C = 0.9.
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Toumi’s shock tube has been calculated with varying values of the pressure-
relaxation parameter, rp. The results are displayed in Fig. 10. Here, the first-order
MUSTA5 method has been used with a 2000-cell grid and a CFL number of C = 0.9.
The calculations have been stopped at t = 0.045 s to avoid interaction between the
waves and the domain boundaries. Data obtained with the MUSTA4 scheme are plot-
ted for reference.

Fig. 10(b) shows a plot of the liquid velocity. For a low value of the pressure-
relaxation parameter, rp, the two sonic waves have reached about x = 5m and x = 95m.
As rp is increased, those two fast sonic waves are gradually suppressed, and the effect
of the gas phase becomes more and more apparent.

The approximate speed of the sonic waves can be read from the figure. For a low
rp, the average speed of the right-going wave is 45m/0.045s = 1000m/s, which closely
corresponds to the liquid speed of sound. When the pressure-relaxation parameter is
increased, the ”resultant” sonic speed is reduced to that of the four-equation model, as
is evident from the fact that the profiles approach those calculated with the MUSTA4
scheme.

For the gas velocity shown in Fig. 10(c), it can be seen that the sonic speed ap-
proaches that of the four-equation system from below. The sonic waves travel with
the gas speed of sound for low values of rp, increasing to the sonic speed of the two-
fluid model for instantaneous pressure relaxation.

The liquid and gas pressures are displayed in Figs. 10(d) and 10(e), and it can
be observed how the two independent pressures converge to one as the relaxation
parameter rp is increased.

Figs. 10(b) and 10(c) (or 10(d) and 10(e)) reveal that the five-equation system with-
out pressure relaxation has five waves; two sonic waves for the liquid, two sonic
waves for the gas, and one mass wave (volume-fraction wave). For instantaneous
pressure relaxation, we observe two sonic waves and two mass waves, as for the four-
equation system.

The performance of the MUSTA4 scheme and the MUSTA5 method with instan-
taneous pressure relaxation can be compared by studying the long-dashed and the
dotted line for instance in Fig. 10(b). It can be seen that MUSTA5 generally smeares
the solution more than MUSTA4, and that the difference is largest at the middle of
the tube, that is, for the volume-fraction waves. It is hypothesized that the reason
for the increased smearing of the volume-fraction waves lies in the coupling between
the pressure and the volume fraction in the volume-fraction advection Eq. (2.7); the
pressure being associated with fast-travelling waves.

4.3.3 Finite velocity relaxation

We now turn to the effect of finite velocity relaxation. It will be studied by adding
velocity-relaxation terms to the momentum equations of the four-equation system,
but it could equally well have been done by considering the five-equation system with
infinite pressure relaxation.
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Figure 11: Toumi’s shock tube at t = 0.08 s. Effect of the velocity-relaxation parameter
rv in the MUSTA4 (first-order) method on a 2000-cell grid. C = 0.9.

The four-equation system with infinite velocity relaxation corresponds to the drift-
flux model. Therefore, the MUSTA scheme for the drift-flux model studied in [27]
will be used as a reference scheme. It will be referred to as MUSTA3. Here, we only
consider no slip, that is,

vg = v`.

The effect of increasing the velocity-relaxation parameter, rv, in the MUSTA4
scheme, can be studied in Fig. 11. As for the case of finite pressure relaxation, the
first-order version of the scheme has been employed on a 2000-cell grid with a CFL
number of C = 0.9. The results are plotted at t = 0.08 s, like in Fig. 9.

Consider Fig. 11(a) for the gas volume fraction. The curve for no velocity relax-
ation, rv = 0, is similar to the ones in Fig. 9(a). As the velocity-relaxation parameter
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is increased, the two volume-fraction waves at the middle of the tube are gradually
merged into one. At the same time, the two sonic waves are modified, so that the
resultant waves for the instant-relaxation case are slower. It is well known that the
drift-flux model has a lower sonic speed than the two-fluid model for a wide range of
parameters.

Further, as shown in Figs. 11(c) and 11(d), the liquid and gas velocities gradually
approach each other as the velocity-relaxation parameter is increased.

It is interesting to note that in Fig. 11, the curve for MUSTA4 with instantaneous
velocity relaxation (dotted line) practically lies on top of the one for MUSTA3 (dashed
line). See for instance Fig. 11(a). This is in contrast to the case for pressure relaxation,
where the relaxation procedure introduces a considerable amount of smearing.

The plots in Fig. 11 show that the transistion between no velocity relaxation and
instant velocity relaxation is smooth, as was also the case for the pressure relaxation
in Fig. 10. However, an attempt to physically interpret the intermediate plots will not
be made here.

