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Abstract. In this paper we study influenza viral membrane deformation related
to the refolding of Hemagglutinin (HA) protein. The focus of the paper is to un-
derstand membrane deformation and budding due to experimentally observed
linear HA-protein clusters, which have not been mathematically studied before.
The viral membrane is modeled as a two dimensional incompressible lipid bilayer
with bending rigidity. For tensionless membranes, we derive an analytical solution
while for membrane under tension we solve the problem numerically. Our solu-
tion for tensionless membranes shows that the height of membrane deformation
increases monotonically with the bending moment exerted by HA-proteins and at-
tains its maximum when the size of the protein cluster reaches a critical value. Our
results also show that the hypothesis of dimple formation proposed in the litera-
ture is valid in the two dimensional setting. Our comparative study of axisymmet-
ric HA-clusters and linear HA-clusters reveals that the linear HA-clusters are not
favorable to provide a sufficient energy required to overcome an energy barrier for
a successful fusion, despite their capability to cause membrane deformation and
budding.

AMS subject classifications: 92C05, 92B05, 92B99
Key words: Hemagglutinin protein, Influenza virus, Membrane deformation, Membrane fu-
sion.

1 Introduction

An influenza virus first attaches to a host cell surface via a sialic acid binding site and
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then enters the cell by endocytosis process. In the cytoplasm of the cell, when pH-
value is lowered, hemagglutinin (HA) protein anchored in the viral membrane under-
goes a conformational change [7,11,13]. HA is a trimer of three monomers anchored in
the membrane, connected to each other forming a triple-stranded α-helical coiled-coil.
During conformational change, recruitment of additional residues to the coiled-coil
as well as tilting of the HA-molecule take place [2, 6, 7, 18, 32, 35]. This process exerts
force on the membrane. As a result, the membrane deforms leading to a budding to
mediate efficient virus-cell fusion.

A study of pre-fusion membrane deformation and budding is important in order
to understand the fusion of two membranes, which is the key stage for virus infection
and replication. Understanding the role of HA-protein in deforming membrane is use-
ful for various purposes such as disease control and drug/vaccine design. Recently,
an antibody has been identified, which can recognize a highly conserved helical region
in the membrane-proximal stem of HA1/ HA2 [10, 30]. This antibody is found to be
capable of neutralizing the viruses behind bird flu and the 1918-19 flu pandemic along
with some of the common strains that cause seasonal flu, by blocking conformational
rearrangements associated with membrane fusion. Since the helix identified by that
antibody and fusion peptides of HA, which enter the target cell membrane are highly
conserved among influenza viruses of different strains, vaccines or/and drugs target-
ing these regions of HA causing fusion inhibition are more efficient to disable multiple
varieties of the flu virus [10,30], which becomes more important during influenza pan-
demic. It is thus becoming more essential to understand membrane deformation and
budding mechanism governed by HA-protein.

Even though the deformation of membrane due to HA-protein is very important,
few attempts have been made to quantitatively study this process. In [18], it was hy-
pothesized that the activated HA-protein can produce viral membrane dimples sur-
rounded by a ring-like cluster of HA. They have assumed that the top of the dimple
is a segment of perfect sphere connected to a funnel of a catenoid form (an axisym-
metric surface with zero mean curvature). Similarly, in [19], HA has been assumed to
produce a perfectly spherical top of the dimple. In [25], the formation of a dimple was
also favored as a mechanism for membranes to make intimate contact which leads
to subsequent fusion between membranes. For an axisymmetric membrane, we have
computed numerically the formation of the dimple caused by a ring-like HA-protein
cluster [36].

In reality, the distribution of HA-proteins depends on membrane compositions,
and especially a quit distinct distribution has been observed between lipid rafts (mi-
crodomains enriched in sphingomyelin and cholesterol) and nonraft regions of the
membrane [16, 20, 31]. It was found experimentally in [16, 20, 31] that they typically
form clusters in the raft-associated membrane sections while nonraft HA distributed
mostly randomly at the plasma membrane. It has been estimated that as mush as
∼ 50% of the cellular membrane exists as lipid rafts [20]. Furthermore, experimen-
tal evidence shows that influenza virus buds from rafts while nonraft HA contains
reduced amount of infectivity because HA clusters in rafts provide a sufficient con-
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centration of HA in budding virus required for virus-cell fusion [20, 31]. Therefore, as
far as the membrane deformation and the budding related to the fusion is concerned,
HA-proteins have to be considered in clusters. This is also supported by an exper-
iment [9] which showed HA-mediated fusion requires a concerted and cooperative
action of at least three to four HA trimers.

