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Abstract. Peristaltic motion of an incompressible micropolar fluid in a two-dimen-
sional channel with wall effects is studied. Assuming that the wave length of the
peristaltic wave is large in comparison to the mean half width of the channel, a per-
turbation method of solution is obtained in terms of wall slope parameter, under
dynamic boundary conditions. Closed form expressions are derived for the stream
function and average velocity and the effects of pertinent parameters on these flow
variables have been studied. It has been observed that the time average velocity in-
creases numerically with micropolar parameter. Further, the time average velocity
also increases with stiffness in the wall.
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1 Introduction

The fluid mechanics of peristaltic motion has been extensively studied for several
years as it is known to be one of the main mechanism for fluid transport in biological
systems. From the point of view of fluid mechanics, peristaltic pumping is character-
ized by dynamic interaction of fluid flow with the movement of a flexible boundary.
In fact peristalsis is the major mechanism for the transport of urine from kidney to
bladder, food mixing in the intestines etc. It is also speculated that peristalsis is in-
volved in the vasomotion of small blood vessels. Also mechanical devices like finger
pumps and roller pumps use peristalsis to pump blood, slurries, corrosive fluids and
so on.
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It is well-known that many physiological fluids behave in general like suspensions
of deformable or rigid particles in a Newtonian fluid. Blood, for example, is a sus-
pension of red cells, white cells and platelets in plasma. Another example is cervical
mucus, which is a suspension of macromolecules in a water-like liquid. Several inves-
tigators have tried to account for the suspension behaviour of biofluids by considering
them to be non-Newtonian.

The model of micropolar fluid introduced by Eringen [1] represents a fluid consist-
ing of rigid, randomly oriented (or spherical) particles suspended in a viscous medium
where the deformations of the particles are ignored. The main advantage of using mi-
cropolar fluid model compared to other non-Newtonian fluids is that it takes care of
the rotation of fluid particles by means of an independent kinematic vector called the
microrotation vector.

Several authors [2–5] have studied peristaltic transport of a Newtonian fluid in
both mechanical and physiological situations under different conditions. Further,
peristaltic motion of non-Newtonian fluids also received attention. Shukla et al. [6]
studied effect of peristaltic and longitudinal wave motion of the channel wall on
movement of microorganisms. Srinivasacharya et al. [7] considered peristaltic trans-
port of a micropolar fluid in a circular tube under low Reynolds number and long
wave length approximation. Maruthi Prasad and Radhakrishnamacharya [8] dis-
cussed peristaltic transport of a Herschel-Bulkley fluid in a channel in the presence
of magnetic field of low intensity. However, all these investigations did not take the
wall effects into consideration. Mittra and Prasad [9] considered peristaltic transport
in a two-dimensional channel considering the elasticity of the walls. They used dy-
namic boundary conditions and solved this problem under the approximation of small
amplitude ratio. Radhakrishnamacharya and Srinivasulu [10] studied the same prob-
lem under long wave length approximation. Muthu et al. [11] extended the analysis
of Mittra and Prasad [9] to micropolar fluids. However, no attempt has been made
to study the influence of wall properties on peristaltic transport of a micropolar fluid
using the dynamic boundary conditions under long wave length approximation.

Hence in the present study, the influence of wall effects on the peristaltic motion
of a micropolar fluid in a two-dimensional channel using the dynamic boundary con-
ditions is investigated. Perturbation method of solution has been obtained in terms of
wall slope parameter assuming that the wave length of the peristaltic wave is large in
comparison to the mean half width of the channel. Expressions for the stream function
and average velocity have been derived and the effects of various parameters on these
flow variables have been studied.

2 Formulation of the problem

We consider the flow of an unsteady incompressible micropolar fluid through a two
dimensional channel of width 2d and with flexible walls on which are imposed travel-
ing sinusoidal waves of long wave length. Cartesian coordinate system (x, y) is chosen
with the x-axis aligned with the centre line of the channel. The traveling waves are rep-
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Figure 1: Geometry of a two-dimensional peristaltic motion of the walls.

resented by (Fig. 1) a sin 2π(x− ct)/λ, where a is the amplitude, λ is the wave length
and c is the wave speed of the traveling waves. The equations governing the peristaltic
motion of incompressible micropolar fluid for the present problem are given [11] as
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where u(x, y, t) and v(x, y, t) are the velocity components in the x- and y- directions
respectively, g(x, y, t) is the microrotation component in the direction normal to the
both x and y axes. Here J is the microinertia constant, µ is the viscosity coefficient of
classical fluid dynamics, κ and γ are the new viscosity coefficients for the micropolar
fluids, ρ is the density of the fluid.

