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Abstract. A general and easy-to-code numerical method based on radial basis func-
tions (RBFs) collocation is proposed for the solution of delay differential equations
(DDEs). It relies on the interpolation properties of infinitely smooth RBFs, which al-
low for a large accuracy over a scattered and relatively small discretization support.
Hardy’s multiquadric is chosen as RBF and combined with the Residual Subsam-
pling Algorithm of Driscoll and Heryudono for support adaptivity. The perfor-
mance of the method is very satisfactory, as demonstrated over a cross-section of
benchmark DDEs, and by comparison with existing general-purpose and special-
ized numerical schemes for DDEs.
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1 Introduction

In this work, we present a general numerical approach for solving DDEs based on the
RBF collocation method invented by Kansa [19] [20], also known as Kansa’s method.
Due to its many advantages (which include superior interpolation accuracy, spectral
convergence, robustness with respect to the discretization support, and ease of cod-
ing), Kansa’s method is becoming increasingly popular for the solution of ordinary
and partial differential equations (ODEs and PDEs, respectively). Its performance in
the solution of DDEs, however, has scarcely been explored, with the exception of a
recent paper on the solution of neutral DDEs with multiquadrics [22].
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This paper is organized as follows. In Section 2, Kansa’s method is adapted to a
general formulation of (first order) DDEs. The basic algorithm is further improved by
the inclusion of several heuristic observations concerning the tunable shape parameter
which appears in the multiquadric RBF, and by the residual subsampling algorithm
(RSA) by Driscoll and Heryuodono [8]. The RSA is at the core of the high accuracy
attained by the multiquadrics interpolant. Section 2 is closed by some remarks con-
cerning the solution of nonlinear problems with Kansa’s method. Section 3 tests the
proposed method against a cross-section of benchmark problems taken from the liter-
ature. As we shall see, not only does Kansa’s method attain excellent results in well-
understood (first order) DDEs, but also in the less explored neutral and higher-order
DDEs — which may offer an additional tool for looking into this kind of problems.
Finally, Section 4 concludes the paper.

2 Solving linear DDEs through Kansa’s method

Consider the following linear DDE

y′(x)− p(x)y(x)− q(x)y[x− τ(x)] = s(x), if x ∈ (a, b], (2.1)
y(x) = h(x), if x ≤ a. (2.2)

It will be convenient to split (2.2) into a DDE and an ODE

y′(x)− p(x)y(x)− q(x)y[x− τ(x)] = s(x), if x− τ(x) > a, (2.3)
y′(x)− p(x)y(x) = q(x)h[x− τ(x)] + s(x), if x− τ(x) < a, (2.4)

y(a) = h(a). (2.5)

Discretize [a, b] into a set N scattered nodes ξ={xj, j = 1...N} (with x1=a and xN=b),
and consider as well the outside point x0=a− λ, λ>0. We seek an approximate solu-
tion to (2.3)-(2.5) in the form of an expansion of N + 1 RBFs φj(r):

y(x) =
j=N

∑
j=0

αjφ(‖x− xj‖). (2.6)

The addition of an RBF at x0 allows to enforce both the initial condition and the DDE at
x=a, thus contributing to the accuracy (this is the PDECB strategy discussed in [12]).
Once the coefficients αj are available, the approximate RBF solution can be recon-
structed anywhere in [a, b]. In order to solve for the coefficients, (2.3)-(2.5) are en-
forced over (2.6) on a set of collocation N nodes, usually ξ. Notice that no equation is
collocated on x0, but two of them are on x1=a. For i=1, . . . , N, this leads to the linear
system of dimension N + 1,

j=N

∑
j=0

{
φ′j(rij)− p(xi)φj(rij)− q(xi)φj(‖xi − τ(xi)− xj‖)

}
= s(xi),

if xi − τ(xi) > a, (2.7)
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j=N

∑
j=0

{
φ′j(rij)− p(xi)φj(rij)

}
αj = q(xi)h[xi − τ(xi)] + s(xi),

if xi − τ(xi) ≤ a, (2.8)
j=N

∑
j=0

αjφj(rij) = h(a), if xi = a, (2.9)

where rij=‖xi − xj‖. In the remainder of this paper we will restrict ourselves to the
well-tested Hardy’s multiquadric (MQ),

φj(rj) =
√
‖ x− xj ‖2 +c2

j , (2.10)

whose derivative is

φ′j(rj) =
x− xj√

‖ x− xj ‖2 +c2
j

, (2.11)

as the RBF of choice. The shape of the MQ depends on the free parameter cj (hence the
name of shape parameter for it). The fact that the MQ has global support leads to fully
populated matrices. It is a hallmark of Kansa’s method that the best accuracy can only
be obtained at the expense of extreme ill-conditioning, as will be discussed next. In
order to improve stability, the direct inversion of the linear system (2.7)-(2.9) has been
replaced by the use of Penrose’s pseudoinverse.