A ring-like HA-protein cluster produces quit satisfactory membrane deformation
and budding required for fusion activity [18, 36]. However, a quantitative electron
microscopy and fluorescence spectroscopy experiment of the membrane distribution
of influenza HA have revealed that ring-like clusters are observed only occasionally
while majority of the HA-protein clusters bear many other shapes [16]. Moreover,
a change in the concentration of sphingomyelin and cholesterol in lipid raft regions
also alters the pattern of clustering, especially at the shortest lengths. In [16], clusters
are also found in many length scales. A linear dimensional analysis of plasma mem-
brane by using thin sections of wild-type virus has shown enough activities of virus
budding [31]. This demands a study of membrane deformation and budding due to
HA-protein clusters of the linear structure.

In this paper, we examine the role of linear HA-protein clusters on membrane de-
formation and budding, which have not been mathematically studied before. Experi-
mental results of HA-protein clustering in two-dimensional membrane (linear dimen-
sional analysis of plasma membrane by using thin section of 363 gold particles label-
ing wild-type trimeric HA) [31] are consistent with the experimental results in three-
dimensional membrane (analysis of 8245 gold particles labeling trimeric HA in mem-
brane surface) [16]. Moreover, enough number of virus budding was observed from
the thin section of membrane considered in [31]. This shows that the two-dimensional
membrane can reasonably approximate many important properties relevant to the
budding and fusion. Moreover, the two-dimensional membrane makes the problems
extremely simple and amenable to mathematical analysis. Therefore, we utilize a two-
dimensional model of the viral membrane in the form of an energy functional, which
incorporates energies due to the bending rigidity of the membrane and the refolding
of HA-proteins. Not only did our two-dimensional approach allow us to obtain ana-
lytical solution, but it also provided some new results regarding membrane tension,
asymmetric protein force and comparison between linear and axisymmetric protein
clusters.

In section 2 we present our mathematical model. We carry out analysis of the
model in section 3 and derive explicit formulas for the tension and the bending mo-
ment developed in the membrane. We also derive the equilibrium shape equation of
the membrane by applying force and torque balance and an analytical solution for
tensionless membranes. In section 4.1, we present the results for tensionless mem-
brane and membrane with tension. Our analytical solution for tensionless membrane
reveals that the deformed membrane consists of a patch of circular arcs. Based on the
analytical expression for the membrane height, we derive the condition for optimal
protein cluster size of membrane deformation. Our results confirm the dimple forma-
tion of the membrane due to HA-protein, with or without prior membrane tension,
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in the two dimensional setting. Parametric studies are also carried out, including the
effect on membrane shape due to asymmetric bending moments. We also carry out
a comparative study between linear HA-clusters and axisymmetric HA-clusters, and
find that linear HA-clusters are not favorable for a successful fusion, despite its capa-
bility to cause membrane deformation and budding. We finish the paper with a short
conclusion in section 5.

2 Model

Since hemagglutinin (HA) protein anchored on influenza virus membrane is responsi-
ble and independently capable for membrane bending required for fusion activity [29],
we consider only HA protein in our model while neglecting neuraminidase (another
protein) in the viral membrane. HA is a glycoprotein which consists of a trimer with
an individual monomer having HA1 and HA2 subunits [3,13,18,21,24,32–34]. It is be-
lieved that HA1 is responsible for virus attachment to the cell surface via a sialic acid
binding site and HA2 activates the fusion process. During low-pH activation (e.g.,
when the protein is exposed to a pH 5 environment) the hydrophobic fusion peptide,
previously hidden within the trimeric stem, is projected towards viral and/or target
membranes [3, 11, 18, 28]. The subsequent refolding (which includes tilting as well) of
the protein exerts a force on the viral membrane.

We consider a lipid raft region of the membrane as the membrane budding and
infectivity mainly occur in the raft regions [20, 31]. We further consider HA-protein
in the form of clusters as in [18, 36] because the clustering of HA in lipid raft regions
is an intrinsic property of HA-protein and the membrane deformation and budding
required for fusion activity is due to a concerted and cooperative action of HA trimers
in the cluster [9, 16, 20, 31]. In [18, 36], it was assumed that these HA-protein clus-
ters form ring-like structures and subsequently axis-symmetry was assumed as an
approximation. On the other hand, experimental evidence shows that these clusters
are formed in many different structures and sizes [16]. Since the HA-protein clus-
ters of linear structure in a linear dimensional analysis of plasma membrane by using
thin sections of wild-type virus has been found to be effective to bring virus bud-
ding [31], we consider HA-protein clusters of linear structure in this study. Moreover,
a consistency between HA-clustering experimental results in two-dimensional (thin
section) and three-dimensional membranes validates the two-dimensional membrane
model to reasonably approximate many properties relevant to membrane deforma-
tion and budding required for fusion [16, 31]. Therefore, here we present a model for
two-dimensional membrane deformation caused by HA-protein clusters with a linear
formation. We note that to thoroughly study the geometric effect of different cluster
formations, one must use a three-dimensional model.

