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1School of Engineering, University of Durham, South Road, Durham DH1 3LE, UK
2Fraunhofer-Institut für Techno-und Wirtschaftsmathematik, 67663 Kaiserslautern,
Germany

Received 01 March 2009; Accepted (in revised version) 12 March 2009
Available online 22 April 2009

Abstract. We develop a lattice Boltzmann method for modeling free-surface tem-
perature dispersion in the shallow water flows. The governing equations are de-
rived from the incompressible Navier-Stokes equations with assumptions of shal-
low water flows including bed frictions, eddy viscosity, wind shear stresses and
Coriolis forces. The thermal effects are incorporated in the momentum equation by
using a Boussinesq approximation. The dispersion of free-surface temperature is
modelled by an advection-diffusion equation. Two distribution functions are used
in the lattice Boltzmann method to recover the flow and temperature variables us-
ing the same lattice structure. Neither upwind discretization procedures nor Rie-
mann problem solvers are needed in discretizing the shallow water equations. In
addition, the source terms are straightforwardly included in the model without re-
lying on well-balanced techniques to treat flux gradients and source terms. We
validate the model for a class of problems with known analytical solutions and we
also present numerical results for sea-surface temperature distribution in the Strait
of Gibraltar.

AMS subject classifications: 65M10, 78A48
Key words: Shallow water flows, free-surface temperature, lattice Boltzmann method, adve-
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1 Introduction

During the last years the increase of sea-surface temperature has attracted much inter-
est in numerical methods for the prediction of its transport and dispersion. In many
situations, this sea-surface temperature has detriment impact on the ecology and en-
vironment and may cause potential risk on the human health and local economy.
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Efficient and reliable estimates of impacts on the water quality due to free-surface
temperature could play essential role in establishing control strategy for environmen-
tal protection. Introduction and utilization of such measures are impossible without
knowledge of various processes such as formation of water flows and dispersion of
sea-surface temperature. The mathematical models and computer softwares could be
very helpful to understand the dynamics of both, water flow and sea-surface temper-
ature dispersion. In this respect mathematical modeling of water flows and the pro-
cesses of transport-dispersion of sea-surface temperature could play a major role in
establishing scientifically justified and practically reasonable programs for long-term
measures for a rational use of water resources, reduction of thermal discharge from
particular sources, estimation of the impact in the environment of possible technolog-
ical improvements, development of methods and monitoring facilities, prediction and
quality management of the environment, etc. The success of the computational meth-
ods in solving practical problems depends on the convenience of the models and the
quality of the software used for the simulation of real processes.

Clearly, the process of free-surface temperature dispersion is determined by the
characteristics of the hydraulic flow and the temperature properties of the water. Thus,
dynamics of the water and dynamics of the temperature must be studied using a math-
ematical model made of two different but dependent model variables: (i) a hydrody-
namic variable defining the dynamics of the water flow, and (ii) a thermal variable
defining the transport and dispersion of the temperature. In the current work, the hy-
drodynamic model is based on a two-dimensional shallow water equations while, a
convection-diffusion equation is used for the free-surface temperature. For environ-
mental flows, the shallow water system is a suitable model for adequately describing
significant hydraulic processes. The different characteristics of thermal problems re-
quire an appropriate model to describe their dynamics, nevertheless for a wide class of
thermal predictions the standard convection-diffusion equation can be used. The in-
teraction between the two processes gives rise to a hyperbolic system of conservation
laws with source terms.

