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Abstract. We consider a mathematical model which describes the static frictional
contact between a piezoelectric body and a conductive foundation. A non linear
electro-elastic constitutive law is used to model the piezoelectric material. The uni-
lateral contact is modelled using the Signorini condition, nonlocal Coulomb friction
law with slip dependent friction coefficient and a regularized electrical conductiv-
ity condition. Existence and uniqueness of a weak solution is established. A finite
elements approximation of the problem is presented, a priori error estimates of the
solutions are derived and a convergent successive iteration technique is proposed.
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1 Introduction

The piezoelectric effect has important uses in modern engineering because it expresses
the relation between the electrical and mechanical fields. The effect known as piezo-
electricity was discovered by brothers Pierre and Jacques Curie in 1880. They found
out when a mechanical stress was applied on some crystals, electrical charges ap-
peared and conversely, the production of stress or strain when an electric field is ap-
plied. The piezoelectric materials can be divided in two main groups : crystals and
ceramics. The most well-known piezoelectric material is quartz SiO2, also ceramics
(BaTiO3, KNbO3, LiNbO3, etc.). General models for elastic materials with piezoelec-
tric effects can be found in [16–18, 22, 23] and, more recently, in [4, 10, 21].

Currently, there is a considerable interest in the study of contact problems involv-
ing piezoelectric materials. Thus, static frictional contact problems for electro-elastic

∗Corresponding author.
Email: essoufi@gmail.com (El-H. Essoufi), benkhirahassan@yahoo.fr (El-H. Benkhira), rachid-
fakhar@yahoo.fr (R. Fakhar)

http://www.global-sci.org/aamm 355 c©2010 Global Science Press



356 Essoufi, Benkhira, Fakhar / Adv. Appl. Math. Mech., 3 (2010), pp. 355-378

materials were studied in [2, 5, 13, 14, 20], under the assumption that the foundation is
insulated, and in [15] under the assumption that the foundation is electrically conduc-
tive. Exemple of quasistatic contact model in which the foundation is supposed to be
conductive was investigated in [3, 12].

In this paper we investigate a mathematical model which describes the static fric-
tional contact between a piezoelectric body and a foundation. The body is supposed
to be electro-elastic, with a non-linear elasticity operator. Unlike the models consid-
ered in [14, 15, 20], in the present paper we assume that the contact is modelled using
the Signorini condition, nonlocal Coulomb friction law with slip dependent friction
coefficient and a regularized electrical conductivity condition, taking into account the
conductivity of the foundation as in [12], which involve a coupling between the me-
chanical and the electrical unknowns. This situation leads to a variational problem
which is in form of a coupled system of quasi-variational inequality and non-linear
variational equation. To our knowledge, this model has not been studied yet and no
result has been obtained for this type problem. We establish the existence and unique-
ness of weak solution to this model. Inspired from [8,11], we define the finite elements
approximation of the problem and derive the error estimates on the solutions. Then,
we introduce an iterative method to solve the nonlinear contact problem, which con-
verges under certain assumptions. An important continuation of this paper consists
in the numerical analysis of the model, including numerical simulations will be pre-
sented in a forthcoming work.

The paper is structured as follows. In Section 2 we present the model of equilib-
rium process of the elastic piezoelectric body in frictional contact with a conductive
foundation. In Section 3 we introduce the functional spaces for various quantities, list
the assumptions on given data and derive the weak formulation of the problem. Then,
in Section 4 we state and prove our main existence and uniqueness result, Theorem
4.1. The proofs of these theorems are carried out in several steps and are based on
an abstract result in the study of elliptic variational inequalities and Schauder fixed
point technique. Finally, in Section 5 we study the finite element approximation of the
variational formulation of problems. We prove C`ea´s type inequalities, from which
we can conclude the convergence of the finite element method and derive order error
estimates under appropriate regularity assumptions on the solution. We introduce an
iterative method to solve the resulting finite element system, which converges under
certain assumptions.

2 Problem statement

Let
Ω ⊂ Rd, d = 2, 3,

be the reference domain occupied by the electro-elastic body which is supposed to be
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open, bounded, with a sufficiently regular boundary ∂Ω = Γ. In the sequel we decom-
pose Γ into three open disjoint parts Γ1, Γ2 and Γ3, on the one hand, and a partition of
Γ1 ∪ Γ2 into two open parts Γa and Γb, on the other hand, such that meas(Γ1) > 0 and
meas(Γa) > 0. We assume that the body is fixed on Γ1 where the displacement field
vanishes. The body is acted upon by a volume force of density f0 and volume electric
charges of density q0 on Ω and a surface traction of density f2 on Γ2. We also assume
that the electrical potential vanishes on Γa and a surface electric charge of density q2
is prescribed on Γb. On Γ3 the body is in unilateral contact with friction with a con-
ductive obstacle, the so-called foundation. we model the contact with the Signorini
condition and friction. The indices i, j, k, l run between 1 and d. The summation
convention over repeated indices is adopted and the index that follows a comma indi-
cates a partial derivative with respect to the corresponding component of the spatial
variable, e.g.,

ui,j = ∂ui/∂xj.

Everywhere below we use Sd to denote the space of second order symmetric tensors
on Rd while ” · ” and ‖ · ‖ will represent the inner product and the Euclidean norm on
Rd and Sd, that is ∀u, v ∈ Rd, ∀σ, τ ∈ Sd,

u · v = ui · vi, ‖v‖ = (v · v)
1
2 , and σ · τ = σij · τij, ‖τ‖ = (τ · τ)

1
2 .

We shall adopt the usual notations for normal and tangential components of displace-
ment vector and stress,

vν = v · ν, vτ = v− vνν,
σν = (σν) · ν, στ = σν− σνν.

Here and below ν denote the outward normal vector on Γ. Moreover, we denote by

ε ij(u) =
1
2
(ui,j + uj,i), Div σ = (σij,j), and div D = (Dj,j),

the small strain tensor, Div and div the divergence operator for tensor and vector
valued functions, respectively.

Under these conditions the classical formulation of the mechanical problem is as
follows:

Problem P. Find a displacement field u : Ω → Rd, a stress field σ : Ω → Sd, an electric
potentiel ϕ : Ω → R, and an electric displacement field D : Ω → Rd, such that

σ = Fε(u)− E∗E(ϕ), in Ω, (2.1)
D = E ε(u) + βE(ϕ), in Ω, (2.2)
Div σ + f0 = 0, in Ω, (2.3)
div D = q0, in Ω, (2.4)
u = 0, on Γ1, (2.5)
σν = f2, on Γ2, (2.6)
σν(u) ≤ 0, uν ≤ 0, σν(u)uν = 0, on Γ3, (2.7)
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‖στ‖ ≤ µ(‖uτ‖)|Rσν(u)|, on Γ3, (2.8a)
‖στ‖ < µ(‖uτ‖)|Rσν(u)| ⇒ uτ = 0, on Γ3, (2.8b)

‖στ‖ = −µ(‖uτ‖)|Rσν(u)| uτ

‖uτ‖ ⇒ uτ 6= 0, on Γ3, (2.8c)

ϕ = 0, on Γa, (2.9)
D · ν = q2, on Γb, (2.10)
D · ν = ψ(uν)φL(ϕ− ϕ0), on Γ3. (2.11)

Here and below, in order to simplify the notation, we do not indicate explicitly the
dependence of various functions on the spatial variable x∈Ω. Eqs. (2.1) and (2.2) rep-
resent the electro-elastic constitutive law of the material, in which F is a given nonlin-
ear function, E(ϕ)=−∇ϕ is the electric field, E represents the third order piezoelectric
tensor, E∗ is its transpose and β denote the electric permittivity tensor. Eqs. (2.3) and
(2.4) represent the equilibrium equations for the stress and electric displacement fields,
respectively. Relations (2.5) and (2.6) are the displacement and traction boundary con-
ditions, respectively, and (2.9), (2.10) represent the electric boundary conditions. The
unilateral boundary conditions (2.7) represent the Signorini law and (2.8) represent the
Coulomb’s friction law in which µ is the coefficient of friction and R is a regularization
operator. Finally, (2.11) represent the regularization electrical contact condition on Γ3,
which was considered in [12], where φL is the truncation function

φL(s) =





−L, if s < −L,
s, if − L ≤ s ≤ L,
L, if s > L,

here L is a large positive constant.
In next section we derive the variational formulation of the problem P.