As in [18] and [36], we represent the net effect of the force due to the refolding
of HA-trimers in a cluster by a bending moment acting on the membrane. We con-
sider a small section of the two dimensional viral membrane containing a HA-protein
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cluster as shown in the schematic representation in Fig. 1(a). ds is the arc length of
undeformed (neutral pH) membrane measured along the mid-surface. The protein
molecule in a cluster contains three monomers anchored in the membrane, connected
to each other forming a triple-stranded α-helical coiled-coil. When the pH value is
lowered, recruitment of additional residues to the coiled-coil takes place [6,7,18]. This
results in an extension of the coiled-coils rigid rod, which causes the HA-protein clus-
ter to exert forces (bending moments) on the membrane and the membrane deforms,
as shown in Fig. 1(b).

Figure 1: (a) Schematic diagram of the two dimensional undeformed viral membrane segment ds containing

a HA-protein cluster. (b) Deformed viral membrane segment ds with curvature R−1 and the related angle
θ.

Let c be the curvature of the deformed membrane, cf. Fig. 1(b). Let mp be the
bending moment per unit length exerted by HA-protein cluster at the ends of the
membrane segment. To produce a curvature c of the membrane segment, the work
performed by the bending moment is mpθ/2, where θ is the angle subtended by the
circular curved membrane at the center of the circle and R is the corresponding ra-
dius [12, 17]. Note that

θ =
ds
R

= cds,

therefore, the work performed to produce a curvature c in the membrane segment is
dw = mpcds/2.

We assume that the viral membrane is incompressible and it can resist bending.
The shape of the membrane is determined by minimizing a Helfrich-type energy func-
tional in addition to the energy induced by the protein bending moment. The energy
functional takes the form

E =
1
2

kb

∫
(c− c0)2ds +

1
2

∫
mpcds. (2.1)

Here the first term is the Helfrich energy [15] due to the bending rigidity of the mem-
brane. The last term is an energy contribution due to the work done by the HA protein.
kb is the bending rigidity and c0 denotes the spontaneous curvature, which takes the
possible asymmetry of the bilayer into account.
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3 Model Analysis

In this section, we derive the formulas for the tension and the bending moment devel-
oped in the membrane. We also analyze the equilibrium shape of the membrane.

3.1 Membrane tension

Let ~r be the position of point particles along the membrane. Then we can express
curvature c in the following form:

c =
∣∣∣∣
d2~r
ds2

∣∣∣∣ =
(d2~r

ds2 ·
d2~r
ds2

) 1
2
.

The energy functional can be written as

E =
kb

2

∫ (d2~r
ds2 ·

d2~r
ds2

)
ds +

∫ (mp

2
− kbc0

)(d2~r
ds2 ·

d2~r
ds2

) 1
2
ds +

kb

2

∫
c2

0ds.

We assume δ~r to be an infinitesimal virtual displacement. For two-dimensional in-
compressible membrane, the arc length between any two point particles along the
membrane is preserved, i.e., δ(ds) = 0. This induces the energy variation

δE =
∫ [

kb
d2~r
ds2 ·

d2δ~r
ds2 +

(mp − 2kbc0

2c

)d2~r
ds2 ·

d2δ~r
ds2

]
ds.

Performing integration by parts twice and simplifying, we obtain

δE = −
∫ d

ds

{(
kbc2 +

mp − 2kbc0

2
c
)
~t

+
[

kb
dc
ds

+
1
2

d(mp − 2kbc0)
ds

]
~n

}
· δ~rds, (3.1)

where ~n and~t are the unit normal and the unit tangential vector respectively.
Membrane incompressibility for a two-dimension membrane implies [27],

~t · dδ~r
ds

= 0, (3.2)

which leads to ∫ d
ds

(λ~t) · δ~rds = 0, (3.3)

where λ is an arbitrary function. Therefore, we can add

∫ d(λ~t)
ds

· δ~rds,
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to (3.1) to obtain

δE = −
∫ d

ds

{(
kbc2 +

mp − 2kbc0

2
c + λ

)
~t

+
[

kb
dc
ds

+
1
2

d(mp − 2kbc0)
ds

]
~n

}
· δ~rds. (3.4)

Writing the membrane load as

~F = ~F n~n + ~F t~t,

the principle of virtual displacements gives [27]

δE = −
∫

~F · δ~rds. (3.5)

Comparing Eq. (3.4) and Eq. (3.5), we obtain the membrane load

~F =
d
ds

{(
kbc2 +

mp − 2kbc0

2
c + λ

)
~t +

[
kb

dc
ds

+
1
2

d(mp − 2kbc0)
ds

]
~n

}
. (3.6)

Let τ, σ and m be the in-plane tension, transverse shear tension, and bending moment
developed in the membrane due to deformation, respectively. The tension exerted on
a cross section of the membrane is

~T = τ~t + σ~n.