We assume that the walls are inextensible so that only lateral motion takes place
and the horizontal displacement of the wall is zero.

Thus the no-slip boundary conditions for the velocity and microrotation are

u = 0, g = 0, at y = ±η = ±
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]
. (2.5)

The dynamic boundary conditions at the flexible walls, following Mittra and Prasad
[9], can be written as
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Here T is the tension in the membrane, m is the mass per unit area and C is the coeffi-
cient of viscous damping force.

We define the stream function ψ by

u =
∂ψ

∂y
, v = −∂ψ

∂x
, (2.7)

and eliminating the pressure between (2.2) and (2.3), Eqs. (2.2)-(2.4), become
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Introducing the following non-dimensional quantities
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Eqs. (2.8), (2.9), (2.5) and (2.6), after dropping the primes, can be written as
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The boundary conditions are

ψy = 0, g = 0, at y = ±η = ±[
1 + ε sin 2π(x− t)

]
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where ε(= a/d), δ(= d/λ) are geometric parameters, Re(= ρcd/µ) is the Reynolds
number, µ1 = κ/µ denotes non-dimensional quantity for micropolar fluid and
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Boundary condition (2.13) is the classical no slip boundary condition. The boundary
condition (2.14) is the dynamic boundary condition at the flexible walls, see, e.g., [9-
11].

The parameters µ1 and M are non-dimensional quantities characterising microp-
olar fluid. Also µ1, which characterizes the coupling of (2.11) and (2.12), denotes the
ratio of the viscosity coefficient for the microploar fluids and classical viscosity coeffi-
cient. The parameter M can be thought of as a fluid property depending upon the size
of microstructure. It can be seen that when κ and γ are zero, that is, when µ1 becomes
zero and M tends to infinity, (2.11) and (2.12) reduce to the classical Navier-Stokes
equations. It is reasonable to assume that the modified Reynolds number Rl , which
involves the square of a length of typical microstructure J, is much less than unity.

The parameter E1 characterizes the rigiditive nature of the wall and depends on the
wall tension. Further, E2 and E3 represent respectively the stiffness and the dissipative
features of the walls. Also, E3 = 0 implies that the walls moves up and down with no
damping force on them and hence indicates the case of elastic walls.

3 Method of solution

We seek perturbation solution in terms of small parameter δ as follows:

F = F0 + δF1 + δ2F2 + · · · , (3.1)

where F represents any flow variable.
Substituting (3.1) in (2.11) to (2.14) and collecting the coefficients of various powers

of δ, we get the following sets of equations:
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Boundary Conditions:
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Solving Eqs. (3.2), (3.3), (3.6) and (3.7) under the boundary conditions (3.4), (3.5), (3.8)
and (3.9), we finally get:
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− coth NMη sinh NMy
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Using (2.7), (3.10) and (3.12), we get the expressions for velocity as
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4N2M2 (cosh NMη + NMη sinh NMη)