3 Weak formulation

In this section we introduce the notation and recall some definitions needed in the
sequel, we introduce the following functional spaces

H = L2(Ω)d, H = {τ = (τij); τij = τji ∈ L2(Ω)},

H1 = H1(Ω)d, H1 = {σ ∈ H; Div σ ∈ H}.

These are real Hilbert spaces endowed with the inner products

(u, v)H =
∫

Ω
uivi dx, (σ, τ)H =

∫

Ω
σijτij dx,

(u, v)H1 = (u, v)H +
(
ε(u), ε(v)

)
H, (σ, τ)H1 = (σ, τ)H + (Div σ, Div τ)H,

and the associated norms ‖ · ‖H, ‖ · ‖H, ‖ · ‖H1 , and ‖ · ‖H1 , respectively.
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Let HΓ = H1/2(Γ)d, and let γ : H1 → HΓ be the trace map. For every element
v ∈ H1, we also use the notation v to denote the trace γv of v on Γ.

Let H
′
Γ be the dual of HΓ and let 〈·, ·〉 denote the duality pairing between H

′
Γ and

HΓ. For every σ ∈ H1, σν can be defined as the element in H
′
Γ which satisfies

〈σν, γv〉 =
(
σ, ε(v)

)
H + (Div σ, v)H, ∀v ∈ H1. (3.1)

Moreover, if σ is continuously differentiable on Ω, then

〈σν, γv〉 =
∫

Γ
σν · v da, (3.2)

for all v ∈ H1, where da is the surface measure element. Keeping in mind the boundary
condition (2.5), we introduce the closed subspace of H1 defined by

V = {v ∈ H1; v = 0, on Γ1},

and K be the set of admissible displacements

K = {v ∈ V; vν ≤ 0, on Γ3}.

Since meas(Γ1) > 0 and Korn’s inequality (see [19]) holds,

‖ε(v)‖H ≥ ck‖v‖H1 , ∀v ∈ V, (3.3)

where ck > 0 is a constant which depends only on Ω and Γ1. Over the space V we
consider the inner product given by

(u, v)V =
(
ε(u), ε(v)

)
H, ‖u‖V = (u, u)

1
2
V , (3.4)

and let ‖ · ‖V be the associated norm. It follows from Korn’s inequality (3.3) that the
norms ‖ · ‖H1and ‖ · ‖V are equivalent on V. Therefore (V, ‖ · ‖V) is a Hilbert space.
Moreover, by the Sobolev trace theorem, (3.3) and (3.4), there exists a constant c0 > 0
which only depends on the domain Ω, Γ3 and Γ1 such that

‖v‖L2(Γ)d ≤ c0‖v‖V , ∀v ∈ V. (3.5)

We also introduce the spaces

W =
{

ψ ∈ H1(Ω)/ψ = 0, on Γa
}

,

W =
{

D = (Di) ∈ H1(Ω)/(Di) ∈ L2(Ω), div D ∈ L2(Ω)
}

.

The spaces W and W are reel Hilbert spaces with the inner products

(ϕ, ψ)W = (ϕ, ψ)H1(Ω),

(D, E)W = (D, E)L2(Ω)d + (div D, div E)L2(Ω).
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The associated norms will be denoted by ‖ · ‖W and ‖ · ‖W , respectively. Notice also
that, since meas(Γa) > 0, the following Friedrichs-Poincar inequality holds

‖∇ψ‖W ≥ cF‖ψ‖W , ∀ψ ∈ W, (3.6)

where cF > 0 is a constant which depends only on Ω and Γa. Moreover, by the Sobolev
trace theorem, there exists a constant c1, depending only on Ω, Γa and Γ3, such that

‖ξ‖L2(Γ3) ≤ c1‖ξ‖W , ∀ξ ∈ W. (3.7)

When D ∈ W is a sufficiently regular function, the following Green’s type formula
holds,

(D,∇ξ)L2(Ω)d + (div D, ξ)L2(Ω) =
∫

Γ
D · νξ da, ∀ξ ∈ H1(Ω). (3.8)

Recall also that the transposite E∗ is given by

E∗ = (e∗ijk), where e∗ijk = ekij, (3.9a)

Eσv = σE∗v, ∀σ ∈ Sd, v ∈ Rd. (3.9b)

In the study of mechanical problem (2.1)-(2.11), we assume that the elasticity operator
F satisfy the following conditions :





(a) F : Ω× Sd → Sd,
(b) There exists MF > 0, such that

‖F(x, ξ1)− F(x, ξ2)‖ ≤ MF‖ξ1 − ξ2‖, ∀ξ1, ξ2 ∈ Sd, a.e. x ∈ Ω,
(c) There exists mF > 0, such that(

F(x, ξ1)− F(x, ξ2)
)
(ξ1 − ξ2) ≥ mF‖ξ1 − ξ2‖2,

∀ξ1, ξ2 ∈ Sd, a.e. x ∈ Ω,
(d) The mapping x → F(x, ξ) is Lebesgue measurable on Ω, ∀ξ ∈ Sd,
(e) The mapping x → F(x, 0) belongs to H.

(3.10)

We note that the condition (3.10) is satisfied in the case of the linear electro-elastic
constitutive law , σ = Fε(u)− E∗E(ϕ), in which

F ξ = ( fijklξkl),

provided that fijkl ∈ L∞(Ω), and there exists α > 0, such that

fijkl(x)ξkξl ≥ α‖ξ‖2, ∀ξ ∈ Sd, a.e. x ∈ Ω.

Exemple of nonlinear operator F which satisfy condition (3.10) can be found in [20].
The piezoelectric tensor E and the electric permittivity tensor β satisfy

E = (eijk) : Ω× Sd → Rd, (3.11a)

eijk = eikj ∈ L∞(Ω). (3.11b)
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



(a) β = (βij) : Ω×Rd → Rd,
(b) βij = β ji ∈ L∞(Ω),
(c) there exists mβ > 0, such that βijEiEj ≥ mβ‖E‖2,

∀E ∈ Rd, a.e. x ∈ Ω.

(3.12)

The surface electrical conductivity function ψ satisfies




(a) ψ : Γ3 ×R→ R+,
(b) there exists Lψ > 0, such that

|ψ(x, u1)− ψ(x, u2)| ≤ Lψ|u1 − u2|, ∀u1, u2 ∈ R, a.e. x ∈ Γ3,
(c) there exists Mψ > 0, such that

|ψ(x, u)| ≤ Mψ, ∀u ∈ R, a.e. x ∈ Γ3,
(d) x → ψ(x, u) is mesurable on Γ3, for all u ∈ R,
(e) x → ψ(x, u) = 0, for all u ≤ 0.

(3.13)

The coefficient of friction satisfies




(a) µ : Γ3 ×R+ → R+,
(b) there exists Lµ > 0, such that

|µ(., u)− µ(., v)| ≤ Lµ|u− v|, ∀u, v ∈ R+, a.e. x ∈ Γ3,
(c) ∃µ∗ > 0, such that µ(x, u) ≤ µ∗, ∀u ∈ R+, a.e. x ∈ Γ3,
(d) the function x → µ(x, u) is measurable on Γ3, for all u ∈ R+.

