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Abstract. To understand lattice Boltzmann model capability for capturing non-
equilibrium effects, the model with first-order expansion of the equilibrium dis-
tribution function is analytically investigated. In particular, the velocity profile
of Couette flows is exactly obtained for the D2Q9 model, which shows retaining
the first order expansion can capture rarefaction effects in the incompressible limit.
Meanwhile, it clearly demonstrates that the D2Q9 model is not able to reflect flow
characteristics in the Knudsen layer.
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1 Introduction

Due to rapid development of micro/nano-technologies and modern material process-
ing techniques such as laser fabrication processing and plasma etching [9, 10, 12], the
research interest in rarefied gas dynamics has shifted to low-speed flows under the
standard ambient temperature and pressure. For non-equilibrium flows, the linear
constitutive relation for stress, which is assumed in the Navier-Stokes equation, is
no longer valid. Therefore, kinetic methods or extended hydrodynamic models have
to be employed, e.g., the direct simulation Monte Carlo (DSMC) method, and Grad
13 moment model. However, the DSMC simulations is computationally expensive,
especially for slow microflows with small Knudsen number. Meanwhile, the direct
solution of the Boltzmann equation is still very complex due to the collisional integral.
The extended hydrodynamic models are only applicable to the near hydrodynamic
regime.
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The lattice Boltzmann (LB) framework can be served as an alternative computa-
tionally efficient method for non-equilibrium gas flows. It was originally developed
for hydrodynamics and is proved to be a viable numerical tool [1, 4, 5, 17, 25]. Com-
pared to the traditional kinetic theory, the LB framework can be efficient since it uti-
lizes a minimal set of velocities in the phase space [5]. Therefore, significant efforts
have been devoted to develop or examine the capability of LB models for finite Knud-
sen number flows, e.g., [1, 2, 6, 11, 13, 21, 22, 24, 26–30]. It was shown that the LB model
with discrete velocity set derived from high-order Gauss Hermite quadratures can
provide a computationally efficient way of solving the Boltzmann model equation.
It can asymptotically recover the Bhatnagar-Gross-Krook (BGK) equation. With the
first order approximation of the equilibrium distribution function, it is equivalent to
discrete velocity model (DVM) approach of solving the linearized BGK (LBGK) equa-
tion [16]. Therefore, the corresponding LB model can capture non-equilibrium effects.

In this work, we will analytically investigate the capability of LB model for non-
equilibrium flows. With the first order expansion, the governing equations for distri-
bution function can be great simplified so that they can be solved directly by using
available mathematical techniques [14, 19, 20]. In particular, the exact velocity profile
of Couette flows will be obtained for the so-called D2Q9 model [18].

2 Lattice Boltzmann model

LB models can be constructed by utilizing the Gauss-Hermite quadratures [7,8,15,23,
24]. The Boltzmann-BGK equation is

∂ f
∂t

+ ξ · ∇ f + g · ∇ξ f = − p
µ

(
f − f eq), (2.1)

where f denotes the distribution function; ξ, the phase velocity; p, the pressure; g, the
body force; and µ, the gas viscosity. To examine rarefaction effects, it is convenient to
use the following non-dimensional variables

r̂ =
r
L

, û =
u√
RT0

, t̂ =
√

RT0t
L

, (2.2a)

ĝ =
Lg
RT0

, ξ̂ =
ξ√
RT0

, T̂ =
T
T0

, (2.2b)

where u is the macroscopic velocity; R, the gas constant; T, the gas temperature; T0,
the reference temperature; r, the spatial position; and L, the characteristic length of the
flow system. The symbol hat, which denotes dimensionless value, will hereinafter be
omitted. The Knudsen number can be defined by using macroscopic properties as

Kn =
µ
√

RT0

pL
. (2.3)
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Based on these non-dimensional variables, the non-dimensional form of the BGK
equation becomes