Therefore, the total force over an infinitesimal section of the membrane is given by

~F =
d~T
ds

=
d
ds

(τ~t + σ~n). (3.7)

Comparing Eq. (3.6) and Eq. (3.7), we obtain

τ = kbc2 +
c
2
(mp − 2kbc0) + λ, (3.8a)

σ = kb
dc
ds

+
1
2

d
ds

(mp − 2kbc0). (3.8b)

3.2 Spontaneous curvature

Spontaneous curvature c0 is caused by asymmetry in the lipid bilayer, e.g., due to the
shape of lipid molecules or imbedded proteins [5, 26]. It has been suggested, cf. [8],
that membrane fusion and fission could be a consequence of membrane re-modelling,
i.e., change of spontaneous curvature by the action of protein molecules. It can be
observed from (3.8) that the spontaneous curvature and protein induced bending mo-
ment mp have similar effects on the membrane tension. In fact, based on the force
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alone, one can argue that these two quantities are equivalent if the induced sponta-
neous curvature change is given by

c0,p = −mp

2kb
.

In this case, the protein induced bending moment mp can be replaced by c0,p and
the total spontaneous curvature is c0 + c0,p. However, the energy stored in the mem-
brane are not the same, cf. (2.1). Therefore, the mechanism for protein-mediated viral
membrane fusion due to bending moment mp differs from the effect of spontaneous
curvature.

3.3 Equilibrium shape equation

We now obtain the equilibrium shape equations of two dimensional membrane by
performing the force and the torque balance over an infinitesimal section of the mem-
brane. From Eq. (3.7), in the absence of any other forces except the protein force, force
balance in tangential and normal direction along with the torque balance provides us
with the following equilibrium shape equations [22]:

dτ

ds
+ cσ = 0, (3.9a)

dσ

ds
− cτ = 0, (3.9b)

dm
ds
− σ = 0. (3.9c)

We now consider a membrane segment of length L as shown in Fig. 2. To represent
membrane segments both with and without HA-protein cluster, we have considered
two HA-protein clusters. However, the method discussed here can easily be extended
to a membrane containing more than two protein groups. Let ψ be the angle made by

Figure 2: Viral membrane of length L with two groups of protein located from s = a− r1 to s = a and
s = b to s = b + r2. ψ is the angle between the tangent line and a horizontal reference line.
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the tangent to the curve with a line parallel to a reference line. Then we can express
the curvature as

c =
dψ

ds
. (3.10)

We further assume that the reference line is parallel to the x-axis of the Cartesian co-
ordinate system. Then Cartesian coordinates (x, y) of points in the membrane can be
obtained by solving the following system of differential equations:

dx
ds

= cos ψ, x(0) = x0, (3.11a)

dy
ds

= − sin ψ, y(0) = y0, (3.11b)

where (x0, y0) is an arbitrary point fixed to correspond to the point s = 0 of the mem-
brane. By solving Eqs. (3.9a)-(3.11b) together with relations (3.8) and with proper
boundary conditions we have the equilibrium shape of the membrane.

3.4 Boundary conditions

To solve the shape equations, we need to impose proper boundary conditions. To-
tal membrane arc-length is chosen sufficiently large such that the membrane remains
undisturbed (i.e., parallel to reference line) at the boundaries. In this case, we have

ψ(0) = ψ(L) = 0.

We further assume a constant in-plane tension τ = τ0 at the boundary s = L , which
depends upon the environment where the membrane is located. As we take the mem-
brane sufficiently large so as to make s = L undisturbed, we further fix the vertical
position of the membrane end s = L from the planar state by taking y = yL at s = L.
Therefore, to solve the system (3.9)-(3.11), we use the following set of boundary con-
ditions:

s = 0 : ψ = 0, x = x0, y = y0, (3.12a)
s = L : ψ = 0, τ = τ0, y = yL. (3.12b)

3.5 Bending moment due to HA-protein

At low pH values, multiple HA trimers assemble around the fusion site to perform
concerted activation to synchronously release the conformational energy [24]. These
assembled HA trimers can be assumed to form clusters surrounding the fusion site [1,
4, 9, 16, 18, 20, 31, 37]. Moreover, fusion peptide interaction among neighboring HAs
has been hypothesized to be responsible for a measurable decrease in the lateral mo-
bility of HA after activation [14, 24]. Based on these observations, for our simple two-
dimensional model, we assume that two protein groups of size r1 and r2 are acting at
positions

a− r1 < s < a, and b < s < b + r2,
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respectively with a separation b− a between them (Fig. 2). We, therefore, assume that
the bending moment mp exerted by the protein is given by

mp(s) =





0, 0 ≤ s < a− r1,
M1

p, a− r1 < s < a,
0, a < s < b,
M2

p, b < s < b + r2,
0, b + r2 < s ≤ L.

(3.13)

3.6 Membrane torque

From the torque balance
dm
ds

= σ, (3.14)

we obtain
m = kb(c− c0) +

mp

2
+ C, (3.15)

where C is an integrating constant. In the absence of HA-protein, we assume that
the membrane takes the shape given by its spontaneous curvature c0, in which the
bending moment m vanishes. Therefore, when mp = 0, c = c0 and m = 0. This implies
C = 0. Then Eq. (3.15) gives total bending moment developed in the membrane

m = kb(c− c0) +
mp

2
. (3.16)

When mp = 0, the bending moment reduces to m = kb(c − c0), which is consistent
with the constitutive equation showing the linear relation between bending moment
and the curvature as explained in [27].