(3.14)

We assume that the body forces, the tractions, the volume and surface charge densities
satisfy

f0 ∈ L2(Ω)d, f2 ∈ L2(Γ3)d, (3.15a)

q0 ∈ L2(Ω), q2 ∈ L2(Γb). (3.15b)

Also, the given potential is such that

ϕ0 ∈ L2(Γ3). (3.16)

Next, we use Riesz’s representation theorem, consider the elements f ∈ V, and q ∈ W
given by

( f , v)V =
∫

Ω
f0 · v dx +

∫

Γ2

f2 · vda, ∀v ∈ V, (3.17a)

(q, ξ)W =
∫

Ω
q0ξ dx−

∫

Γb

q2ξda, ∀ξ ∈ W, (3.17b)

and we define the mappings j : V ×V → R, and ` : V ×W ×W → R, respectively, by

`(u, ϕ, ξ) =
∫

Γ3

ψ(uν)φL(ϕ− ϕ0)ξda, ∀u ∈ V, ∀ϕ, ξ ∈ W, (3.18a)

j(u, v) =
∫

Γ3

µ
(‖uτ‖

)|Rσν(u)|‖vτ da, ∀u, v ∈ V. (3.18b)
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Keeping in mind assumptions (3.13)-(3.16), it follows that the integrals in (3.17a)-
(3.18b) are well-defined. Finally, we assume that R: H

′
Γ3
→L∞(Γ3), is a linear and con-

tinuous mapping (see [24]). Using Grenn’s formula (3.1), (3.2) and (3.8), it is straight-
forward to see that if (u, σ, ϕ, D) are sufficiently regular function, which satisfy (2.3)-
(2.11) then

(
σ, ε(v)− ε(u)

)
H + j(u, v)− j(u, u) ≥ ( f , v− u)V , ∀v ∈ K, (3.19a)

(D,∇ξ)L2(Ω)d = `(u, ϕ, ξ)− (q, ξ)W , ∀ξ ∈ W. (3.19b)

We plug (2.1) in (3.19a), (2.2) in (3.19b), and use the notation E=−∇ϕ to obtain the
following variational formulation of Problem P, in the terms of displacement field and
electric potential.

Problem PV. Find a displacement field u ∈ K, and an electric potential ϕ ∈ W, such that
(
Fε(u), ε(v)− ε(u)

)
H +

(E∗∇ϕ, ε(v)− ε(u)
)

L2(Ω)d + j(u, v)− j(u, u)

≥( f , v− u)V , ∀v ∈ K, (3.20a)

(β∇ϕ,∇ξ)L2(Ω)d − (E ε(u),∇ξ
)

L2(Ω)d + `(u, ϕ, ξ)

=(q, ξ)W , ∀ξ ∈ W. (3.20b)

4 Existence and uniqueness

The main existence and uniqueness result, which we establish in this section, is the
following.

Theorem 4.1. Assume that (3.10)-(3.12), (3.13)[(a), (c), (d), (e)], (3.14)[(a), (c), (d)] and
(3.16) hold. Then :

(1) The problem PV has at least one solution (u, ϕ) ∈ K×W;
(2) Under the assumptions (3.13)(b) and (3.14)(b), there exists L∗> 0, such that if Lµ +

µ∗ + LψL + Mψ < L∗, then the problem PV has a unique solution.

The proof of Theorem 4.1 will be carried out in several steps. To present it, we
consider the product spaces X = V ×W, and Y = L2(Γ3)× L2(Γ3), together with the
inner products

(x, y)X = (u, v)V + (ϕ, ξ)W , ∀x = (u, ϕ), y = (v, ξ) ∈ X, (4.1)
(η, θ)Y = (g, λ)L2(Γ3) + (z, ζ)L2(Γ3), ∀η = (g, z), θ = (λ, ζ) ∈ Y, (4.2)

and the associated norms ‖ · ‖X and ‖ · ‖Y, respectively. Let U = K×W be non-empty
closed convex subset of X. We define the operator A : U → X, the functions j̃, ˜̀ on
U × X, and the element f3 ∈ X by equalities :

(Ax, y)X =
(
Fε(u), ε(v)

)
H + (β∇ϕ,∇ξ)L2(Ω)d +

(E∗∇ϕ, ε(v)
)

L2(Ω)d

− (E ε(u),∇ξ)L2(Ω)d , ∀x = (u, ϕ), y = (v, ξ) ∈ U, (4.3)
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j̃(x, y) = j(u, v), ∀x = (u, ϕ), y = (v, ξ) ∈ X, (4.4)

˜̀(x, y) =
∫

Γ3

ψ(uν)φL(ϕ− ϕ0)ξdγ, ∀x = (u, ϕ), y = (v, ξ) ∈ X, (4.5)

f3 = ( f , q) ∈ X. (4.6)

We start the following equivalence result

Lemma 4.1. The couple x = (u, ϕ) is a solution to problem PV if and only if

(Ax, y− x)X + j̃(x, y)− j̃(x, x) + ˜̀(x, y− x) ≥ ( f3, y− x)X, (4.7)

for all y = (v, ξ) ∈ K×W.

Proof. Let x = (u, ϕ) ∈ U be a solution to problem PV and let y = (v, ξ) ∈ U. We
use the test function ξ − ϕ in (3.20b), add the corresponding inequality to (3.20a) and
use (4.1) and (4.3)-(4.6) to obtain (4.7). Conversely, let x = (u, ϕ) ∈ U be a solution
to the elliptic variational inequalities (4.7). We take y = (v, ϕ) in (4.7), where v is an
arbitrary element of K and obtain (3.20a). Then for any ξ ∈ W, we take successively
y = (v, ϕ + ξ), and y = (v, ϕ− ξ) in (4.7) to obtain (3.20b), which concludes the proof
of lemma 4.1. ¤

We define two closed convex set

K1 =
{

g ∈ L2(Γ3)/g ≥ 0, and ‖g‖L2(Γ3) ≤ k1
}

,

K2 =
{

z ∈ L2(Γ3)/‖z‖L2(Γ3) ≤ k2
}

,

with k1 and k2 to be specified, and we define the functions

`z(ξ) =
∫

Γ3

zξ da, ∀ξ ∈ W, (4.8)

jg(v) =
∫

Γ3

g ‖vτ‖ da, ∀v ∈ K. (4.9)

Let η = (g, z) ∈ L2(Γ3)× L2(Γ3) be given and consider q3 such that

(q3, ξ)W = (q, ξ)W − `z(ξ), (4.10)

for all ξ ∈ W, and note that (3.17b) and (4.8) imply that q3 ∈ W. We consider the
element fη ∈ X given by

fη = ( f , q3) ∈ X. (4.11)

We extend the functional jg defined by (4.9) to a functional j̃g defined on U, that is

j̃g(x) = jg(u), ∀x = (u, ϕ) ∈ U, (4.12)

and consider the following intermediate problem

(Axη , y− xη)X + j̃g(y)− j̃g(xη) ≥ ( fη , y− xη)X, ∀y = (v, ξ) ∈ U. (4.13)

We have the following existence and uniqueness result.
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Lemma 4.2. For any η ∈ K1 ×K2, assume that (3.10)-(3.12) hold. Then
(i) The problem (4.13) has a unique solution xη=(uη , ϕη)∈K ×W, which depends Lips-

chitz continuously on η ∈ L2(Γ3)× L2(Γ3),
(ii) There exists a constant c2 > 0, such that the solution of problem (4.13) satisfies

‖xη‖X ≤ c2‖ fη‖X. (4.14)

Proof. The proof of lemma 4.2 is based on the following abstract result for elliptic
variational inequalities (see [6]).