2.1 Choosing the shape parameters cj

Although the accuracy of the interpolant (2.6) is largely influenced by the values
cj, j=0, . . . , N + 1, theoretical results regarding the choice of an ’optimal’ set of values
are not yet available, and heuristic rules must be used instead, which mostly address
the homogeneous case cj=c. In this case, the convergence rate of the error of the in-
terpolant (2.6) has been proven to go as Λc/h in interpolation problems [23], and has
been shown to obey Λ

√
c/h in elliptic PDEs [6], where 0<Λ<1 and h is the distance

between nodes. Therefore, the accuracy could seemingly be improved at no compu-
tational cost by increasing c. In practice, however, this spectral regime of convergence
only takes place for extremely smooth RBFs, i.e. at the cost of shrinking the interpo-
lation space. Moreover, as c→∞, the MQ profile becomes increasingly flatter and the
collocation system (2.7)-(2.9) becomes extremely ill-conditioned, dictating in practice
a limit for the accuracy attainable at a given resolution h and machine precision. A
trade-off principle arises between accuracy and stability, which is actually common to
all parameter-dependent RBFs, not only MQs [28]. Optimal results are obtained by
pushing c as large as possible before incurring in numerical instability. Since in the
approximation of differential equations the exact solution is unknown, other estima-
tors are used instead, which replicate the behavior of the error curves with c and are
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available in run time. Examples are the ’leave-one-out’ strategy [27] [11], or the resid-
ual to the ODE/PDE [6]. For instance, in (2.3)-(2.5),the pointwise residual is defined
as

R(x) = s(x)−
j=N

∑
j=0

αjφ
′
j(x) + p(x)

j=N

∑
j=0

αjφj(x) + q(x)
j=N

∑
j=0

αjφ
′
j[x− τ(x)]. (2.12)

The case where c is center-dependent has been less investigated, although it may out-
perform MQ collocation with constant c, as shown in a numerical investigation by
Kansa and Carlson [21]. Carlson and Foley showed that cj is related to the curvature
of the function to be interpolated at x≈xj [4]. In [15], Hon and Mao let cj=Mj + b,
where j is the center index and M and b are chosen so that the condition number κ is
about 1016. In [31], Wertz et al. reported improved accuracy in a 2D problem if cjÀc0

for (xj, yj)∈∂Ω and cj=µ(1 + γ(−1)j) if (xj, yj)∈Ω, for some constants µ and γ. These
findings were confirmed in the 1D case in a later work by Fornberg and Zuev [13].
Another common strategy has been to set c proportional to the distance to the closest
node in the point set, v.g. in [8].

2.2 Extension to nonlinear DDEs

In the case that the DDE is nonlinear, or that the lagged argument is a function of
the solution itself (a state-delay DDE), the collocation of the interpolant (2.6) leads to a
system of nonlinear algebraic equations for the unknowns α0, . . . , αN . Let us write this
system as

F0(α0, . . . , αN) = 0,
... (2.13)

FN(α0, . . . , αN) = 0.

In order to solve ~F=~0, a gradient-based method may be used. In the MATLAB routine
fsolve, the user can choose between providing the analytical Jacobian J to the solver

J =




∂F0

∂α0
. . .

∂F0

∂αN
...

. . .
...

∂FN

∂α0
. . .