− b13

4NM

(
η2 sinh NMη − η

NM
cosh NMη

)
NM coth NMη,
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t5 =
b14

8NM
(4η3 sinh NMη + NMη4 cosh NMη)− b14

4N2M2 (3η2 cosh NMη

+ NMη3 sinh NMη) +
3b14

8N3M3 (NMη2 cosh NMη + 2η sinh NMη)− 3b14

8N4M4

· (cosh NMη + NMη sinh NMη)− b14

4NM

(1
2

η4 sinh NMη − 1
NM

η3 cosh NMη

+
3

2N2M2 η2 sinh NMη − 3
2N3M3 η cosh NMη

)
NM coth NMη,

t6 =
Rn

3

(
L1

∂B3

∂x
− B3

∂L1

∂x

)
(cosh 2NMη − cosh2 NM),

t7 = 3
∂A
∂t

η2 +
∂A3

∂t
+ NM

∂L1

∂t
cosh NMη + 9A

∂A
∂x

η4 + 3A
∂A3

∂x
η2

+ 3NMA
∂L1

∂x
η2 cosh NMη + 3A3

∂A
∂x

η2,

t8 = A3
∂A3

∂x
+ NMA3

∂L1

∂x
cosh NMη + 3L1NM

∂A
∂x

η2 cosh NMη

+ L1NM
∂A3

∂x
cosh NMη,

t9 = L1N2M2 ∂L1

∂x
cosh2 NMη − 6A

∂A
∂x

η4 − L1N2M2 ∂A
∂x

η3 sinh NMη − 6A
∂A3

∂x
η2,

t10 = L1N2M2 ∂A3

∂x
η sinh NMη + 6A

∂L1

∂x
η sinh NMη + L1N2M2 ∂L1

∂x
sinh2 NMη,

t11 = 3A
∂A
∂x

η4 + 3
(∂A

∂t
+ A3

∂A
∂x

− A
∂A3

∂x

)
η2 +

(∂L1

∂t
+ A3

∂L1

∂x

+ L1
∂A3

∂x

)
NM cosh NMη,

t12 = 3NM
(

A
∂L1

∂x
+ L1

∂A
∂x

)
η2 cosh NMη −

(
6A

∂L1

∂x
+ N2M2L1

∂A3

∂x

)
η sinh NMη

− N2M2L1
∂A
∂x

η3 sinh NMη,

m1 = p1

(η2

2
− η

NM
coth NMη

)
+ p3

(η4

4
− η3

NM
coth NMη

)

+ p5

(η6

6
− η5

NM
coth NMη

)
,

m2 =
Rn

6NM

(
L1

∂B3

∂x
− B3

∂L1

∂x

)( cosh 2NMη

2NM
− 2 cosh2 NMη

NM

)
,

m3 =
1

10
A

∂A
∂x

η6 +
(∂A

∂t
+ A3

∂A
∂x

− A
∂A3

∂x

)η4

4
+

(∂L1

∂t
+ A3

∂L1

∂x

+
12A

N2M2
∂L1

∂x
+

12L1

N2M2
∂A
∂x

+ 2L1
∂A3

∂x

)cosh NMη

NM
,

m4 =
(

3A
∂L1

∂x
+ 6L1

∂A
∂x

)( η2 cosh NMη

NM
− 2η sinh NMη

N2M2 +
2 cosh NMη

N3M3

)
,

m5 =
( 6A

NM
∂L1

∂x
+

18L1

NM
∂A
∂x

+ NML1
∂A3

∂x

)( η sinh NMη

NM
− cosh NMη

N2M2

)
,

m6 = NML1
∂A
∂x

(η3 sinh NMη

NM
− 3η2 cosh NMη

N2M2 +
6η sinh NMη

N3M3 − 6 cosh NMη

N4M4

)
,

m7 =
[

N2

1− N2

(
1− η coth NMη

NM

)
− η2

2

]
B1 .
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The average velocity ū, over one period of the motion is given by

ū =
∫ 1

0
udt = ū0 + δū1 + · · · . (3.16)

4 Results and discussion

The analytical expression for the time average velocity ū is given by Eq. (3.16). To
study the effects of various parameters on the time mean flow ū has been numerically
evaluated using Mathematica software and the results are graphically presented in
Figs. 2-13.

The average velocity for the present problem depends upon the following impor-
tant non-dimensional quantities:

I) The cross viscosity parameter µ1 which denotes the ratio of the viscosity coeffi-
cient for the micropolar fluid and the classical viscous fluid.

II) The micropolar parameter M which characterizes the couple stress effects, due
to its dependence on the coefficient γ.

III) E1, E2 and E3, the wall parameters which characterise the viscoelastic behaviour
of the flexible walls.

Figure 2: Effect of M on ū (Re = 10.0, ε = 0.2, E1 = 0.1, E2 = 4, E3 = 0.06, µ1 = 0.02, Rl = 0.1,
δ = 0.2).

Figure 3: Effect of M on ū (Re = 10.0, ε = 0.2, E1 = 0.1, E2 = 4, E3 = 0.06, µ1 = 0.05, Rl = 0.1,
δ = 0.2).
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Figure 4: Effect of µ1 on ū (Re = 10.0, ε = 0.2, E1 = 1.0, E2 = 4, E3 = 0.04, M = 10, Rl = 0.1, δ = 0.2).

Figure 5: Effect of µ1 on ū (Re = 10.0, ε = 0.2, E1 = 1.0, E2 = 4, E3 = 0.04, M = 15, Rl = 0.1, δ = 0.2).

Figure 6: Effect of E1 on ū (Re = 10.0, ε = 0.2, E2 = 0.0, E3 = 0.0, µ1 = 0.01, M = 15.0, Rl = 0.1,
δ = 0.2).

From Eq. (2.6), we may note that E1, E2 and E3 cannot be taken as zero simultane-
ously.