Theorem 4.2. Let X be a Hilbert space, and U ⊂ X be a nonempty, convex and closed subset.
Assume that A : U → X is a strongly monotone and Lipschitz continuous operator on X, i.e.,

∃m > 0, (Au− Av, u− v)X ≥ m‖u− v‖2
X,

∃M > 0, ‖Au− Av‖X ≤ M‖u− v‖X,

and that j : U → (−∞, ∞] is a proper, convex and lower semicontinuous function. Then, for
each f ∈ X, the elliptic variational inequality of the second kind, ∀x ∈ U,

(Ax, y− x)X + j(y)− j(x) ≥ ( f , y− x)X, ∀y ∈ U,

has a unique solution.

Let the operator A and the functional j̃g given by (4.3) and (4.12), respectively. In
order to use this abstract result, we prove that

(a) The operator A : X → X is strongly monotone and Lipschitz continuous,
(b) The functional j̃g is proper, convex and continuous.
First, consider two elements x1 = (u1, ϕ1), x2 = (u2, ϕ2) ∈ X, using (4.3), we have

(Ax1 − Ax2, x1 − x2)X

=
(
Fε(u1)− Fε(u2), ε(u1)− ε(u2)

)
H +

(
β∇ϕ1 − β∇ϕ2,∇ϕ1 −∇ϕ2

)
L2(Ω)d

+
(E∗∇ϕ1 − E∗∇ϕ1, ε(u1)− ε(u2)

)
L2(Ω)d −

(E ε(u1)− E ε(u2),∇ϕ1 −∇ϕ2
)

L2(Ω)d ,

and since if follows by (3.9a) that
(E∗∇ϕ, ε(u)

)
H =

(E ε(u),∇ϕ
)

L2(Ω)d , for all x =
(u, ϕ), we find

(Ax1 − Ax2, x1 − x2)X

=
(
Fε(u1)− Fε(u2), ε(u1)− ε(u2)

)
H +

(
β∇ϕ1 − β∇ϕ2,∇ϕ1 −∇ϕ2

)
L2(Ω)d .

We use now (3.10), (3.12) and (3.6), there exists c3 > 0, which depends only on F, β, Ω
and Γa, such that

(Ax1 − Ax2, x1 − x2)X ≥ c3
(‖u1 − u2‖2

V + ‖ϕ1 − ϕ2‖2
W

)
,
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and keeping in mind (4.1), we obtain

(Ax1 − Ax2, x1 − x2)X ≥ c3‖x1 − x2‖2
X. (4.15)

In the same way, using (3.10)-(3.12), after some algebra, it follows that there exists
c4 > 0, which depends only on F, β and E , such that

(Ax1 − Ax2, y)X

≤c4
(‖u1 − u2‖V‖v‖V + ‖ϕ1 − ϕ2‖W‖v‖V + ‖u1 − u2‖V‖ξ‖W + ‖ϕ1 − ϕ2‖W‖ξ‖W

)
,

for all y = (v, ξ) ∈ X. We use (4.1) and the previous inequality to obtain

(Ax1 − Ax2, y)X ≤ 4c4(‖x1 − x2‖X ‖y‖X), ∀y ∈ X,

and taking y = Ax1 − Ax2 ∈ X, we find

‖Ax1 − Ax2‖X ≤ 4 c4‖x1 − x2‖X, (4.16)

(a) is now a consequence of inequalities (4.15) and (4.16). Next, we investigate the
properties of the functional j̃g given by (4.12), (4.9). We first remark that j̃g is proper
and convex on U. Let x1 = (u1, ϕ1), x2 = (u2, ϕ2) ∈ U, we have

∣∣ j̃g(x1)− j̃g(x2)
∣∣ =

∣∣∣
∫

Γ3

g(‖u1τ‖ − ‖u2τ‖)da
∣∣∣

≤
∫

Γ3

g‖u1τ − u2τ‖da

≤‖g‖L2(Γ3)‖u1 − u2‖L2(Γ3)d .

Using (3.5), we obtain
∣∣ j̃g(x1)− j̃g(x2)

∣∣ ≤ c0 ‖g‖L2(Γ3) ‖u− v‖V .

Now, by (4.1), we find that
∣∣ j̃g(x1)− j̃g(x2)

∣∣ ≤ c0 ‖g‖L2(Γ3) ‖x1 − x2‖X.

Thus j̃g is Lipschitz continuous, and therefore, j̃g is a fortiori lower semicontinuous
function.

Using (a), (b) and abstract results of Theorem 4.2, we obtain that problem (4.13) has
a unique solution. We show next that this solution depends Lipschitz continuously on
η∈L2(Γ3)× L2(Γ3). Let η1=(g1, z1), η2=(g2, z2)∈L2(Γ3)× L2(Γ3) be given, and denote
the corresponding solution of the problem (4.13) by xη1=(uη1 , ϕη1), and xη2=(uη2 , ϕη2).
Then we have

(Axη1 , y− xη1)X + j̃g1(y)− j̃g1(xη1) ≥ ( fη1 , y− xη1)X, ∀y ∈ U,

(Axη2 , y− xη2)X + j̃g2(y)− j̃g2(xη2) ≥ ( fη2 , y− xη2)X, ∀y ∈ U.
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We take y = xη2 in the first inequality, and y = xη1 in the second inequality, succes-
sively, we obtain

(Axη1 − Axη2 , xη1 − xη2)

≤
∫

Γ3

(g1 − g2)(‖uη1τ‖ − ‖uη2τ‖) da +
∫

Γ3

(z1 − z2)(ϕη1 − ϕη2) da

≤‖g1 − g2‖L2(Γ3)‖uη1τ − uη2τ‖L2(Γ3)d + ‖z1 − z2‖L2(Γ3)‖ϕη1 − ϕη2‖L2(Γ3).

Thus, using (3.5) and (3.7), we deduce

(Axη1 − Axη2 , xη1 − xη2)X

≤c0‖g1 − g2‖L2(Γ3)‖uη1 − uη2‖V + c1‖z1 − z2‖L2(Γ3)‖ϕη1 − ϕη2‖W ,

and using (4.1), (4.15), and (4.2)

‖xη1 − xη2‖X ≤ max{c0,c1}
c3

√
2‖(g1, z1)− (g2, z2)‖L2(Γ3)×L2(Γ3),

thus there exists a positive constant c5 =
√

2 max(c0, c1)/c3, such that

‖xη1 − xη2‖X ≤ c5‖η1 − η2‖L2(Γ3)×L2(Γ3), (4.17)

whence (i) follows. We turn now to the proof of (ii). Let η=(g, z)∈K1 ×K2, we take
y = 0 in the inequality (4.13), we have

(Axη , xη)X + j̃g(xη) ≤ ( fη , xη)X, ∀xη ∈ X.

As g ≥ 0, we obtain

(Axη , xη)X ≤ ( fη , xη)X, ∀xη ∈ X,

using (4.15), we deduce

‖xη‖X ≤ 1
c3
‖ fη‖X,

and the lamma is proved. ¤
We now consider the operator Λ : L2(Γ3)× L2(Γ3) → L2(Γ3)× L2(Γ3), such that

for all η ∈ L2(Γ3)× L2(Γ3), we have

Λη =
(
µ(‖uητ‖)|Rσν(uη)|, ψ(uην)φL(ϕη − ϕ0)

)
, ∀η ∈ L2(Γ3)× L2(Γ3),

it follows from assumptions (3.13)-(3.14) that the operator Λ is well-defined. In order
to prove that Λ has a fixed point, we will need the following result:

Lemma 4.3. The mapping η → xη , where xη is the solution to (4.13), is weakly continuous
from L2(Γ3)× L2(Γ3) to X.