∂FN

∂αN




, (2.14)

or allowing it to construct J based on finite differences. In order to keep the implemen-
tation of Kansa’s method as simple and general as possible, we have only explored the
latter possibility. However, there is a practical drawback: while it is well known that
the convergence of Newton-type methods is very sensitive to the condition number
of the Jacobian, RBF interpolation needs to push κ for the best accuracy, often beyond
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the ill-condition threshold (which is κ≈1014 in our MATLAB environment). Conse-
quently, we have used instead a trust-region method (that of Powell’s [26]) in our
numerical experiments, with good results. Nevertheless, the condition number must
be kept lower than in linear DDEs in order to guarantee convergence, which is likely
to prevent optimal accuracy as well.

2.3 Adaptive selection of nodes

Another important yet open issue in Kansa’s method is the optimal number and lo-
cation of RBF centers/collocation nodes. We will restrict ourselves to the case where
both point sets are identical (save for the extra RBF center at x0 added in order to en-
force the equation at x = a). In 1D problems, regular grids are often preferred for sim-
plicity, although experimental evidence suggests that the optimal placement of nodes
is problem-dependent, i.e. is determined by the function to be interpolated. We will be
using an algorithm introduced by Driscoll and Heryuodono [8] which works well in
practice, both for interpolation and differential equations and not only in 1D. The idea
is to monitor the residual R to the differential equation at midpoints and iteratively
refine the point set until R drops below some user-defined threshold. The reader is
referred to the original paper for details. Here, we present a slightly modified version
of the algorithm which we have preferred.

Algorithm 2.1: Residual Subsampling Algorithm (RSA)

a) Initially, discretize [a, b] into a grid of N(0) nodes with spacing ∆=(b − a)/(N(0) − 1).
Define xj=a + (j− 1)∆, j = 1, . . . , N(0), ξ(0)={xj}, and x0=a− ∆. The N(0)+1 starting

MQ centers are the set x0∪ξ(0). Define the values of the adjustable parameters λ>0, µ>0,
γ>0, η>0, θmax>θmin>0, and itmax.

b) For k = 0, . . . until max |R(k)
j |<θmax or k>itmax

– Distribute the shape parameters as c0=cN(k)=λµd1, and cj=µdj[1 + γ(−1)j], j=
1,. . . , N(k) − 1, where dj is the distance to the closest collocation node from xj.

– Compute set of midpoints zj=(xj + xj+1)/2, j=1...N(k) − 1.

– Solve the DDE through Kansa’s method with y(x)=∑
j=N(k)

j=0 αjφj(‖x− xj‖).
– Compute the residuals {R(k)

j } to the differential equation at midpoints.

– Set Θ(k)=max
(
θmax, maxj=1...N(k)−1 |R

(k)
j /η|).

– Define point set Ξ(k)=ξ(k) ∪ {zj such that |R(k)
j |>Θ(k)}.

– Delete points xi, i=2...N(k) − 1 such that |R(k)
i−1|<θmin>|R(k)

i+1| from Ξ(k).

– Let ξ(k+1)=Ξ(k) and {x1, . . . , xN(k+1)}=ξ(k+1).

– Update {dj} for j=1...N(k+1).

– Consider the set of 1 + N(k+1) MQs centered at x0 ∪ ξ(k+1) and iterate.

In the above algorithm, the shape parameters are adjusted after each iteration in
order to prevent the condition number from skyrocketing. As further nodes are in-
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cluded, however, the onset of instability will be eventually reached and the accuracy
of the MQ approximation begins to deteriorate. The only tweakings to the original
RSA in [8] are: PDECB, the use of the recipe in [31] in the distribution of c’s, and the
subtitution of θmax by Θ(k) on enlargement of the point set.

3 Numerical examples

In the remainder of the paper, we will refer to the method described in section 2 as
MQCM (multiquadric collocation method). The MQCM is coded in MATLAB 7 run-
ning on a laptop with 1.8 GHz CPU and 1 GB RAM. In this section, the MQCM is
tested against a cross-section of benchmark DDEs taken from the literature. The per-
formance of the MQCM is compared with that of MATLAB built-in general-purpose
routines DDE23 [29] by Shampine and Thompson, or DDESD [30] by Shampine, which
are both based on Runge-Kutta-type schemes. DDE23 is restricted to constant delays,
while the more recent DDESD can handle variable- and state-delay equations as well.
For Examples 4 and 5, DDENSD has been used instead of DDESD, which is a routine
based on DDESD for DDEs of neutral type. The fact that these three programs are
written in MATLAB allows for a direct comparison of error estimates and CPU times
with MQCM. In particular, the root mean squared error is defined as

RMS(ε) =

√
∑i=Nev

i=1 [uNUM(zi)− uEX(zi)]2

Nev
, (3.1)

where uEX is the exact solution, uNUM the approximation yielded by the considered
numerical scheme, ε is the point-wise error, and zi, i = 1, . . . , Nev=103 is a set of equis-
paced evaluation points in [a, b]. In some of the examples presented, published results
of some specialized method for the kind of DDE considered have been included as
further reference. In such cases, not all the estimators are available for comparison.
CPU times, in particular, cannot be directly compared - which is denoted by adding
an * to the corresponding entry.