Various numerical methods developed for general systems of hyperbolic conserva-
tion laws have been applied to the shallow water equations. For instance, most shock-
capturing finite volume schemes for shallow water equations are based on approx-
imate Riemann solvers which have been originally designed for hyperbolic systems
without accounting for source terms such as bed frictions, eddy viscosity, wind shear
stresses and Coriolis forces. Therefore, most of these schemes suffer from numerical
instability and may produce nonphysical oscillations mainly because dicretizations
of the flux and source terms are not well-balanced in their reconstruction. The well-
established Roe’s scheme [26] has been modified by Bermúdez and Vázquez [7] to
treat source terms. This method has been improved by Vázquez [38] for general one-
dimensional channel flows. However, for practical applications, this method may be-
come computationally demanding due to its treatment of the source terms. Alcrudo
and Garcia-Navarro [2] have presented a Godunov-type scheme for numerical solu-
tion of shallow water equations. Alcrudo and Benkhaldoun [1] have developed exact
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solutions for the Riemann problem at the interface with a sudden variation in the to-
pography. The main idea in their approach was to define the bottom level such that a
sudden variation in the topography occurs at the interface of two cells. LeVeque [18]
proposed a Riemann solver inside a cell for balancing the source terms and the flux
gradients. However, the extension of this scheme for complex geometries is not trivial.
Numerical methods based on surface gradient techniques have also been applied to
shallow water equations by Zhou et al. [44]. The TVD-MacCormak scheme has been
used by Ming-Heng [22] to solve water flows in variable bed topography. A different
approach based on local hydrostatic reconstructions have been studied by Audusse
el al. [4] for open channel flows with topography. The performance of discontinuous
Galerkin methods has been examined by Xing and Shu [40] for some test examples on
shallow water flows. A central-upwind scheme using the surface elevation instead of
the water depth has been used by Kurganov and Levy [19]. Vukovic and Sopta [39]
extended the ENO and WENO schemes to one-dimensional shallow water equations.
Unfortunately, most ENO and WENO schemes that solves real flows correctly are still
very computationally expensive.

In recent years, the Lattice Boltzmann (LB) method has been considered as an ef-
ficient numerical tool for simulating fluid flows and transport phenomena based on
kinetic equations and statistical physics. Because of its distinctive advantages over
conventional numerical methods, the LB method has become an attractive algorithm
for free-surface flows. Some numerical methods based on the gas kinetic theory have
been proposed in [23,30,41] to study shallow water flows. Zhou [43] has studied an LB
method for simulating shallow water flows. The LB method has also been successfully
applied to shallow water equations which describe wind-driven ocean circulation by
Salmon [27] and Zhong et al. [42]. Application of LB method to three-dimensional
planetary geostrophic equations was performed by Salmon [28]. Feng et al. [13] stud-
ied an LB method for atmospheric circulation of the northern hemisphere. It was
concluded that the LB method is an efficient approach for simulation of shallow water
flows. Implementation of the LB method for two-dimensional shallow equations in
irregular domains and complex bathymetry was investigated by Thömmes et al. [34].
Recently, Banda et al. [5] has extended this method to pollutant transport by the shal-
low water flows. It is noticed that all above LB methods have been mainly applied
to the isothermal shallow water flows and no thermal sources have been accounted
for. However, temperature can strongly interact with hydraulic in many situations
of engineering interest and neglecting its effects may have significant consequences
in the overall predictions. For a discussion on the thermal effects on hydraulic flows
we refer to [10, 21, 24, 29, 37] and further references can be found therein. Therefore,
our main objective in the present work is to extend the LB techniques to free-surface
temperature dispersion in shallow water flows.

The purpose of this study is to develop an LB method for modelling free-surface
temperature dispersion in the shallow water flows. The governing equations are de-
rived from the incompressible Navier-Stokes equations with assumptions of shallow
water flows including bed frictions, eddy viscosity, wind shear stresses and Corio-
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lis forces. Assuming a low temperature differences, a Boussinesq approximation is
used to incorporate the thermal effects in the momentum equation. The dispersion of
free-surface temperature in shallow water flows is modelled by a convection-diffusion
equation. In order to reconstruct macroscopic flow and temperature variables we con-
sider two distribution functions in the LB method using the same lattice structure.
The proposed method avoids upwind discretization procedures and Riemann prob-
lem solvers which are indisponsible in most conventional methods for the shallow
water flows. Moreover, the bed frictions, wind shear stresses and Coriolis forces are
straightforwardly included in the LB model without relying on well-balanced tech-
niques to treat flux gradients and source terms. Several test examples including prob-
lems with analytical solutions are used to validate the LB method. As a final exam-
ple we simulate a test example of sea-surface temperature dispersion in the Strait of
Gibraltar. To the best of our knowledge, this is the first time that the LB method is
used to simulate the free-surface temperature dispersion in the shallow water flows.

This paper is organized as follows: in section 2 we introduce the governing equa-
tions for depth-averaged models for sea-surface dispersion in shallow water flows.
The lattice Boltzmann method is formulated in section 3. This section includes the
LB method for shallow water equations and for the convection-diffusion equation.
Section 4 is devoted for numerical results and applications. Concluding remarks are
summarized in section 5.