3.7 Tensionless membrane

Because of complexity of the model, to analytically understand the role of HA-protein
in deforming membrane, we consider a special case. When both the in-plane tension
and the transverse shear tension vanish (i.e., τ = σ = 0), we have

λ + kbc2 +
mp − 2kbc0

2
c = 0, (3.17a)

d
ds

[
2kb

dψ

ds
− 2kbc0 + mp(s)

]
= 0, (3.17b)

Integrating Eq. (3.17b) once, we obtain

dψ

ds
= − 1

2kb
mp(s) + C, (3.18)

where C = c0 + K/(2kb) with integrating constant K. Since mp(s) is piecewise con-
stant, we can obtain an analytical solution by integrating Eq. (3.18). We solve Eq.
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(3.18) for 0 ≤ s < a− r1 with ψ(0) = 0. Imposing continuity of ψ, we further solve Eq.
(3.18) piecewise for

a− r1 ≤ s < a, a ≤ s < b, b ≤ s < b + r2, b + r2 ≤ s ≤ L.

Finally, using the boundary condition ψ(L) = 0, we obtain the solution of Eq. (3.18)
as follows:

ψ(s) =





−Q1s, 0 ≤ s < a− r1,
Q2s− P2, a− r1 ≤ s < a,
−Q3s + P3, a ≤ s < b,
Q4s + P4, b ≤ s < b + r2,
−Q5s + P5, b + r2 ≤ s ≤ L,

(3.19)

where

Q1 = Q3 = Q5 = −C, Q2 = −M1
p

2kb
+ C,

Q4 = −M2
p

2kb
+ C,

P2 = −M1
p(a− r1)

2kb
, P3 = −M1

pr1

2kb
,

P4 = −M1
pr1 − M2

pb
2kb

, P5 = −LC.

Clearly, in the absence of protein (i.e., M1
p = M2

p = 0), all P′s and Q′s become zero. This
results in ψ = 0, corresponding to the undeformed membrane. Moreover, substituting
ψ(s) in energy functional (2.1) and integrating, the minimum energy of the membrane
is obtained as follows

Emin =
kb

2
[
(a− r1)(Q1 + c0)2 + r1(Q2 − c0)2 + (b− a)(Q3 + c0)2 + r2(Q4 − c0)2

+(L− b− r2)(Q5 + c0)2] +
1
2

[
M1

pr1Q2 + M2
pr2Q4

]
. (3.20)

Similarly, integrating in the interval a < s < b, we obtain the energy stored inside two
regions where the protein exert bending moments

Eint
min =

kb

2
(b− a)(Q3 + c0)2. (3.21)

We can see that Eint
min is directly proportional to the bending moments M1

p, M2
p as well

as the protein sizes r1, r2. This is consistent with the results obtained in [18, 36].
The shape of the membrane can be obtained by solving (3.11) and the position of

the membrane is given in Appendix.
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4 Results and discussion

In reality, the total arc length L of the membrane segment, with both ends undisturbed
(flat), depends upon the density of the activated HA trimers. Based on the fact that
the contact area of a radius ∼ 25 nm can have ∼ 10 dimples if all the HA molecules
in this area are activated [18], it has been estimated in [36] that the radius of circular
undisturbed membrane is 20 nm. Therefore, we take L = 40 nm (the diameter of the
circular membrane) for the computation of our two dimensional model. Moreover, for
all computations, the bending rigidity is given as kb = 20kT as in [18,36] where k is the
Boltzman constant and T is the absolute temperature. All computations are carried out
by choosing the normal human body temperature, i.e., 310.15 K. Numerical solutions
are obtained by solving the shape equations with the tool bvp4c.m in MATLAB. bvp4c.m
solves the boundary value problems for ordinary differential equations by using a
finite difference code that implements the three-stage Lobatto Illa formula.

4.1 Tensionless membrane

We first compare our numerical result with the analytical result obtained for the ten-
sionless membrane. For this purpose, we take τ0 = 0 Nm−1. The numerical solution of
the system (3.9)-(3.11) with boundary condition (3.12) is compared with the analytical
one given by (5.1) in Fig. 3(a) for the parameter set

M1
p = M2

P = −2.4× 10−11N, c0 = 0, a = 16 nm,

r1 = r2 = b− a = 8 nm, x0 = y0 = yL = 0.