In all of the numerical examples which follow, the working parameters for the RSA
have been set to

λ = 10, µ =
√

40/N(0), γ = 0.1, η = 10, θmax = 10−13, θmin = 10−14, (3.2)

except in Example 5 where µ=
√

25/N(0). The initial discretization is N(0)=6 in Ex-
amples 1-4, and N(0)=10 in Examples 5 and 6.

3.1 Example 1: Stiff DDE

Consider the following DDE with a stiffness parameter p (Example 1 in [17]).
{

y′(x) = Ay(x) + y
(
x− 3π

2

)− A sin(x), x ∈ [0, 13],
y(x) = epx + sin(x), x ∈ [− 3π/2, 0

]
,

(3.3)
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Table 1: Comparison to other methods (Example 1).

p x εMQ εDDE23 εSPC
3π/4 5.1(-15) 1.9(-12) 2.6(-6)
3π/2 6.2(-14) 1.5(-12) 7-9(-8)

-0.1 9π/4 9.7(-14) 1.4(-12) 1.0(-5)
3π 3.5(-14) 8.2(-13) 3.1(-7)
15π/4 1.6(-13) 8.6(-13) 8.4(-7)

DoF 261 71072 27
RMS(ε) 9.4(-14) 2.3(-12)

CPU 16 891 0.009 *
3π/4 1.9(-13) 2.5(-11) 8.3(-9)
3π/2 7.0(-14) 1.3(-11) 7.6(-7)

-1 9π/4 4.2(-14) 6.6(-12) 1.5(-8)
3π 6.6(-14) 2.0(-14) 4.2(-7)
15π/4 6.4(-14) 1.9(-11) 2.0(-7)

DoF 254 82258 33
RMS(ε) 6.0(-14) 3.9(-11)

CPU 26 1358 0.017 *
3π/4 9.3(-14) 2.0(-10) 1.3(-10)
3π/2 1.4(-13) 1.2(-10) 1.1(-9)

-2 9π/4 4.2(-14) 2.0(-10) 2.1(-10)
3π 1.8(-14) 1.0(-12) 1.1(-9)
15π/4 8.1(-14) 1.0(-10) 2.1(-10)

DoF 281 151122 51
RMS(ε) 1.4(-13) 2.1(-10)

CPU 19 5850 0.036 *

where A=p− e−3πp/2. The exact solution is given by yEX(x)=epx + sin(x). For p<0,
the solution consists of a short transient of exponential decay, followed by periodic
sinusoidal oscillations (see Fig. 1).

Since the parameter p also enters the equation exponentially, its effect on the stiff-
ness of the problem is dramatic. Table 1 compares the performance of the MQCM with
that of DDE23 and with that of the spectral method in [17] (SPC). In Table 1, an entry
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Figure 1: Plots of the exact solution of Example 1.
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Table 2: RSA iterations (Example 1).