Proof. Let a sequence
(
ηn = (gn, zn)

)
in L2(Γ3) × L2(Γ3) converging weakly to

η = (g, z), we denote by xηn = (uηn , ϕηn) ∈ U the solution of (4.13) corresponding to
ηn, then we have

(Axηn , y− xηn)X + j̃gn(y)− j̃gn(xηn) ≥ ( fηn , y− xηn)X, ∀y = (v, ξ) ∈ U, (4.18)
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where
( fηn , y− xn

ηn
)X = ( f , v− uηn)V + (q, ξ − ϕηn)W − hzn(ξ − ϕηn),

taking y = 0 in (4.18) and using (4.15), (3.5) and (4.15), we deduce

‖xηn‖X ≤ 1
c3

(‖ fηn‖X + c0‖gn‖L2(Γ3)
)

≤ 1
c3

(‖ f ‖V + ‖q‖W + ‖zn‖L2(Γ3) + c0‖gn‖L2(Γ3)
)

≤c
(‖ f ‖V + ‖q‖W + ‖ηn‖L2(Γ3)×L2(Γ3)

)
,

that is, the sequence (xηn) is bounded in X, then, there exists x̃=(ũ, ϕ̃)∈X, and a sub-
sequence, denote again (xηn), such that

xηn ⇀ x̃ ∈ X, as n → +∞.

Moreover, U is closed convex set in a real Hilbert space X, therefor U is weakly closed,
then x̃ ∈ U.

We next prove that x̃ is solution of (4.13). First, we prove that

( fηn , y− xεηn)X → ( fη , y− x̃)X, as n → +∞. (4.19)

We have
∣∣hzn(ξ − ϕ̃)− hzn(ξ − ϕηn)

∣∣ ≤‖zn‖L2(Γ3)‖ϕ̃− ϕηn‖L2(Γ3)

≤‖ ηn︸︷︷︸
bounded

‖L2(Γ3)×L2(Γ3)‖x̃− xηn‖L2(Γ3)×L2(Γ3).

Since the trace map γ : X → L2(Γ3)d × L2(Γ3) is compact operator, from the weak
convergence xηn ⇀ x̃ in X, we obtain the convergence xηn → x̃ strongly in L2(Γ3)d ×
L2(Γ3). so we have (4.19).

Now, form (4.18), we have

(Axηn , y− xηn)X

≥( fηn , y− xn
ηn

)X −
(

j̃gn(y)− j̃gn(x̃)
)− (

j̃gn(x̃)− j̃gn(xn
ηn

)
)
, ∀y = (v, ξ) ∈ U.

Since
∣∣ j̃gn(x̃)− j̃gn(xηn)

∣∣ ≤‖gn‖L2(Γ3)‖ũ− uηn‖L2(Γ3)

≤‖ ηn︸︷︷︸
bounded

‖L2(Γ3)×L2(Γ3)‖x̃− xηn‖L2(Γ3)×L2(Γ3),

so we obtain

lim sup
n→+∞

(Axηn , xηn − y)X ≤ ( fη , x̃− y)X +
(

j̃gn(y)− j̃gn(x̃)
)
, ∀y = (v, ξ) ∈ U. (4.20)
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Then, by (4.20), one gets

lim sup
n→+∞

(Axηn , xηn − x̃)X

= lim sup
n→+∞

(
(Axηn , xηn − y)X + (Axηn , y− x̃)X

)

≤ lim sup
n→+∞

(
(Axηn , xηn − y)X + ‖Axηn‖X‖y− x̃‖X

)

≤( fη , x̃− y)X +
(

j̃gn(y)− j̃gn(x̃)
)
+ lim sup

n→+∞

(
‖Axηn‖X‖y− x̃‖X

)
,

for all y=(v, ξ)∈U. Note that (‖Axηn‖X) is bounded (according to (3.10)(e) and (4.16)),
and we may then substitute y = x̃ into the previous inequality to obtain

lim sup
n→+∞

(Axηn , xηn − x̃)X ≤ 0.

By pseudomonotonicity of A, we get

(Ax̃, x̃− y)X ≤ lim inf
n→+∞

(Axn
ηn

, xn
ηn
− y)X. (4.21)

Combining (4.18), (4.19) and (4.21), one gets

x̃ ∈ U, (4.22a)

(Ax̃, y− x̃)X + j̃g(y)− j̃g(x̃) ≥ ( fη , y− x̃)X, ∀y = (v, ξ) ∈ U, (4.22b)

from (4.22), we find that x̃ is a solution of problem (4.13) and from the uniqueness
of the solution for this variational inequality we obtain x̃=xη . Since xη is the unique
weak limit of any subsequence of (xηn), we deduce that the whole sequence (xηn) is
weakly convergent in X to xη , ensures that the weak continuous mapping η→xη , from
L2(Γ3)× L2(Γ3) to X. ¤

Lemma 4.4. If

k1 = c2µ∗c0c∗
(
‖ f ‖V + ‖q‖W + MψL meas(Γ3)

1
2

)
, and k2 = MψL meas(Γ3)

1
2 ,

then the operator Λ has at least one fixed point.

Proof. Let η = (g, z) ∈ K1 ×K2, i.e.,

‖g‖L2(Γ3) ≤ k1, and ‖z‖L2(Γ3) ≤ k2.

Keeping in mind (4.2), it follows that

‖η‖L2(Γ3)×L2(Γ3) ≤ k1 + k2,

from (4.11)-(4.10), we obtain

( fη , xη)X ≤ ( f , uη)V + (q, ϕη)W − `z(ϕη), (4.23)
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using (4.23) in (4.14), we deduce

‖xη‖X ≤ c2
(‖ f ‖V + ‖q‖W + ‖z‖L2(Γ3)

)
. (4.24)

Since z = ψ(uην)φL(ϕη − ϕ0), form the bounds ψ(uην) ≤ Mψ, and φL(ϕη − ϕ0) ≤ L,

‖z‖L2(Γ3) ≤ MψL meas(Γ3)
1
2 , (4.25)

taking (4.25) in (4.24), we find

‖xη‖X ≤ c2

(
‖ f ‖V + ‖q‖W + MψL meas(Γ3)

1
2

)
. (4.26)

From (4.18) and (4.2), we have
∥∥Λη

∥∥
L2(Γ3)×L2(Γ3)

≤ ∥∥µ(‖uητ‖)|Rσν(uη)|
∥∥

L2(Γ3)
+

∥∥ψ(uην)φL(ϕη − ϕ0)
∥∥

L2(Γ3)
,

using (3.14)(c), (3.5), (4.25), (4.1), (4.26), and the continuity of R, yield that there exists
a constant c∗ > 0, such that

‖Λη‖L2(Γ3)×L2(Γ3) ≤ c2µ∗c0c∗
(
‖ f ‖V + ‖q‖W + MψL meas(Γ3)

1
2

)
+ MψL meas(Γ3)

1
2 ,

if one selected for value of

k1 = c2µ∗c0c∗
(
‖ f ‖V + ‖q‖W + MψL meas(Γ3)

1
2

)
, and k2 = MψL meas(Γ3)

1
2 ,

then Λ is an operator of K1 × K2 into itself, and note that K1 × K2 is a nonempty,
convex and closed subset of L2(Γ3)× L2(Γ3). Since L2(Γ3)× L2(Γ3) is a reflexive space,
K1 ×K2 is weakly compact. Using continuity of operators R and φL, (3.13) and (3.14),
lemma 4.3, we deduce that Λ is weakly continuous. Hence, by Schauder’s fixed point
theorem the operator Λ has at least one fixed point. ¤
Proof of Theorem 4.1.