∂ f
∂t

+ ξ · ∇ f + g · ∇ξ f = − 1
Kn

(
f − f eq), (2.4)

where the Maxwell distribution in D-dimensional Cartesian coordinates can be writ-
ten as

f eq =
ρ

(2πT)D/2 exp
[−(ξ − u)2

2T

]
. (2.5)

By choosing an apropriate Hermite expansion and a sufficiently accurate Gauss-Hermite
quadrature, Eq. (2.4) can be discretized as

∂ fα

∂t
+ ξα · ∇ fα = − 1

Kn
(

fα − f eq
α

)
+ gα, (2.6)

where

fα =
wα f (r, ξα, t)

ω(ξα)
, f eq

α =
wα f eq(r, ξα, t)

ω(ξα)
, and gα =

wαF(r, ξα, t)
ω(ξα)

.

Therefore, the LB equation, i.e., Eq. (2.6) is now obtained by discretizing Eq. (2.4) in
the velocity space. The specific form of f eq

α and gα can be accordingly obtained. For
isothermal problems where T = 1, a typical choice is the following second order form

f eq
α = wαρ

{
1 + ξα · u +

1
2
[
(ξα · u)2 − u2]}, (2.7a)

gα = wαρ
{

g · ξ + (g · ξ)(u · ξ)− g · u
}

. (2.7b)

It was shown that the Gauss-Hermite quadrature is the upmost factor in determining
how accurate rarefaction effects can be captured while the Hermite expansion order
for the equilibrium distribution function is not relevant [16]. The first-order expansion
is sufficient for the LB model to capture isothermal non-equilibrium flow phenomena
in the incompressible limit, if the Gauss-Hermite quadratures can provide sufficient
accuracy [16]. This has been confirmed both theoretically and numerically [16].

In this work, we will further analytically investigate simple Couette flows to see
whether the rarefaction effect can be described in the LB model. The equilibrium
distribution function, f eq, where the first order expansion is retained, can be written
as

f eq
α = wαρ

{
1 + ξα · u

}
. (2.8)

By introducing
fα = f 0

α (1 + ϕα),

where f 0
α is the equilibrium distribution function with u = 0, Eq. (2.6) can rewritten as

(see [16])
∂ϕα

∂t
+ ξ · ∇ϕα = − 1

Kn
(

ϕα − ξα · u
)
, (2.9)
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in the incompressible limit, which is the linearized form of Eq. (2.6). For simplicity,
the force term has been omitted. In the following, the so-called D2Q9 model will be
examined, which has the discrete velocity set as

ξαx =
[
0,
√

3,
√

3, 0,−
√

3,−
√

3,−
√

3, 0,
√

3
]
, (2.10a)

ξαy =
[
0, 0,

√
3,
√

3,
√

3, 0,−
√

3,−
√

3,−
√

3
]
, (2.10b)

wα =
[4

9
,

1
9

,
1

36
,

1
9

,
1
36

,
1
9

,
1

36
,

1
9

,
1
36

]
. (2.10c)

3 Analytical solution for the Couette flow

With simple geometry, the Couette flow can mimic many realistic shear dominant
applications. To ensure the rarefaction effects are not discounted by inappropriate
boundary condition, the Maxwellian diffuse reflection boundary condition will be
used [3] to describe gas/surface interactions. The lower plate is located at y=−1/2
and the upper one at y=1/2, and they are set to be moving with the velocities U1 and
U2 respectively.

For steady Couette flow, the exact form of nine governing equations for the D2Q9
model can be written as

ωϕ1(y) = 0, (3.1a)

−ω
√

3ux + ωϕ2(y) = 0, (3.1b)
√

3
d

dy
ϕ3(y)−ω

√
3ux + ωϕ3(y) = 0, (3.1c)

√
3

d
dy

ϕ4(y) + ωϕ4(y) = 0, (3.1d)

√
3

d
dy

ϕ5(y) + ω
√

3ux + ωϕ5(y) = 0, (3.1e)

ω
√

3ux + ωϕ6(y) = 0, (3.1f)

−
√

3
d

dy
ϕ7(y) + ω

√
3ux + ωϕ7(y) = 0, (3.1g)

−
√

3
d

dy
ϕ8(y) + ωϕ8(y) = 0, (3.1h)

−
√

3
d

dy
ϕ9(y)−ω

√
3ux + ωϕ9(y) = 0, (3.1i)

where
ω =

1
Kn

.