p = −0.1 p = −1 p = −2
it DoF RMS(ε) Condition ] DoF RMS(ε) Condition ] DoF RMS(ε) Condition ]
0 7 0.77 3.3(+10) 7 0.94 1.9(+14) 7 1.04 3.9(+17)
1 12 0.0040 3.2(+14) 10 0.0112 3.4(+14) 11 0.02 1.2(+17)
2 15 1.6(-6) 4.3(+13) 14 4.0(-5) 5.3(+16) 13 1.6(-4) 7.3(+17)
3 22 7.5(-8) 1.7(+16) 23 1.0(-7) 4.3(+17) 15 3.0(-4) 2.3(+17)
4 27 3.5(-7) 4.1(+18) 27 6.2(-8) 4.2(+17) 23 2.1(-6) 7.5(+16)
5 51 6.4(-11) 1.1(+18) 45 1.6(-10) 1.8(+19) 27 1.3(-7) 4.0(+17)
6 94 5.5(-12) 2.2(+18) 67 3.2(-10) 7.5(+18) 43 1.3(-9) 8.9(+17)
7 110 4.0(-12) 5.9(+18) 73 1.3(-11) 2.1(+18) 69 1.1(-10) 9.1(+18)
8 146 1.8(-12) 9.7(+18) 95 1.1(-11) 1.5(+19) 70 2.3(-11) 1.6(+19)
9 153 2.3(-13) 3.3(+18) 120 1.5(-12) 1.4(+19) 77 6.4(-12) 4.9(+18)
10 261 9.4(-14) 1.4(+19) 127 5.8(-13) 7.6(+18) 132 1.8(-12) 2.2(+18)
11 203 3.3(-13) 3.1(+19) 219 2.6(-12) 1.3(+19)
12 239 1.7(-13) 6.7(+19) 281 1.4(-13) 3.2(+19)
13 254 6.0(-14) 1.4(+19)

like 5.1(−15) means 5.1×10−15, and so on. DoF (degrees of freedom) stands for the
size of support of the given discretization scheme -the number of MQ centers in the
MQCM. The listed results for DDE23 are the best within a reasonable computing time
and/or memory restrictions.

The MQCM is barely affected, if anything, by the increasing stiffness of the prob-
lem. In fact, the advantages of the MQCM in dealing with stiff ODEs were already
reported in [15]. In terms of efficiency, the MQMC outperforms DDE23. The inversion
of full matrices required by the MQCM is made up for by the gain in the size of the
discretization support.

On the other hand, the accuracy of the SPC can be improved by increasing the
order of the scheme, as happens in Table 1 for different p. The SPC is more efficient
than the MQCM, but is affected by the increasing value of p (see discussion in [17]).
Moreover, it is restricted to constant delays.

Table 2 shows the performance of the RSA throughout the iterations for this prob-
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Figure 2: Effect of RSA in Example 1, p=−2 (last
iteration, DoF=281): Shape-parameter and node
distributions.
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lem. While it converges on average, the scheme is clearly not monotone. It is surpris-
ing that the convergence can be sustained at so high condition numbers, even consid-
ering that in our implementation of Kansa’s method the ill-conditioning problem has
been -at least partially- ameliorated by the use of the pseudoinverse (instead of the
direct inversion of the matrix). We point out that this phenomenon of high accuracy
at very high condition numbers has already been reported when smooth functions are
interpolated with MQs [15].

Fig. 2 illustrates the effect of the node- and shape-parameter distributions accord-
ing to the RSA, for the last iteration in the case p=−2. Due to the many DoFs (281), it is
difficult to make out the individual nodes. Notice, however, that the node density es-
sentially varies inversely proportional to c. For the same number of collocation nodes,
but evenly arranged in [0, 13], the accuracy is much worse, with an RMS of 2.3(−7).
Indeed, it is also due to the fact that the shape parameters are generally lower, as the
condition number of roughly 1013 reflects. Therefore, we increased µ to yield a com-
parable condition number to that of the RSA. While the RMS drops to 2.0(−11), it is
still some 100 times higher than the accuracy attained by the RSA, therefore showing
the importance of node adaptivity (Fig. 3).

3.2 Example 2: Pantograph DDE

Consider the following pantograph differential equation (see also [3]).

y′(x) = −y(x) +
q
2

y(qx)− q
2

e−qx, 0 ≤ x ≤ T, (3.4)

y(0) = 1, 0 < q < 1,

whose solution is yEX(x)=e−x.
Numerical methods for DDEs like (3.4) are a topical subject of research because of

two features associated to a proportional delay of the form

τ(x) = (1− q)x, 0 < q < 1,

namely: it vanishes at x=0 and becomes unbounded as x→∞. The former one leads
to difficulties in carrying out the integration of the first step, while the latter entails
the need for a vast amount of computer memory if long term integration (TÀ0) is
required. In what follows we set T=10. Table 3 compares the MQCM with DDESD
and with the specialized reference method (REF) in [3], which works on a specific
(geometric) kind of mesh in order to attain superconvergence. The listed results for
DDESD are not the best attainable, but those for which the CPU time is comparable to
that of the MQCM.