It can clearly be seen that the two results perfectly agree with each other. We have also
plotted the computed values of τ and σ in the membrane, cf. Fig. 3(b), which shows
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to −4 × 10−11 N while fixing
c0 = 0, r1 = r2 = b − a = 8
nm and a = 16 nm; (b) r1 (=r2)
varies from 0 nm to 10 nm while
fixing c0 = 0, M1

p = M2
p =

−2.4× 10−11 N; (c) The separa-
tion distance (b− a) of the two
protein groups varies from 0 nm
to 10 nm while fixing c0 = 0,
M1

p = M2
p = −2.4 × 10−11 N

and r1 = r2 = 8 nm.

that the membrane is indeed tensionless. Therefore, for τ0 = 0, we have verified that
τ = σ = 0 is the solution to (3.9)-(3.11).

In Fig. 4, we plot the shape of the membrane for various protein bending moments
M1

p (=M2
p), various protein size r1 (=r2) and various separation distance (b− a) of the

two protein groups. Due to the bending moments exerted by HA protein, the mem-
brane deforms and forms dimples, similar to the axis-symmetric case [36]. It can be
seen that the height of the dimple increases with an increase in the magnitude of the
bending moments, which is consistent with the result obtained in [18, 36]. It seems
that there exists an optimal size of HA-protein groups to produce a maximum height
of the dimple, see Fig. 4(b). In Fig. 4(c), the results show that the size of dimple grows
as b− a decreases, i.e., when the two groups of proteins move closer.

The energy in the entire membrane and the energy inside two protein groups
against the magnitude of M1

p (=M2
p) and r1 (=r2) are plotted in Fig. 5. Energy in the

entire membrane is calculated by integrating functional (2.1) from s = 0 to s = L and
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Figure 5: (a) Energy in the entire membrane affected by the bending moments exerted by HA protein

(M1
p = M2

p). (b) Energy in the entire membrane affected by the size of HA protein (r1 = r2). (c) Energy

stored inside two protein groups affected by the bending moments exerted by HA protein (M1
p = M2

p). (d)

Energy stored inside two protein groups affected by the size of HA protein (r1 = r2).

the energy inside the two protein groups is calculated by integrating from s = a to
s = b. The analytical expressions for tensionless membrane are given by Eqs. (3.20)-
(3.21), respectively. Both the total energy in its absolute value and the energy between
two protein groups increase as the magnitude of the bending moments and the size
of the protein groups increase. These results are consistent with the results obtained
in [18,36]. However, the magnitude of the energy stored in the two-dimensional mem-
brane is less than that in axisymmetric case, cf. Figs. 6 and 7 in [36]. The energy level
(< 1 kT) stored due to linear HA-protein clusters considered here is not enough to
overcome an energy barrier of≈ 37 kT for the merging of monolayers [19,23] required
for a successful fusion. This shows that linear HA-protein clusters are not favorable
for membrane fusion compared to axisymmetric clusters supporting the hypothesis in
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Figure 6: Height of membrane at the center (a) as a function of bending moment exerted by protein. (b)
as a function of the size of protein group. Here, the unit of h and r is nm and the unit of Mp is 10−9 N.

[18, 36].
We now examine more closely the effects of HA bending moment and the size of

HA protein group on membrane deformation. For simplicity, we set

a =
L
2
− δ, and b =

L
2

+ δ,

with a separation 2δ between the two groups of proteins and consider the symmetrical
protein case, i.e.,

M1
p = M2

p = Mp and r1 = r2 = r.

For non-zero value of Mp, y-equation (See Appendix) shows that changing the sign of
Mp leads to the sign change in P’s and Q’s and also in y while the position (measured
by x) remains unchanged. This indicates the amount of deformation of the membrane
is the same and in opposite directions for ±Mp. Assuming that the relevant direc-
tion is in the positive direction of y (i.e., the host cell membrane lies above the viral
membrane), in the rest of the paper, we present the results for Mp ≤ 0.

From (3.19), it is straightforward to verify that the curvature of the membrane is
given by

c =
dψ

ds
=





−Q1, 0 ≤ s < a− r1,
Q2, a− r1 < s < a,
−Q3, a < s < b,
Q4, b < s < b + r2,
−Q5, b + r2 < s ≤ L.

(4.1)

As Qi for i = 1 to i = 5 are all constants, we conclude that the membrane consists of
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circular arcs. Using (3.11a) and (3.11b), we get

dy
dx

= − tan ψ,

which provides the three critical points of the membrane y(x) as

s1 =
L

L− 2r

( L
2
− δ + r

)
, s2 =

L
2

, s3 =
L

L− 2r

( L
2

+ δ− r
)

.

Using

d2y
dx2 = − sec3 ψ

(dψ

ds

)
,

it is straightforward to verify that

d2y
dx2

∣∣∣∣
s=s1,s3

< 0,
d2y
dx2

∣∣∣∣
s=s2

> 0.