1) Existence. Let η∗ be the fixed point of operator Λ. We denote by (u∗, ϕ∗) the
solution of the variational problem PVη for η=η∗. Using (4.13) and (4.18), it is easy to
see that (u∗, ϕ∗) is a solution of PV. This proves the existence part of Theorem 4.1.

2) Uniqueness. We show next that, if Lµ + µ∗ + LψL + Mψ < L∗, the solution is
unique.

Let x1 = (u1, ϕ1), x2 = (u2, ϕ2) ∈ U the solution of problem (4.7), we have

(Ax1, y− x1)X + j̃(x1, y)− j̃(x1, x1) + ˜̀(x1, y− x1) ≥ ( f3, y− x1)X, (4.27a)

(Ax2, y− x2)X + j̃(x2, y)− j̃(x2, x2) + ˜̀(x2, y− x2) ≥ ( f3, y− x2)X. (4.27b)

We take y = x2 in the first inequality, y = x1 in the second, and add the two inequality
to obtain

(A1x1 − Ax2, x1 − x2)X ≤ J + G, (4.28)
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where

J = j̃(x1, x2)− j̃(x1, x1) + j̃(x2, x1)− j̃(x2, x2), (4.29a)

G = ˜̀(x1, x2 − x1) + ˜̀(x2, x1 − x2). (4.29b)

From (4.29a), (4.4) and (3.18b), we have

J =
∫

Γ3

µ(‖u1τ‖)
(
|Rσν(u1)| − |Rσν(u2)|

)(
‖u1τ‖ − ‖u2τ‖

)
da

+
∫

Γ3

|Rσν(u2)|
(

µ(‖u1τ‖)− µ(‖uε2τ‖)
)(
‖u1τ‖ − ‖u2τ‖

)
da,

using (3.14), the continuity of R, (3.5) and (4.1), after some algebra, we obtain

J ≤
(

µ∗ c∗ c2
0 + ‖Rσν(uη1)‖L∞(Γ3)Lµc2

0

)
‖x1 − x2‖2

X, (4.30)

from (4.29b) and (4.5), we find

G =
∫

Γ3

ψ(u2ν)
(

φL(ϕ2 − ϕ0)− φL(ϕ1 − ϕ0)
)(

ϕ1 − ϕ2

)
da

+
∫

Γ3

φL(ϕ2 − ϕ0)
(

ψ(u2ν)− ψ(u1ν)
)(

ϕ1 − ϕ2

)
da,

thus by using (3.13), the bounds |φL(ϕ2− ϕ0)|≤L, the Lipschitz continuity of the func-
tion φL, (3.5), (3.7) and (4.1), we deduce

G ≤ (Mψ c2
1 + L Lψ c0 c1)‖x1 − x2‖2

X. (4.31)

Using (4.28), (4.30)-(4.31) and (4.15), hence there exists a constant c6>0, such that

‖x1 − x2‖2
X ≤ c6(Lµ + µ∗ + LψL + Mψ)‖x1 − x2‖2

X.

Let L∗ = 1/c6, then if Lµ + µ∗ + LψL + Mψ < L∗, therefore x1=x2. ¤

5 Numerical approximation

In this section, we introduce and study the finite element approximation of the vari-
ational problem PV. Assume Ω is a polygonal domain, let τh be a regular family of
triangular finite element partitions of Ω that are compatible with the partition of the
boundary decompositions Γ=Γ1 ∪ Γ2 ∪ Γ3, and Γ=Γa ∪ Γb ∪ Γ3, that is, any point when
the boundary condition type changes is a vertex of the partitions, then the side lies en-
tirely in Γ1 ∪ Γ2 ∪ Γ3, and Γa ∪ Γb ∪ Γ3. Corresponding to each partition τh. We denote
by P1(Ωe) the space of polynomials of global degree less or equal to one in Ωe. Let us
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consider two finite-dimensional spaces Vh⊂V and Wh⊂W, approximating the spaces
V and W, respectively, that is

Vh =
{

vh ∈ C(Ω)d, vh
/Ωe ∈ P1(Ωe)d, Ωe ∈ τh, vh = 0, on Γ1

}
,

Wh =
{

ψh ∈ C(Ω), ψh
/Ωe ∈ P1(Ωe), Ωe ∈ τh, ψh = 0, on Γa

}
.

Here h>0 is a discretization parameter. Moreover, let us consider the nonempty,
finite-dimensional, closed convex sets of admissible displacements with Vh, defined
by Kh=K ∩Vh, i.e.,

Kh = {vh ∈ Vh, vh
ν ≤ 0, on Γ3}.

In this section, c denotes a positive constant which depends on the problem data, but
is independent of the discretization parameters h. We consider the following discrete
approximation of problem PV:

Problem PVh: Find a discrete displacement field uh ∈ Kh, and a discrete electric potential
ϕh ∈ Wh ,such that

(
Fε(uh), ε(vh)− ε(uh)

)
H +

(E∗∇ϕh, ε(vh)− ε(uh)
)

L2(Ω)d

+ j(uh, vh)− j(uh, uh) ≥ ( f , vh − uh)V , ∀vh ∈ Kh, (5.1a)

(β∇ϕh,∇ξh)L2(Ω)d − (E ε(uh),∇ξh)
L2(Ω)d

+ `(uh, ϕh, ξh) = (q, ξh)W , ∀ξh ∈ Wh. (5.1b)

Using the assumptions of Theorem 4.1, it can be shown that Problem PVh has a unique
solution (uh, ϕh) ∈ Kh ×Wh. Our interest lies in estimating the numerical errors. We
first derive a Céa’s type inequality (see [1, 9]).

Theorem 5.1. Let us denote by (u, ϕ) and (uh, ϕh), the respective solutions to problem PV
and PVh. Under the assumptions of Theorem 4.1 with the same value of L∗, the following error
estimates are obtained, for all vh ∈ Kh, and ψh ∈ Wh,

‖u− uh‖V + ‖ϕ− ϕh‖W

≤c inf
(vh,ξh)∈Kh×Wh

{
‖u− vh‖V + ‖ϕ− ξh‖W + ‖u− vh‖L2(Γ3)d

+ ‖ϕ− ξh‖L2(Γ3) +
(
‖Fε(u)‖

1
2
H + ‖E ∗∇ϕh‖

1
2
H + ‖ f ‖

1
2
V

)
‖u− vh‖

1
2
V

+
(
‖Rσν(u)‖L∞(Γ3)‖µ(‖uτ‖)‖L2(Γ3)

) 1
2 ‖u− vh‖

1
2
L2(Γ3)d

}
. (5.2)

Proof. Taking ξ = ξh ∈ Wh in (3.20b), and subtracting it to (5.1b), we obtain that

(
β∇(ϕ− ϕh),∇ξh

)
L2(Ω)d

−
(
E ε(u− uh),∇ξh

)
L2(Ω)d

+ `(u, ϕ, ξh)− `(uh, ϕh, ξh) = 0,
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thus, we have
(

β∇(ϕ− ϕh),∇(ξh − ϕ)
)

L2(Ω)d
+

(
β∇(ϕ− ϕh),∇(ϕ− ϕh)

)
L2(Ω)d

−
(
E ε(u− uh),∇(ϕ− ξh)

)
L2(Ω)d

−
(
E ε(u− uh),∇(ϕ− ϕh)

)
L2(Ω)d

+ `(u, ϕ, ξh − ϕ) + `(u, ϕ, ϕ− ϕh)− `(uh, ϕh, ξh − ϕ)

− `(uh, ϕh, ϕ− ϕh) = 0, ∀ξh ∈ Wh,

and therefore for all ξh ∈ Wh, it follows that
(
E ε(u− uh),∇(ϕ− ϕh)