To obtain the velocity profile, only Eqs. (3.1b)-(3.1i) are relevant, though one can di-
rectly solve Eqs. (3.1a),(3.1d) and (3.1h). Moreover, we have the following relations

ϕ6(y) = −ϕ2(y), (3.2a)
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√
3

d
dy

[
ϕ3(y) + ϕ5(y)

]
+ ω

[
ϕ3(y) + ϕ5(y)

]
= 0, (3.2b)

−
√

3
d

dy
[
ϕ7(y) + ϕ9(y)

]
+ ω

[
ϕ7(y) + ϕ9(y)

]
= 0. (3.2c)

Therefore, there are only four independent equations.
One can explicitly solve Eqs. (3.1b)-(3.1i). The solutions are

ϕ2(y) =
1

4ω

(
ωC2e

1
3 ω
√

3y + 2C4yω + 2C3ω + 4
√

3C4

)
+

1
2

C4y

+
1
2

C3 − 1
4

C2e
1
3 ω
√

3y, (3.3a)

ϕ3(y) =
1
2

C1e−
1
3 ω
√

3y + C4y + C3, (3.3b)

ϕ5(y) =
1
2

C1e−
1
3 ω
√

3y − C4y− C3, (3.3c)

ϕ6(y) = − 1
4ω

(
ωC2e

1
3 ω
√

3y + 2C4yω + 2C3ω + 4
√

3C4

)

− 1
2

C4y− 1
2

C3 +
1
4

C2e
1
3 ω
√

3y, (3.3d)

ϕ7(y) = C2e
1
3 ω
√

3y − 1
2ω

(
ωC2e

1
3 ω
√

3y + 2C4yω + 2C3ω + 4
√

3C4

)
, (3.3e)

ϕ9(y) =
1

2ω

(
ωC2e

1
3 ω
√

3y + 2C4yω + 2C3ω + 4
√

3C4

)
, (3.3f)

therefore, the macroscopic velocity ux = ∑α wαξαx ϕα is

ux =
1

3ω

(√
3C4yω +

√
3C3ω + 3C4

)
. (3.4)

The coefficients can be determined by the kinetic boundary conditions, i.e.,

C1 = 0, C2 = 0, (3.5a)

C3 =
1
2

√
3
(
ω U1 + 4

√
3U1 + U2ω

)

ω + 2
√

3
, C4 =

ω
√

3
(−U1 + U2

)

ω + 2
√

3
. (3.5b)

Finally, we obtain the macroscopic velocity profile across the two plates for different
Knudsen numbers

ux =
y∆U

1 + 2
√

3Kn
+ U, (3.6)

where

U =
U1 + U2

2
, and ∆U = U2 −U1.

This solution completely agrees with the one given in [2,28]. However, it is interesting
to compare our analytical process with the one used in [2, 28] where the second-order
expansion for the equilibrium distribution function is used. This again clearly proves
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that retaining the first-order expansion of the equilibrium distribution function is suf-
ficient for capturing rarefaction effects in the incompressible limit. The result shows
that the D2Q9 model fails to capture flow characteristics in the Knudsen layer, i.e.,
the nonlinear constitutive relations. Our analysis will be extended to search for exact
solutions to higher-order LB models, and we will report our findings in due course.

4 Conclusions

We have analytically investigated the capability of LB model with the first-order ex-
pansion of the equilibrium distribution function for non-equilibrium flows. The exact
velocity profile of Couette flow for the D2Q9 model reveals that the LB model with
the first-order expansion of the equilibrium distribution function is sufficient for cap-
turing rarefaction effects in the incompressible limit.
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