Therefore, membrane height y(x) has two local maxima at s = s1 and s = s3 and a
local minimum at s = s2, occurred in the centers of the circular arcs given by (4.1).
When δ decreases, i.e., when two protein groups move closer, we find that s1 increases
and s3 decreases while s2 remains unaffected. In the limit of δ → 0, the three critical
points collapse into a single point

s1 = s2 = s3 =
L
2

,

where d2y/dx2 is negative. The dimple top is located in the center, remains circular,
and budding upwards. In this case, the deformation of the two-dimensional and ax-
isymmetric membranes are similar except that it is circular in 2D but non-spherical in
the axisymmetrical setting.

Let h be the membrane height in the center (s = L/2), which is given by

h =
1− cos

(
Q1(a− r)

)

Q1
+

cos(Q2a− P2)− cos
(
Q2(a− r)− P2

)

Q2

+
cos(Q3a− P3)− cos(0.5Q3L− P3)

Q3
. (4.2)

We have plotted h as a function of Mp and r in Figs. 6(a) and (b), respectively. It can
be seen that h is a monotonic function of Mp. However, there exists a critical value of r
which gives a maximal h. The critical value can be obtained as r = a− L/4 and it can
be verified that

d2h
dr2 is negative at r = a− L

4
.
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4.2 Membrane under tension

In this section, we observe the effect of a priori in-plane tension on the shape of the
membrane. We create the in-plane tension in the membrane by imposing the non-
zerovalue of τ0, which is the in-plane tension at the boundary s = L. We also applied
non-zero tension at the boundary s = 0, the similar results were obtained. We examine
the effect of a priori in-plane tension by increasing τ0 from 0 to 1× 10−2 Nm−1 while
keeping

M1
p = M2

p = −2.4× 10−11 N, c0 = 0,

r1 = r2 = b− a = 8 nm, a = 16 nm.

Fig. 7(a) shows that an increase in tension in the membrane reduces the dimple height.
Therefore, membrane tension opposes the formation of dimple. Our result is consis-
tent with the experimental observation in [25], where it was shown that membrane
tension prevents dimple formation and inhibits fusion.

The distribution of in-plane tension and transverse shear tension in the membrane
are shown in Figs. 7(b) and (c), respectively. For each τ0, the in-plane tension remains
almost uniform throughout the membrane with the magnitude close to τ0

(
Fig. 7(b)

)
.

Therefore, a priori tension is very important for the dimple formation. As shown in Fig.
7(c), the transverse shear tension, however, is not uniform in the membrane. Instead
it is distributed in a zigzag manner. In fact, it increases in the region where protein
resides and decreases where the protein is absent. An increase in τ0 has a positive
effect on the transverse tension.

Finally we note that for membrane under priori tension, its shape deviates from
that of a tensionless membrane. As shown in Fig. 8, the curvature is no longer piece-
wise constants, which indicates that the dimples are not circular arcs.

4.3 Asymmetrical protein force

So far we have discussed the case when two protein groups are symmetric (i.e., M1
P =

M2
p and r1 = r2). We now examine how the asymmetric properties of two HA-protein

groups affect the shape of the membrane. In Fig. 9, we plot the shape of the membrane
for two protein groups of different sizes (i.e., r1 6= r2) and bending moments (i.e.,
M1

p 6= M2
p). We take the different combination of the magnitude of M1

p and M2
p within

the range 0 to 2.4 × 10−11 N in Fig. 9(a) and the different combination of r1 and r2
within the range 0 to 8 nm in Fig. 9(b). As seen in Fig. 9(a), the dimple shape does not
grow symmetrically if the two protein groups apply different bending moments. The
size of the membrane dimpling is higher towards the protein group exerting bending
moment of higher magnitude. A similar effect on the membrane shape can be seen
due to the different size of two protein groups

(
See Fig. 9(b)

)
. When the HA-protein

in the membrane form two groups of different size, the membrane forms asymmetric
dimple with higher dimpling towards the protein group of larger size, as expected.
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4.4 Axisymmetric vs. linear HA-protein clusters

We now compare the effect of linear HA-protein clusters presented in this study with
the effect of axisymmetric HA-protein clusters [18,36] on membrane deformation and
budding related to fusion.

Both axisymmetric and linear HA-protein clusters have potential for membrane
budding and dimple formation. In both cases, the height of dimples increases with an
increase in the magnitude of the bending moment exerted by the protein and decreases
with an increase in tension in the membrane. Moreover, energy in the membrane
increases as the magnitude of the bending moment and the size of the protein clusters
increase in both axisymmetric and linear cases.

Even though the membrane dimples are possible to be generated by both clusters,
shape of a two-dimensional membrane is quite different from that of an axixsymmet-
ric one, where the dimple top (maximum height) occurs in the center and its shape
is in general non-spherical. In two-dimensional membrane, the dimple tops occur in
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pair and are not in the center in general. However, the shapes of the dimples are cir-
cular. The dimple height monotonically increases with respect to size of axisymmetric
HA-protein clusters while there exists an optimal size of linear HA-protein clusters to
produce a maximum dimple height.