)
L2(Ω)d

=
(

β∇(ϕ− ϕh),∇(ϕ− ϕh)
)

L2(Ω)d
−

(
β∇(ϕ− ϕh),∇(ϕ− ξh)

)
L2(Ω)d

+
(
E ε(u− uh),∇(ϕ− ξh)

)
L2(Ω)d

+ `(u, ϕ, ϕ− ϕh)− `(uh, ϕh, ϕ− ϕh)

+ `(u, ϕ, ξh − ϕ)− `(uh, ϕh, ξh − ϕ). (5.3)

Next, choosing v = uh ∈ Kh in (3.20a), we find
(
Fε(u), ε(u)− ε(uh)

)
H

+
(
E∗∇ϕ, ε(u)− ε(uh)

)
L2(Ω)d

≤j(u, uh)− j(u, u) + ( f , u− uh)V . (5.4)

We rewrite now to estimate variational inequality (5.1a) as follows :
(
− Fε(uh), ε(u− uh)

)
H

+
(
− E∗∇ϕh, ε(u− uh)

)
L2(Ω)d

≤
(
Fε(uh), ε(vh − u)

)
H

+
(
E∗∇ϕh, ε(vh − u)

)
L2(Ω)d

+ j(uh, vh)− j(uh, uh) + ( f , uh − vh)V , ∀vh ∈ Kh. (5.5)

Adding (5.4) and (5.5), we obtain
(
Fε(u)− Fε(uh), ε(u− uh)

)
H

+
(
∇(ϕ− ϕh), E ε(u− uh)

)
L2(Ω)d

≤
(
Fε(u)− Fε(uh), ε(u− vh)

)
H

+
(
Fε(u), ε(vh − u)

)
H

+
(
E∗∇ϕh, ε(vh − u)

)
L2(Ω)d

+ j(u, uh)− j(u, u) + j(uh, vh)

− j(uh, uh)− ( f , vh − u)V , ∀vh ∈ Kh.

Keeping in mind (5.3), we deduce
(
Fε(u)− Fε(uh), ε(u− uh)

)
H

+
(

β∇(ϕ− ϕh),∇(ϕ− ϕh)
)

L2(Ω)d

≤
(
Fε(u)− Fε(uh), ε(u− vh)

)
H

+
(
Fε(u), ε(vh − u)

)
H
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+
(
E∗∇ϕh, ε(vh − u)

)
L2(Ω)d

+
(

β∇(ϕ− ϕh),∇(ϕ− ξh)
)

L2(Ω)d

−
(
E ε(u− uh),∇(ϕ− ξh)

)
L2(Ω)d

+ j(u, uh)− j(u, u) + j(uh, vh)

− j(uh, uh)− ( f , vh − u)V − `(u, ϕ, ϕ− ϕh) + `(uh, ϕh, ϕ− ϕh)

− `(u, ϕ, ξh − ϕ) + `(uh, ϕh, ξh − ϕ), ∀vh ∈ Kh, ∀ξh ∈ Wh.

Using the assumptions (3.10)-(3.12), and the previous inequality, it follows that,

mF‖u− uh‖2
V + mβ‖ϕ− ϕh‖2

W ≤ R1 + R2 + R3 + R4 + R5, (5.6)

where

R1 =
(
Fε(u)− Fε(uh), ε(u− vh)

)
H

+
(

β∇(ϕ− ϕh),∇(ϕ− ξh)
)

L2(Ω)d

−
(
E ε(u− uh),∇(ϕ− ξh)

)
L2(Ω)d

,

R2 =
(
Fε(u), ε(vh − u)

)
H

+
(
E∗∇ϕh, ε(vh − u)

)
L2(Ω)d

+ j(u, vh)

− j(u, u)− ( f , vh − u)V ,

R3 = j(u, uh)− j(uh, uh) + j(uh, u)− j(u, u),

R4 = j(uh, vh)− j(u, vh) + j(u, u)− j(uh, u),

R5 = `(uh, ϕh, ϕ− ϕh)− `(u, ϕ, ϕ− ϕh) + `(uh, ϕh, ξh − ϕ)− `(u, ϕ, ξh − ϕ).

Let us estimate each of the five terms. For the first term, and by using the properties
of the operators F, β and E , we have

|R1| ≤ c
{‖ε(u− uh)‖H‖ε(u− vh)‖H + ‖ϕ− ϕh‖W‖ϕ− ξh‖W

+ ‖ε(u− uh)‖H‖ϕ− ξh‖W
}

, (5.7)

from the property (3.14), it follows

|R2| ≤‖Fε(u)‖H‖ε(u− vh)‖H + ‖E ∗∇ϕh‖H‖ε(u− vh)‖H
+ ‖Rσν(u)‖L∞(Γ3)‖µ(‖uτ‖)‖L2(Γ3)‖u− vh‖L2(Γ3)d

+ ‖ f ‖V‖u− vh‖V . (5.8)

Since

R3 =
∫

Γ3

(µ(‖uτ‖)|Rσν(u)| − µ(‖uh
τ‖)|Rσν(uh)|) (‖uh

τ‖ − ‖uτ‖)dγ

=
∫

Γ3

|Rσν(u)|(µ(‖uτ‖)− µ(‖uh
τ‖)) (‖uh

τ‖ − ‖uτ‖)dγ

+
∫

Γ3

µ(‖uh
τ‖)(|Rσν(u)| − |Rσν(uh)|) (‖uh

τ‖ − ‖uτ‖)dγ,

and using (3.14), we have

|R3| ≤ c(‖Rσν(u)‖L∞(Γ3)Lµ + µ∗)‖u− uh‖2
V . (5.9)
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Similarly

R4 =
∫

Γ3

(
µ(‖uh

τ‖)|Rσν(uh)| − µ(‖uτ‖)|Rσν(u)|
)
(‖vh

τ‖ − ‖uτ‖)dγ

=
∫

Γ3

|Rσν(u)|
(

µ(‖uh
τ‖)− µ(‖uτ‖)

)
(‖vh

τ‖ − ‖uτ‖)dγ

+
∫

Γ3

µ(‖uh
τ‖)

(
|Rσν(uh)| − |Rσν(u)|

)
(‖vh

τ‖ − ‖uτ‖)dγ,

and then

|R4| ≤ c‖u− uh‖V‖u− vh‖L2(Γ3)d , (5.10)

from (3.18a), we find

R5 =−
∫

Γ3

(ψ(uν)φL(ϕ− ϕ0)− ψ(uh
ν)φL(ϕh − ϕ0))(ϕ− ϕh)dγ

−
∫

Γ3

(ψ(uν)φL(ϕ− ϕ0)− ψ(uh
ν)φL(ϕh − ϕ0))(ξh − ϕ)dγ

=−
∫

Γ3

ψ(uν)(φL(ϕ− ϕ0)− φL(ϕh − ϕ0))(ϕ− ϕh)dγ

−
∫

Γ3

φL(ϕh − ϕ0)(ψ(uν)− ψ(uh
ν))(ϕ− ϕh)dγ

−
∫

Γ3

ψ(uν)(φL(ϕ− ϕ0)− φL(ϕh − ϕ0))(ξh − ϕ)dγ

−
∫

Γ3

φL(ϕh − ϕ0)(ψ(uν)− ψ(uh
ν))(ξh − ϕ)dγ,

thus by using (3.13), the bounds |φL(ϕ− ϕ0)| ≤ L, and the Lipschitz continuity of the
function φL, we obtain

|R5| ≤Mψ

∫

Γ3

|ϕ− ϕh|2dγ + LLψ

∫

Γ3

|ϕ− ϕh||uν − uh
ν|dγ

+ Mψ

∫

Γ3

|ϕ− ϕh||ξh − ϕ|dγ + LLψ

∫

Γ3

|uν − uh
ν||ξh − ϕ|dγ,

therefore

|R5| ≤Mψc1‖ϕ− ϕh‖2
W + LLψc0c1‖u− uh‖V‖ϕ− ϕh‖W

+ Mψc1‖ϕ− ϕh‖W‖ϕ− ξh‖L2(Γ3) + LLψc0‖u− uh‖V‖ϕ− ξh‖L2(Γ3). (5.11)