From the definition of M, it can be seen that as M increases, the viscous effects are
dominant than the couple stress effects and hence M → ∞ indicates the case of pure
viscous fluid effect. Also, it can be seen from Figs. 2 and 3 that as M increases, i.e.,
couple stress effects decrease, the time average velocity ū increases numerically.

Figs. 4 and 5 show that as cross viscosity parameter, i.e., viscosity coefficients ratio
µ1, increases, the time average velocity ū increases numerically. However, this in-
crease is predominant near walls of the channel but is insignificant in the middle of
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Figure 7: Effect of E1 on ū (Re = 10.0, ε = 0.2, E2 = 0.0, E3 = 0.0, µ1 = 0.1, M = 15.0, Rl = 0.1,
δ = 0.2).

Figure 8: Effect of E2 on ū (Re = 10.0, ε = 0.2, E1 = 10, E3 = 0.08, µ1 = 0.01, M = 15.0, Rl = 0.1,
δ = 0.2).

Figure 9: Effect of E2 on ū (Re = 10.0, ε = 0.2, E1 = 10, E3 = 0.08, µ1 = 0.08, M = 15.0, Rl = 0.1,
δ = 0.2).

the channel.
The effect of the rigidity parameter for the membrane (E1) on the average velocity

for the case of no stiffness in the wall (E2 = 0) and perfectly elastic channel wall
(E3 = 0) is shown in Figs. 6 and 7. It can be noticed that the average velocity curve
is parabolic in shape and ū increases numerically as the rigidity of the wall increases.
Further, as E1 approaches zero, i.e., for insignificant rigidity of the wall, there is no
variation in ū and hence the flow is nearly uniform across the channel.
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Figure 10: Effect of E3 on ū (Re = 10.0, ε = 0.2, E1 = 0.1, E2 = 3, µ1 = 0.01, M = 20.0, Rl = 0.1,
δ = 0.2).

Figure 11: Effect of E3 on ū (Re = 10.0, ε = 0.2, E1 = 0.1, E2 = 3, µ1 = 0.05, M = 20.0, Rl = 0.1,
δ = 0.2).

Figure 12: Effect of δ on ū (Re = 10.0, ε = 0.2, E1 = 0.1, E2 = 3, E3 = 0.06, µ1 = 5.0, M = 20.0,
Rl = 0.1).

It can be observed that (Figs. 8 and 9) the time average velocity ū increases numer-
ically with the stiffness in the wall (E2) and also viscous damping force in the wall E3
(Figs. 10 and 11).

The effect of wall slope parameter on the average velocity is shown in Figs. 12 and
13. ū increases as wall slope increases only for higher values of y (y > 0.6, i.e., near
the walls of the channel).

The effects of M and µ1 on stream line pattern are shown in Figs. 14-17. It can
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Figure 13: Effect of δ on ū (Re = 10.0, ε = 0.2, E1 = 0.1, E2 = 3, E3 = 0.06, µ1 = 20.0, M = 20.0,
Rl = 0.1).

Figure 14: Effect of M on the stream line
pattern of Micropolar fluid (M = 5.0, ε =
0.2, µ1 = 5.0, E1 = 1, E2 = 4, E3 = 0.02,
Re = 10, Rl = 0.1, δ = 0.2).

Figure 15: Effect of M on the stream line
pattern of Micropolar fluid (M = 15.0, ε =
0.2, µ1 = 5.0, E1 = 1, E2 = 4, E3 = 0.02,
Re = 10, Rl = 0.1, δ = 0.2).

Figure 16: Effect of µ on the stream line
pattern of Micropolar fluid (M = 10.0, ε =
0.2, µ1 = 1.0, E1 = 1, E2 = 4, E3 = 0.02,
Re = 10, Rl = 0.1, δ = 0.2).

Figure 17: Effect of µ on the stream line
pattern of Micropolar fluid (M = 10.0, ε =
0.2, µ1 = 5.0, E1 = 1, E2 = 4, E3 = 0.02,
Re = 10, Rl = 0.1, δ = 0.2).
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be observed that the stream lines get closer, which indicates acceleration, for higher
values of micropolar parameter M and cross viscosity parameter µ1.

5 Conclusions

In this study, the peristaltic transport of an incompressible micropolar fluid in a two-
dimensional channel with dynamic boundary conditions has been analyzed. The gov-
erning equations have been linearised under long wave length approximation and
analytical expressions for average velocity have been derived. The effects of various
parameters on time average velocity ū have been studied. It is found that the time av-
erage velocity increases numerically with cross viscosity parameter, rigidity, stiffness
and dissipative nature of the walls.
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