More importantly, the magnitude of the energy stored in the membrane deformed
due to linear HA-protein clusters is significantly lower than in the membrane de-
formed due to axisymmetric HA-protein clusters. In order to facilitate fusion, a signif-
icant amount of energy must be available for the monolayers to overcome an energy
barrier and merge. The energy level in axisymmetric case is in accordance with the en-
ergy barrier of≈ 37kT for the merging of monolayers [19,23,36] while the energy level
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in linear case is quit low. Therefore, even though membrane deformation and budding
is possible due to both axisymmetric and linear HA-protein clusters, our results show
that the HA-protein clusters of axisymmetric structure are much more favorable for a
successful membrane fusion and viral infection.

5 Conclusions

Experimental evidence shows that Hemagglutinin (HA) protein clustered in linear
structure can cause a successful influenza virus budding from a thin section of mem-
brane (approximately two-dimensional membrane). Identifying these novel experi-
mental observations, in this paper we study a two-dimensional model to understand
the role of linearly clustered HA-protein on the influenza viral membrane deforma-
tion. We calculate tension and bending moment developed in the membrane. We de-
rive the shape equation of the equilibrium membrane from force and torque balance.
For tensionless membranes, we provide explicit formulas for the deformed membrane
shape and associated energy under the influence of two protein groups. Our numer-
ical and analytical solutions confirm the formation of dimples caused by HA-protein,
which was hypothesized in the literature and observed experimentally. By utilizing
the analytical solution for tensionless membranes, we show that in this case membrane
deforms into a patch of circular arcs in the two dimensional setting with maximum de-
formation occurred away from the center. This is different from the axisymmetric case
where the maximum height always occurs in the center while the dimple shape is
non-spherical [36].

Our results also show that the energy and the size of the membrane dimple are
proportional to the bending moment exerted by the protein as well as size of the pro-
tein groups. A priori membrane tension makes it difficult for the membrane to form
dimples, which is consistent with experimental observations. The dimple shape is not
symmetric about the center of the membrane when the two protein groups differ in
size or exert different bending moments.

Unlike in axisymmetric HA-protein clusters, where the level of energy stored in the
membrane is in accordance with the energy barrier for membrane merging required
for a successful fusion, the energy stored in the membrane due to linear HA-protein
clusters is significantly low. Therefore, the linear HA-protein clusters are not favorable
to bring a successful fusion, despite their capability for membrane deformation and
budding.
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Appendix

The position of the membrane is as follows:

x(s) =





x0 + sin(Q1s)
Q1

, 0 ≤ s < a− r1;

x0 + sin(Q1(a−r1))
Q1

+ sin(Q2s−P2)−sin(Q2(a−r1)−P2)
Q2

, a− r1 ≤ s < a;

x0 + sin(Q1(a−r1))
Q1

+ sin(Q2a−P2)−sin(Q2(a−r1)−P2)
Q2

+ sin(Q3s−P3)−sin(Q3a−P3)
Q3

, a ≤ s < b;

x0 + sin(Q1(a−r1))
Q1

+ sin(Q2a−P2)−sin(Q2(a−r1)−P2)
Q2

+ sin(Q3b−P3)−sin(Q3a−P3)
Q3

+ sin(Q4s+P4)−sin(Q4b+P4)
Q4

, b ≤ s < b + r2;

x0 + sin(Q1(a−r1))
Q1

+ sin(Q2a−P2)−sin(Q2(a−r1)−P2)
Q2

+ sin(Q3b−P3)−sin(Q3a−P3)
Q3

+ sin(Q4(b+r2)+P4)−sin(Q4b+P4)
Q4

+ sin(Q5s−P5)−sin(Q5(b+r2)−P5)
Q5

, b + r2 ≤ s ≤ L,

y(s) =





y0 + 1−cos(Q1s)
Q1

, 0 ≤ s < a− r1,

y0 + 1−cos(Q1(a−r1))
Q1

+ cos(Q2s−P2)−cos(Q2(a−r1)−P2)
Q2

, a− r1 ≤ s < a,

y0 + 1−cos(Q1(a−r1))
Q1

+ cos(Q2a−P2)−cos(Q2(a−r1)−P2)
Q2

+ cos(Q3a−P3)−cos(Q3s−P3)
Q3

, a ≤ s < b,

y0 + 1−cos(Q1(a−r1))
Q1

+ cos(Q2a−P2)−cos(Q2(a−r1)−P2)
Q2

+ cos(Q3a−P3)−cos(Q3b−P3)
Q3

+ cos(Q4s+P4)−cos(Q4b+P4)
Q4

, b ≤ s < b + r2,

y0 + 1−cos(Q1(a−r1))
Q1

+ cos(Q2a−P2)−cos(Q2(a−r1)−P2)
Q2

+ cos(Q3a−P3)−cos(Q3b−P3)
Q3

+ cos(Q4(b+r2)+P4)−cos(Q4b+P4)
Q4

+ cos(Q5(b+r2)−P5)−cos(Q5s−P5)
Q5

, b + r2 ≤ s ≤ L.
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