Applying now the η-inequality

ab ≤ ηa2 +
1

4η
b2,
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and using the bounds (5.7)-(5.11), after some calculations, it follows that

‖u− uh‖2
V + ‖ϕ− ϕh‖2

W

≤c
{
‖u− vh‖2

V + ‖ϕ− ξh‖2
W + ‖u− vh‖2

L2(Γ3)d + ‖ϕ− ξh‖2
L2(Γ3)

+
(‖Fε(u)‖H + ‖E ∗∇ϕh‖H + ‖ f ‖V

)‖u− vh‖V

+
(‖Rσν(u)‖L∞(Γ3)‖µ(‖uτ‖)‖L2(Γ3)

)‖u− vh‖L2(Γ3)d

}
,

so the inequality (5.2) holds. ¤
The inequality (5.2) is a basis for deriving error estimation and convergence anal-

ysis. In an analogous way, we can improve the estimate (5.2) under the regularity
assumption στ∈L2(Γ3)d. In this case, integrating by parts the Eq. (2.3) and using the
constitutive law (2.1), and the boundary conditions (2.5)-(2.8), we obtain

R2 =
∫

Γ3

στ(vh
τ − uτ) +

(E∗∇(ϕh − ϕ), ε(vh − u)
)

L2(Ω)d + j(u, vh)− j(u, u),

thus using Cauchy inequality given above, we have

|R2| ≤ η‖ϕ− ϕh‖2
W +

1
4η
‖ε(u− vh)‖2

H

+
(‖στ‖L2(Γ3)d + ‖Rσν(u)‖L∞(Γ3)‖µ(‖uτ‖)‖L2(Γ3)

)‖u− vh‖L2(Γ3)d , (5.12)

to replace (5.12). As a result we have the following variant of Theorem 5.1.

Theorem 5.2. Under the assumptions of Theorem 4.1 with the same value of L∗, assume
additionally στ ∈ L2(Γ3)d. Then for some constant c > 0, we have

‖u− uh‖V + ‖ϕ− ϕh‖W

≤c inf
(vh,ξh)∈Kh×Wh

{
‖u− vh‖V + ‖ϕ− ξh‖W + ‖u− vh‖L2(Γ3)d + ‖ϕ− ξh‖L2(Γ3)

+
(‖στ‖L2(Γ3)d + ‖Rσν(u)‖L∞(Γ3)‖µ(‖uτ‖)‖L2(Γ3)

) 1
2 ‖u− vh‖

1
2
L2(Γ3)d

}
. (5.13)

To estimate the errors provided by the approximation of the finite element spaces Vh

and Wh, we need to make an additional assumption on the regularity of the solution

u ∈ H2(Ω)d, u|Γ3
∈ H2(Γ3)d, ϕ ∈ H2(Ω), ϕ|Γ3

∈ H2(Γ3). (5.14)

Again denoting Πhu and Πh ϕ the standard finite element interpolation operators of u
and ϕ, respectively, then we have the interpolation error estimate (cf. [7])

‖u−Πhu‖V ≤ ch|u|H2(Ω)d ,

‖ϕ−Πh ϕ‖W ≤ ch|ϕ|H2(Ω).
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The restriction of the partitions τh on Γ3 induces a regular family of finite-element
partitions of Γ3. So we also have the interpolation error estimate

‖u−Πhu‖L2(Γ3)d ≤ ch2|u|H2(Γ3)d ,

‖ϕ−Πh ϕ‖L2(Γ3) ≤ ch2|ϕ|H2(Γ3).

We notice that for v ∈ K ∩ C(Ω)d, Πhv ∈ Kh.
Therefor, under the regularity assumption (5.14), we have the following error esti-

mate:

‖u− uh‖V + ‖ϕ− ϕh‖W

≤ch
{
|u|H2(Ω)d + |ϕ|H2(Ω) + h|u|H2(Γ3)d + h |ϕ|H2(Γ3)

+
(‖στ‖L2(Γ3)d + ‖Rσν(u)‖L∞(Γ3)‖µ(‖uτ‖)‖L2(Γ3)

) 1
2 |u|

1
2
H2(Γ3)d

}
.

The finite element system (5.1a)-(5.1b) can be approximated by a fixed point iteration
method. This follows from a discrete analogue of the proof of Theorem 4.1. Given an
initial guess (uh

0, ϕh
0), we define a sequence (uh

n, ϕh
n)∈Kh ×Wh, for all n ∈ N recur-

sively by
(
Fε(uh

n+1), ε(vh)− ε(uh
n+1)

)
H

+
(
E∗∇ϕh

n+1, ε(vh)− ε(uh
n+1)

)
L2(Ω)d

+ j(uh
n, vh)− j(uh

n, uh
n+1) ≥ ( f , vh − uh

n+1)V , ∀vh ∈ Kh, (5.15a)

(β∇ϕh
n+1,∇ξh)L2(Ω)d −

(
E ε(uh

n+1),∇ξh
)

L2(Ω)d

+ `(uh
n, ϕh

n, ξh) = (q, ξh)W , ∀ξh ∈ Wh. (5.15b)

We have the following convergence result.

Theorem 5.3. Under the assumptions of Theorem (4.1) with the same value of L∗, the iteration
method (5.15a)-(5.15b) converges :

‖uh
n − uh‖V → 0, as n → ∞,

‖ϕh
n − ϕh‖W → 0, as n → ∞.

Furthermore, for some constant 0 < k < 1, we have the estimate

‖uh
n − uh‖V ≤ ckn,

‖ϕh
n − ϕh‖W ≤ ckn.

(5.16)

Proof. Using lemma 4.1, it is easy to see that
(i) The couple xh = (uh, ϕh) is a solution to problem PVh, if and only if :

(Axh, yh − xh)X + j̃(xh, yh)− j̃(xh, xh) + ˜̀(xh, y− xh)

≥( f , yh − xh)X, ∀yh = (vh, ξh) ∈ Kh ×Wh. (5.17)
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(ii) The couple xh
n = (uh

n; ϕh
n) is a solution to problems (5.15a)-(5.15b) if and only if

(Axh
n+1, yh − xh

n+1)X + j̃(xh
n, yh)− j̃(xh

n, xh
n+1) + ˜̀(xh

n, yh − xn+1)

≥( f , y− xh
n+1)X, ∀y = (vh, ξh) ∈ Kh ×Wh. (5.18)

We take yh = xh
n+1 in (5.17), yh = xh in (5.18), and adding, we have

(Axh − Axh
n+1, xh − xh

n+1)X

≤ j̃(xh, xh
n+1)− j̃(xh, xh) + j̃(xh

n, xh)− j̃(xh
n, xh

n+1)

+ ˜̀(xh
n, xh − xh

n+1)X − ˜̀(xh, xh − xh
n+1)X.

Then as in the proof of the uniqueness of Theorem 4.1, we can derive the estimate

‖xh − xh
n+1‖X ≤ c6(Lµ + µ∗ + LψL + Mψ)‖xh − xh

n‖X,

thus

‖xh − xh
n+1‖X ≤

(Lµ + µ∗ + LψL + Mψ)
L∗

‖xh − xh
n‖X.

Under the stated assumption, k ≡ (Lµ + µ∗ + LψL + Mψ)/L∗<1, and we have the
estimate (5.16). ¤
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