2 Equations for free-surface flow and temperature
distribution

Modelling free-surface temperature dispersion requires two sets of coupled partial
differential equations. The first set of equations describes the water motion on the
free-surface flow while, the second set of equations models the distribution of tem-
perature on the water free-surface. In the present study, the flow is governed by
the depth-averaged Navier-Stokes equations involving several assumptions includ-
ing: (i) the domain is shallow enough to ignore the vertical effects, (ii) the pressure
is hydrostatic, (iii) all the water properties are assumed to be constant with the ex-
pection of the temperature dependence of the density, which is accounted for using
the Boussinesq approximation, and (iv) viscous dissipation of energy is ignored and
any radiative heat losses are assumed to have occurred over a time scale small com-
pared with that which characterizes the flow motion. Thus, the starting point for
the derivation of the free-surface flow model is the three-dimensional incompressible
Navier-Stokes/Boussinesq equations,

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0, (2.1a)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

+
1
ρ

∂p
∂x

= ν∆u +
∂

∂z
(νV

∂u
∂z

)−Ωv, (2.1b)
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∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z

+
1
ρ

∂p
∂y

= ν∆v +
∂

∂z
(νV

∂v
∂z

) + Ωu, (2.1c)

∂w
∂t

+ u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

+
1
ρ

∂p
∂z

= ν∆w +
∂

∂z
(νV

∂w
∂z

)− g + F, (2.1d)

where t is the time variable, (x, y, z)T the space coordinates, ρ the water density, (u, v, w)T

the velocity field, p the pressure, Ω the Coriolis parameter, g the acceleration due to
gravity, ν and νV are the coefficients of horizontal and vertical eddy viscosity, respec-
tively. In (2.1),

∆ =
∂2

∂x2 +
∂2

∂y2 ,

denotes the two-dimensional Laplace operator and the force term F is given according
to the Boussinesq approximation as

F = gα(T − T∞), (2.2)

with α is the thermal expansion coefficient and T∞ is the reference temperature. In the
present work, we are interested in flows which occur on the water free-surface where
assumptions of shallow water flows applied. In most shallow water modelling, the
ratio of vertical length scale to horizontal length scale is very small. As a consequence,
the horizontal eddy viscosity terms are typically orders of magnitude smaller than the
vertical viscosity terms and their effect is normally small and obscured by numerical
diffusion. Therefore most models either neglect these terms or simply use a constant
horizontal eddy viscosity coefficient. In addition, assuming that the pressure is hydro-
static, the momentum equation in the vertical direction (2.1d) reduces to the following
form

1
ρ

∂p
∂z

= −g + gα (T − T∞) . (2.3)

Integrating vertically the continuity equation (2.1a) from the sea bed z=−B to the sea
surface z=η and using the kinematic condition at the free surface leads to the free-
surface equation

∂η

∂t
+

∂

∂x

(∫ η

−B
u dz

)
+

∂

∂y

(∫ η

−B
v dz

)
= 0, (2.4)

where η(x, y, t) is the water surface elevation and B(x, y) is the water depth measured
from the undisturbed water surface. We also denote the total water depth by

h(x, y, t) = η(x, y, t) + B(x, y).

The boundary conditions at the water free-surface are specified by the prescribed wind
stresses T ω

x and T ω
y

νV
∂u
∂z

= T ω
x , νV

∂v
∂z

= T ω
y , (2.5)
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with the wind stresses T ω
x and T ω

y are given by a quadratic function of the wind
velocity (ωx, ωy)T as

T ω
x = Cωωx

√
ω2

x + ω2
y, T ω

y = Cωωy

√
ω2

x + ω2
y, (2.6)

where Cω is the coefficient of wind friction. The boundary conditions at the bottom are
given by expressing the bottom stress in terms of the velocity components taken from
values of the layer adjacent to the sediment-water interface. The bottom stress can be
related to the turbulent law of the wall, a drag coefficient associated with quadratic
velocity or using a Manning-Chezy formula such as