A recent improvement to the reference method [3] is [16] , more efficient than the
former in case that long integration times T are required. For (3.4) with T=10 and
q=0.5, it attains |y(x=T)−yEX(x=T)|=1.8(−13) with 1280 nodes. The results of the
MQCM throughout the first 11 iterations of the RSA are shown in Table 4. A fifth
column has been added that lists the errors (in absolute value) of the MQCM solution
at x=T.
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3.3 Example 3: DDE with discontinuity propagation

In the event that the solution y(x) to the DDE has discontinuities or low-order deriva-
tive singularities, Kansa’s method performs relatively poorly. The reason is that nons-
mooth features do not belong to the interpolation space, which is made up of infinitely
derivable MQs that cannot possibly capture them accurately. Any attempt to do so will
bring about Gibbs’ oscillations around the singularities, whose amplitude will not be
damped by letting N→∞. An interesting approach is to include MQs with c=0 close
to the singularities as in [18]. However, although the oscillations are indeed reduced,
we have not been able to recover the high convergence rate attained with smooth so-
lutions. In order to solve DDEs with piecewise smooth solutions, Kansa’s method can
still be applied sequentially if the domain is partitioned into subintervals which are
C∞. For instance, assume that it can be predicted that the only three singularities take
place at a<x1<x2<x3< b. First, the DDE is solved in the subdomain a≤x<x1 to yield
y(1)

app(x). Then, y(1)
app(x) is used as history function for the second subdomain x1<x<x2

yielding y(2)
app(x), and so on.

The next example ( [17], Example 4, also [25] 1.1.12), deals with a DDE having
piecewise C∞ initial function:

y′(x) = y(x) + y(x− 1), (3.5)

y(x) =
{

0, x ∈ [−1,−1/3),
1, x ∈ [−1/3, 0].

The analytical solution for x∈[0, 8/3] is given by

yEX(x) =





ex, x ∈ [0, 2/3],
−1 + C1ex, x ∈ [2/3, 1],
xex−1 + C2ex, x ∈ [1, 5/3],
1 + C1xex−1 + C3ex, x ∈ [5/3, 2],
(x2/2− x)ex−2 + C2xex−1 + C4ex, x ∈ [2, 8/3],

C1 = 1 + e−2/3, C2 = −2e−1 + C1,

C3 =
5
3

e−1 + C2 − e−5/3 − C1
5
3

e−1,

C4 = e−2 + 2C1e−1 + C3 − 2C2e−1.

Notice that the discontinuity of the initial function propagates in x, giving rise to sin-
gularities of order k at points xk=−1/3 + k, k≥0. For both the MQCM and the SPC

Table 3: Comparison to other methods (Example 2).

REF MQ DDESD
q DoF MAX(ε) DoF MAX(ε) CPU DoF MAX(ε) CPU

0.9 1600 8.8(-13) 179 1.7(-13) 9.7 4136 3.7(-14) 11.8
0.5 1600 1.2(-11) 135 2.8(-13) 5.0 4136 3.5(-14) 11.2
0.2 1600 1.5(-11) 192 2.0(-13) 9.3 4136 3.3(-14) 11.0
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Table 4: RSA iterations (Example 2).

it DoF RMS(ε) Condition ] ε(x = T)
0 7 0.01 1.9(+11) 0.02
1 12 2.2(-5) 3.3(+15) 5.3(-6)
2 14 2.6(-5) 1.7(+14) 1.3(-4)
3 16 4.3(-7) 1.1(+14) 7.3(-7)
4 23 1.4(-8) 4.2(+16) 3.5(-9)
5 30 6.0(-10) 2.2(+17) 3.0(-10)
6 49 2.3(-10) 1.1(+18) 1.2(-10)
7 64 2.6(-11) 7.3(+18) 1.8(-10)
8 65 3.2(-11) 3.3(+18) 3.5(-11)
9 77 1.7(-12) 1.2(+18) 2.4(-12)
10 135 1.3(-13) 3.9(+18) 2.8(-13)
11 177 2.2(-13) 8.5(+18) 8.7(-15)

CPU 7.8

Table 5: Comparison to other methods (Example 3).