4.3.4 Computational cost

A comparison of the CPU-time consumption of various MUSTAM−2N schemes and
their corresponding Roe reference schemes is given in Table 5. The calculations were
run using a CFL number of C = 0.5. The data are calculated on a 1600-cell grid. Other
grids were also tried, but no grid dependency was detected. The columns labelled ”1.
order” show the CPU time of the first-order MUSTAM−2N scheme divided by that of
the first-order Roe scheme. The columns marked ”limited” show the same relation
for the MUSCL-MUSTAM−2N scheme using the van Leer slope limiter and the Roe
scheme using the van Leer flux limiter.

As the number of local time steps, M, and local cells, 2N, are increased in the
MUSTA schemes, their computational cost strongly grows. The number of local time
steps and cells needed to roughly match the Roe scheme in accuracy is case dependent.
For the shock-tube case considered in [27] for the drift-flux model, four local steps and
cells was considered acceptable. As noted in Section 4.2, about 100 local steps and
cells are needed for the water-faucet case for the two-fluid model. It can be observed
that the CPU-time relation is roughly equal for MUSTA3/ Roe3 and MUSTA4/ Roe4,
while that of MUSTA5/ Roe5 is much higher. This is because the Roe3 scheme for the

Table 5: Toumi’s shock tube. Comparison of CPU-time consumption between MUST-
AM−2N and Roe schemes.

Drift-flux 4-eq. syst. 5-eq. syst.
M-2N 1. order limited 1. order limited 1. order limited
2-2 0.26 0.58 0.25 0.62 2.62 6.38
4-4 0.58 1.23 0.54 1.19 5.28 11.4
6-6 0.99 2.04 0.93 1.94 8.99 18.3
8-8 1.49 3.03 1.42 2.93 13.6 27.2
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drift-flux model and the Roe4 scheme for the two-fluid model need a numerical diago-
nalization of the coefficient matrix. Roe5, on the other hand, has analytical expressions
for the eigenvalues and eigenvector matrix.

The table shows that the second-order Roe schemes are relatively cheaper than
the MUSCL-MUSTA schemes. The reason for this is that in the Roe scheme, most of
the work required to assemble the high-resolution terms has already been performed
during the diagonalization of the coefficient matrix. In MUSCL-MUSTA, on the other
hand, the piecewise reconstruction of the data comes fully in addition to the calcula-
tions done in the basic scheme.

The above results show that the MUSTA schemes do not in general fulfill the in-
tention of Toro [41] of being non-CPU-costly. Since the MUSTA schemes are relatively
CPU-intensive when a high degree of accuracy is desired, they will be advantageous
mainly for equation systems where a Roe matrix is not available, or where the Roe
scheme is not robust enough. One example of the latter case is the water-air separa-
tion case discussed by Munkejord et al. [28].

5 Conclusions

The multi-stage centred (MUSTA) scheme of Munkejord et al. [28] for non-
conservative two-fluid models has been applied to the two-fluid model augmented
with a volume-fraction advection equation (five-equation system). It has been anal-
ysed numerically and compared to the MUSTA scheme for the ”isentropic” two-fluid
model (four-equation system). The use of analogous numerical schemes allowed for
an evaluation of the approach of augmenting the two-fluid model with a volume-
fraction advection equation and employing instantaneous pressure relaxation.

A main motivation for employing the augmented two-fluid model is its analytical
eigenstructure, easing the construction of approximate Riemann solvers. However,
the most common application of this approach is to use it for the simulation of two-
phase flow problems where the pressures of the phases are so strongly coupled that
instantaneous pressure relaxation is required.

The numerical simulations presented here demonstrate that the five-equation sys-
tem converges to the four-equation system when the pressure relaxation approaches
infinity. Indeed, in cases such as for zero interfacial pressure difference, the relaxation
terms in the five-equation system induce the kind of instabilities which are associ-
ated with complex eigenvalues in the four-equation system, even if the five-equation
system has real eigenvalues.

Therefore, the approach of employing an augmented two-fluid model with instan-
taneous pressure relaxation should be regarded as a numerical method to solve the
single-pressure two-fluid model. Moreover, calculations have shown that this ap-
proach introduces a large amount of numerical smearing, particularly for the slow-
moving volume-fraction (mass-transport) waves. The reason for this is probably the
extra coupling between the fast-moving sonic waves and the volume-fraction waves
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introduced by the volume-fraction advection equation with its relaxation term.
Velocity relaxation in the four-equation system has also been tested. As expected,

the four-equation system with instantaneous velocity relaxation produces identical
results to those of the drift-flux model. The velocity relaxation did not introduce any
noticeable numerical smearing.

The MUSTA schemes produced accurate and non-oscillatory results both for the
four-equation and the five-equation system. However, in cases where volume-fraction
waves are important, it may be necessary to take many local steps in the MUSTA pro-
cedure to reduce the smearing of these waves. This limits the computational efficiency.
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