−νV
∂u
∂z

= T b
x , −νV

∂v
∂z

= T b
y , (2.7)

with T b
x and T b

y are the bed shear stresses defined by the depth-averaged velocities as

T b
x = ρg

u
√

u2 + v2

C2
z

, T b
y = ρg

v
√

u2 + v2

C2
z

, (2.8)

where Cz is the Chezy friction coefficient. Thus, using the free surface equation (2.4)
and the boundary conditions (2.6) and (2.7), and after standard approximations on
convective terms, we obtain the two-dimensional vertically averaged shallow water
equations rewritten in conservative form as

∂h
∂t

+
∂(hU)

∂x
+

∂(hV)
∂y

= 0, (2.9a)

∂(hU)
∂t

+
∂

∂x
(hU2 +

1
2

g′h2) +
∂

∂y
(hUV)

= −g′h
∂B
∂x
− gαh

∂(hΘ)
∂x

+ ν∆(hU) +
T ω

x
ρ
− T b

x
ρ
−ΩhV, (2.9b)

∂(hV)
∂t

+
∂

∂x
(hUV) +

∂

∂y
(hV2 +

1
2

g′h2)

= −g′h
∂B
∂y
− gαh

∂(hΘ)
∂y

+ ν∆(hV) +
T ω

y

ρ
− T b

y

ρ
+ ΩhU, (2.9c)

where g′ = g (1 + αT∞), Θ is the depth-averaged temperature, U and V are the depth-
averaged horizontal velocities in x- and y-direction given by

Θ =
1
h

∫ η

−B
T dz, U =

1
h

∫ η

−B
u dz, V =

1
h

∫ η

−B
v dz.

The temperature distribution on the sea-surface can be correctly traced by a depth-
averaged convection-diffusion equation of the form

∂Θ
∂t

+
∂

∂x
(hUΘ) +

∂

∂y
(hVΘ) = λ∆ (hΘ) + hQ, (2.10)



M. Seaı̈d, G. Thömmes / Adv. Appl. Math. Mech., 3 (2009), pp. 415-437 421

where Q is the depth-averaged source term and λ is the depth-averaged diffusion
coefficient. In practical situations the eddy viscosity ν and the eddy thermal diffusivity
coefficients depend on water temperature, water salinity, water depth, flow velocity,
bottom roughness and wind, compare [6,16] for more discussions. For the purpose of
the present work, the problem of the evaluation of eddy diffusion coefficients is not
considered.

3 Lattice Boltzmann methods

The starting point for the LB method is the discrete Boltzmann equation formulated
for a two-dimensional geometry as

∂ fi

∂t
+ ei · ∇ fi = Ji + ei · Fi, i = 1, 2, . . . , N, (3.1)

where fi is the particle distribution function which denotes the number of particles at
the lattice node x=(x, y)T and time t moving in direction i with velocity ei along the
lattice ∆x=∆y=ei∆t connecting the nearest neighbors and N is the total number of
directions in a lattice. In (3.1), Ji represents the collision term and Fi includes the effect
of external forces. Using the single time relaxation of the Bhatanagar-Gross-Krook
(BGK) approach [8], the discrete collision term is given by

Ji = − 1
τ

(
fi − f eq

i

)
, (3.2)

where τ is the relaxation time and f eq
i is the equilibrium distribution function.

In the current work we consider the D2Q9 square lattice model [25], as depicted in
Fig. 1. The nine velocities ei in the D2Q9 lattice are defined by

ei =





(0, 0)T, i = 0,(
cos

(
(i− 1)π

4

)
, sin

(
(i− 1)π

2

))T
c, i = 1, 2, 3, 4,

(
cos

(
(i− 5)π

2 + π
4

)
, sin

(
(i− 5)π

2 + π
4

))T√
2c, i = 5, 6, 7, 8,

(3.3)

where c=∆x/∆t=∆y/∆t. Here, ∆t is chosen such that the particles travel one lattice
spacing during the time step. The corresponding weights wi to the above velocities
are

wi =





4/9, i = 0,
1/9, i = 1, 2, 3, 4,
1/36, i = 5, 6, 7, 8.

(3.4)

The selection of the relaxation time τ and the equilibrium distribution function f eq
i

in (3.2) depend on the macroscopic equations under study. Next, we describe the
formulation of these parameters for the shallow water equations (2.9b) and the depth-
averaged convection-diffusion equation (2.10).
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Figure 1: The nine-velocity model in the D2Q9 lattice model.