x εMQ εDDE23 εSPC
0.25 2.0(-14) 6.0(-15) 9.2(-13)
0.5 4.4(-14) 2.2(-14) 1.0(-13)

0.75 4.0(-14) 1.9(-13) 5.6(-15)
1 6.2(-14) 2.6(-13) 1.3(-15)

1.25 1.0(-13) 3.6(-13) 1.1(-11)
1.5 7.7(-14) 4.9(-13) 1.2(-11)

1.75 1.3(-13) 6.3(-13) 5.8(-14)
2 1.8(-13) 8.4(-13) 3.3(-15)

2.25 4.8(-13) 1.5(-12) 7.3(-11)
2.5 6.6(-13) 2.4(-12) 7.9(-11)

DoF 342 38386 45
RMS(ε) 3.2(-13) 9.3(-13)

CPU 11 246

to cope with this problem, the integration domain [a, b]=[0, 8/3] must be divided into
the 5 smooth subintervals in (3.6). The results of MQCM, SPC and DDE23 are listed in
Table 5. DDE23 has a ’Jumps’ option which has been set to a vector that contains the
locations of the discontinuities.

3.4 Example 4: Neutral state-delay DDE

Neutral DDEs (which involve lagged derivatives) are considered tougher to handle
with numerical methods than retarded ODEs and are an active research field. In the
following problem, taken from [24] (see also [25] 2.3.4), the delay is a function of the
solution itself, and therefore the DDE is nonlinear. The MQCM tackles it with Powell’s
method, implemented by the option ’dogleg’ of MATLAB nonlinear solver fsolve.

{
y′(x) = −y′(y(x)− 2), x ≥ 0
y(x) = 1− x, x ≤ 0.

(3.6)

The exact solution is yEX(x)=1 + x, 0 ≤ x ≤ 1.
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Table 6: RSA iterations (Example 4).

It DoF RMS(ε) Condition NL iter
0 7 0.0452 7.5(+11) f
1 13 1.3(-11) 5.1(+13) 22
2 14 1.2(-11) 2.9(+15) 16
3 18 1.9(-13) 1.1(+14) 19
4 24 2.0(-14) 2.5(+15) 15

CPU 7.5

The initial guess of y(x) required to trigger Powell’s method is yGUESS(x)=0. The
entry f in Table 6 means that Powell’s method fails to converge in the maximum num-
ber of iterations allowed (set to 30). Nevertheless, it yields an approximation good
enough to be used as a guess for the nonlinear solution with 13 MQs (whose solu-
tion is in turn used as a guess for the next RSA iteration, and so on). For reference,
DDENSD yields RMS(εREF)=2.2(−9) in 50.1 s. CPU time.

3.5 Example 5: Vanishing state-delay DDE

This example is a nonlinear neutral differential equation with vanishing state delay. It
was first proposed in [9] as a modification of a problem originally considered in [5]:





y′(x) = cos(x)
[
1 + y

(
xy2(x)

)]
+ cy(x)y′

(
xy2(x)

)
+ g(x), 0 ≤ x ≤ π,

g(x) = (1− c) sin(x) cos
(
x sin2(x)

)− sin
(
x + x sin2(x)

)
,

y(0) = 0.
(3.7)

For every choice of the parameter c, the exact solution is yEX(x)=sin(x). Because
the delay vanishes at x=0, π/2, 3π/2, ..., the numerical solution of (3.7) by Runge-
Kutta methods causes some difficulties. For the MQCM, the main difficulty is that the
condition number must be kept low enough (below 1014) for the nonlinear solver to
converge in a reasonable number of nonlinear iterations (again Powell’s algorithm in
the fsolve routine). Therefore, we have set N(0)=11 and µ=

√
20/N(0). The initial hint

of the solution is yGUESS=1/2. As reference results (REF), we have taken those of [14]
(example 2), where (3.7) is solved by the Radau-type code RADAR5 (Table 7). In the
case c=1, there is a singularity at x=π/2 -in the sense that y′(π/2) is not well defined-
and the MQCM with default parameters fails.