3.1 The Lattice Boltzmann method for free-surface flow

For the shallow water equations (2.9b), the equilibrium distribution function f eq
i de-

pends on the water depth h and the velocity field U=(U, V)T which are recovered
by

h(x, t) =
N−1

∑
i=0

fi, h(x, t)U(x, t) =
N−1

∑
i=0

ei fi, (3.5)

where U=(U, V) denotes the velocity field in (2.9b). For the D2Q9 lattice, the equilib-
rium function f eq

i in (3.2) is defined as [12, 27]

f eq
i =





h− w0h
(15

2
gh− 3

2
U2), i = 0,

wih
(3

2
gh + 3ei ·U +

9
2
(ei ·U)2 − 3

2
U2), i = 1, . . . , 8,

(3.6)

with the weight factors wi in (3.4). It is easy to verify that the local equilibrium function
satisfies the following conditions

8

∑
i=0

f eq
i = h,

8

∑
i=0

ei f eq
i = hU,

8

∑
i=0

ei ⊗ ei f eq
i =

1
2

gh2I + hU⊗U, (3.7)

where I denotes the 2 × 2 identity matrix. The central idea in the LB method lies
essentially in the recovery of the macroscopic flow behaviour from the microscopic
flow picture of the particle movement.

After discretization, equation (3.2) can be written as

fi(x + ei∆t, t + ∆t) = fi(x, t)− ∆t
τf

[
fi − f eq

i

]
+ 3∆twiei · F, (3.8)
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where F represents the force term in the shallow water equations (2.9b)

F =




−g′h
∂B
∂x
− gαh

∂ (hΘ)
∂x

+
T ω

x
ρ
− T b

x
ρ
−ΩhV

−g′h
∂B
∂y
− gαh

∂ (hΘ)
∂y

T ω
y

ρ
− T b

y

ρ
+ ΩhU




. (3.9)

By applying a Taylor expansion and the Chapman-Enskog procedure to equation (3.8),
it can be shown that the solution of the discrete lattice Boltzmann equation (3.8) with
the equilibrium function (3.6) results in the solution of the shallow water equations
(2.9b). The external force terms such as wind stress, Coriolis force, and bottom friction
are easily included in the model by introducing them into the force term F. For details
on this multi-scale expansion, we refer to [12, 27, 42].

To complete the formulation of LB method for equations (2.9b), the relaxation time
τf has to be defined. In our LB implementation, the relaxation time is determined by
the physical viscosity in (2.9b) and the time step through the formula

τf =
3νH

c2 +
∆t
2

. (3.10)

In the lattice Boltzmann method, equation (3.8) is solved in two steps: collision and
streaming. In the collision step, the equations for each direction are relaxed toward
equilibrium distributions. Then, at the streaming step, the distributions move to the
neighboring nodes.

3.2 The lattice Boltzmann method for free-surface temperature

The LBM for transport equation (2.10) is derived using a similar approach as the one
used for the shallow water equations (2.9b). Hence, starting from equation (3.2) and
using the D2Q9 lattice form Fig. 1, a lattice Boltzmann discretization of the transport
equation is

gi(x + ei∆t, t + ∆t)− gi(x, t) = −∆t
τg

[
gi − geq

i

]
+ ∆tQi, (3.11)

where gi is the distribution function, τg is the relaxation time andQi is the source term
associated with the convection-diffusion equation (2.10). In (3.11), geq

i is an equilib-
rium distribution function satisfying the following conditions

8

∑
i=0

gi =
8

∑
i=0

geq
i = hΘ,

8

∑
i=0

eigi =
8

∑
i=0

eig
eq
i = UhΘ. (3.12)

To process equation (3.11), a relaxation time and equilibrium function are required.
For the convection-diffusion equation, the equilibrium function is given by

geq
i = wihΘ

[
1 + 3ei ·U

]
, (3.13)
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where the lattice weights wi are defined in (3.4). For this selection, the source term in
(3.11) is set to

Qi = wihQ. (3.14)

It should be noted that the convection-diffusion equation (2.10) can be obtained from
equation (3.11) using the Chapman-Enskog expansion. Details on these derivations
were given in [5]. It should be stressed that a similar approach was applied in [11] for
reaction-diffusion equations.

As in the LB method for shallow water equations, the relaxation time is defined by
the thermal diffusion coefficient in (2.10) and the time step as

τg =
3λ

c2 +
∆t
2

. (3.15)

Notice that conditions (3.10) and (3.15) give the relation between the lattice diffusion
and the time step to be used in the LB simulations.

3.3 Boundary conditions

It well established that implementation of boundary conditions in the LB method has
a crucial impact on the accuracy and stability of the method, see [14, 46] for more
discussions. When no-slip boundary conditions for the flow velocities are imposed at
walls, the bounce-back rule is usually used in the LB algorithm. At a boundary point
xb, populations fi of links ei which intersect the boundary and point out of the fluid
domain are simply reflected (bounce-back) since they cannot participate in the normal
propagation step

fi∗(xb, t + ∆t) = fi(xb, t), index i∗ s.t. ei∗ = −ei.

For the numerical examples considered in the present study, flow boundary conditions
for the height, H, and/or the velocities, (U, V), are needed at the inlet and the outlet
of computational domains. When the height Hl is prescribed at the left boundary,
the three distributions f1, f5 and f8 are unknown. We use the techniques described
in [43,46] for flat interfaces to implement these boundary conditions in the framework
of LB method. Assuming that V = 0, the velocity in x-direction can be recovered from
the relation

HlU = Hl −
(

f0 + f2 + f4 + 2( f3 + f6 + f7)
)

,

and we define the unknown distributions as

f1 = f3 +
2
3

HlU, (3.16a)

f5 = f7 − 1
2
( f2 − f4) +

1
6

HlU, (3.16b)

f8 = f6 +
1
2
( f2 − f4) +

1
6

HlU. (3.16c)
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Neumann boundary conditions are implemented by imposing the equilibrium dis-
tribution corresponding to the prescribed height, Hl , and the velocity of the nearest
neighbor in direction of the normal, (Un, Vn)

fi = f eq
i (Hl , Un, Vn) , i = 0, 1 . . . , 8.

Dirichlet boundary conditions for the prescribed temperature Θ0 can be imposed by
the equilibrium for the unknown populations

gi = geq
i (Θ0, U, V) , i = 0, 1 . . . , 8.

Neumann boundary conditions are also frequently used in convection-diffusion prob-
lems. They are implemented in the LB framework in a similar way by prescribing the
concentration of the neighbour node Θn at the boundary

gi = geq
i (Θn, U, V) , i = 0, 1 . . . , 8.

For the simulation of sea-temperature dispersion in the Strait of Gibraltar, we have
flow boundary conditions for the water height and a Neumann boundary condition
for the velocity. These boundary conditions are implemented by imposing the equilib-
rium distribution corresponding to the prescribed height, H0, and the velocity of the
nearest neighbor in the direction of the normal (Un, Vn)

fi = f eq
i (H0, Un, Vn) , i = 0, 1 . . . , 8.

Moreover, for the convection-diffusion LB equation in the test example of the Strait of
Gibraltar, boundary conditions at the coastlines and the open sea boundaries are re-
quired. We impose fixed temperature (Dirichlet) boundary conditions at the coastlines
and Neumann boundary conditions for the temperature at the western and eastern
ends of the Strait of Gibraltar.

Other types of boundary conditions can also be incorporated. For further details
on the implementation of general boundary conditions for lattice Boltzmann shallow
water models we refer the reader to [5, 14, 34, 46]. General details on the implementa-
tion of an LB method for irregular domains can also be found in [20,36] among others.

4 Numerical examples

In this section the accuracy and performance of the LB scheme is tested. Three test
examples are used: a tidal flow problem, an advection-diffusion of a Gaussian pulse
in a uniform rotating flow field, and simulation of free-surface temperature in the
Strait of Gibraltar. The former first tests have analytical solutions that can be used
to quantify error in the LB method while the latter is used to qualify LB results for
more complicated free-surface flows. In all the examples, the gravitation constant g is
taken as 9.81 m/s2, the time step is chosen according to the latice sizes as well as with
stability conditions given in (3.10) and (3.15).
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4.1 Tidal wave problem

This example was used in [7], in which an asymptotic analytical solution was obtained.
Here, a channel with length L = 14 Km is considered with a bed elevation defined by

Z(x) = 10 +
40x

L
+ 10 sin

(
π(

4x
L
− 1

2
)
)

.