Table 7: RSA iterations (Example 5).

c DoF Condition CPU RMS(ε) εMQ(x = π) εREF(x = π)
-1.0 65 1.8(13) 58.3 4.7(-9) 3.3(-9) 1.8(-9)
-0.7 44 2.5(11) 20.4 3.2(-8) 9.5(-9) 4.2(-9)
-0.3 44 9.1(10) 9.8 3.2(-8) 7.5(-8) 1.7(-10)
0.0 69 6.8(12) 30.0 3.0(-8) 1.6(-8) 1.2(-9)
0.3 46 9.9(10) 17.1 4.3(-9) 2.5(-9) 1.0(-9)
0.7 49 3.0(11) 36.2 1.1(-9) 7.2(-10) 5.3(-9)
1.0 f 4.3(-8)
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3.6 Example 6: Second order DDE

The last example illustrates the ability of the MQCM to accurately solve higher-order
DDEs. Since equations of this type are less common in the literature, most solvers are
not designed to handle them. In order to compare, we have transformed a system of
two state-delay DDEs into a second-order DDE:

{
y′′(x) =

(
exp[1− y(x)]− x

)
y
(
x− exp[1− y(x)]

)
y′(x)2, x ≥ 1,

y(x) = log(x), 0 < x ≤ 1,
(3.8)

which is obtained by differentiation of y2(x) and insertion into y′′1 (x) in





y1(x) = log(x), 0 < x ≤ 1,
y2(x) = 1/x, 0 < x ≤ 1,
y′1(x) = y2(x), x ≥ 1,
y′2(x) =

(
exp[1− y1(x)]− x

)
y2(x)(x− exp[1− y1(x)])y2

2(x), x ≥ 1,

(3.9)

(see [1] and [25], 1.4.17). The exact solution is yEX(x)=y1,EX(x)=log(x).
We consider the interval [a, b]=[1, 5]. In this problem, the second derivative of the

multiquadric (2.10) is required, as well as two extra MQ centers for PDEBC (since y,y′,
and y′′ are enforced at x=a). Such centers are placed at x0=a − ∆ and x−1=a − 2∆.
Results are shown in Table 8.

An indirect reference is provided by DDESD which solves (3.9) with RMS(εREF) =
2.3(−13) (for y1(x)) in 2.1 s. Notice that ill-conditioning must be kept lower in order to
ensure convergence of the nonlinear solver, thus limiting accuracy. A possible alterna-
tive would be to use a Newton-type routine with the analytical Jacobian to the given
DDE. The good performance shown by MQCM relies on the accuracy with which nu-
merical derivatives are reproduced in Kansa’s method. While not every system of m
DDEs can be transformed into a single DDM of order m, there are many cases where
this transformation can be an advantageous alternative for the solution of DDE sys-
tems with the MQCM.

Table 8: RSA iterations (Example 6)

It DoF RMS(ε) Condition NL iter
0 12 0.103 2.4(+10) f
1 18 2.9(-5) 2.0(+10) f
2 21 3.1(-7) 6.8(+11) 1
3 28 3.3(-8) 8.7(+10) 1
4 37 3.7(-9) 5.5(+13) 1
5 49 2.1(-11) 2.5(+13) 1
6 63 6.2(-11) 1.7(+15) 1
7 72 8.6(-12) 3.5(+14) 1

CPU 48.5
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4 Conclusions

A novel numerical method for the solution of DDEs has been presented. It relies on
the multiquadric collocation method introduced by Kansa combined with the RSA
algorithm by Driscoll and Heryudono for node adaptivity, which uses the residual as
the refinement criterion. As long as the solution of the DDE is smooth (or piecewise
smooth, with the position of the singularities being known in advance), the present
method can accurately handle a large variety of such problems, including state-delay,
neutral, and high-order DDEs. Moreover, the scheme is straightforward to code and
enjoys spectral convergence. Because in this paper the stress is placed on simplicity,
nonlinearities are fed to a general-purpose solver, without attempting to optimize.
Possible improvements include: providing an analytical Jacobian, and linearizing the
DDE along the lines of [10] [2].

The presented method has as well a number of shortcomings. Kansa’s scheme is
limited to problems in a bounded domain, and in its current formulation, it is unable
to address DDEs in the semiinfinite domain -whose solution with the use of geometric
grids is a topic of research in the field on numerical DDEs. Regarding the handling
of discontinuities, we point out that infinitely smooth RBFs -and MQs in particular-
have been used to detect low-order singularities [7]. This ability might be exploited to
allow the MQCM to cope with a more general class of DDEs.
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