The bottom frictions, wind stresses and Coriolis effect were neglected in this test. If
we take the initial and boundary conditions as

H(x, 0) = 60.5− Z(x), U(x, 0) = 0,

H(0, t) = 64.5− 4 sin
(

π(
4t

86400
+

1
2
)
)

, U(L, t) = 0,

an analytical solution, based on the asymptotic analysis, can be given by [7]

H̃(x, t) = 64.5− Z(x)− 4 sin
(

π(
4t

86400
+

1
2
)
)

,

Ũ(x, t) =
(x− L) π

5400h(x, t)
cos

(
π(

4t
86400

+
1
2
)
)

.

This asymptotic analytical solution is used to quantify the results obtained by the LB
method. We compute the L∞-, L1- and L2-error norms as

L1 =
N

∑
i=1
|En

i |∆x, L2 =
( N

∑
i=1
|En

i |2 ∆x
) f rac12

, L∞ = max
1≤i≤N

|En
i | , (4.1)

where En
i =Un

i − Ũ(xi, tn) is the error between the numerical solution, Un
i , and the an-

alytical solution, Ũ(xi, tn), at time tn and lattice point xi. We used τH=0.6, c=200 m/s
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Figure 2: Error plots for the tidal wave flow at time t = 9117.5s.
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Figure 3: Numerical and analytical free-surface for the tidal wave flow at time t=9117.5s.

and the results are displayed at time t=9117.5s. For this test example the ratio U/c=
0.0009. Note that we used a two-dimensional code to reproduce numerical solutions
for the one-dimensional problem. Therefore, boundary conditions in the y-direction
have to be supplied for the two-dimensional code. For this test example, the dimen-
sion in y-direction is fixed to 50 lattice points. Periodic boundary conditions are as-
sumed on the upper and lower walls.

In Fig. 2, we display the error norms for the velocity solution using four uniform
lattices with sizes ∆x=∆y=56 m, 28 m, 14 m and 7 m at the considered time. A
logarithmic scale is used on the x- and y-axis. It is clear that decreasing the lattice size
results in a decrease of all error norms. Similar results, not reported here, are obtained
focusing the attention on the water depth. As expected the LB method shows a first-
order accuracy for this nonlinear example.

Fig. 3 presents the numerical and analytical solutions for the water free-surface
at the simulation time t=9117.5 s using a lattice size of ∆x=∆y=7 m. It is clear the
good agreement between the asymptotic analytical solution and the numerical results
obtained by the LB method using the coarse lattice. The LB method performs well
for this unsteady shallow water problem and produces accurate solutions without
requiring special treatment of the source terms or complicated upwind discretization
of the gradient fluxes as in [7] among others.

4.2 Advection-dispersion problem

In this example we will test the accuracy of LB method for an advection-dispersion
equation with a prescribed velocity field and known analytical solution. Hence, we
solve the equation (2.10) with constant water depth

∂Θ
∂t

+
∂

∂x
(UΘ) +

∂

∂y
(VΘ)− λ∆Θ = 0. (4.2)
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We consider the test problem of the advection-dispersion of a Gaussian pulse in a
uniform rotating flow field proposed in [31]. Thus, the computational domain is a
3200 km long square equipped with the initial condition

Θ(x, y, 0) = 100 exp
(
− (x− x0)2 + (y− y0)2

2σ2

)
, (4.3)

where (x0, y0)=(−800 km, 0) is the centre of the initial Gaussian and σ=2× 104 km2.
As in [31] we take U=−ωy and V=ωx, with ω=10−5/s being the angular velocity. It
is easy to verify that the problem (4.2)-(4.3) has an exact solution given by

Θ̃(x, y, t) =
100

1 + 2λt
σ2

exp
(
− x̄2 + ȳ2

2(σ2 + 2λt)

)
, (4.4)

with
x̄ = x− x0 cos ωt + y0 sin ωt, ȳ = y− x0 sin ωt− y0 cos ωt.

Two diffusivity coefficients namely, λ=104 m2/s and 2× 104 m2/s are considered. To
check the accuracy of the LB method for this test problem, a simulation is carried out
until a full rotation of the Gaussian is completed using different lattice sizes, L1, L2 and
L∞ norms of the errors are computed using (4.1). We used homogeneous Neumann
boundary conditions on all domain boundaries, and we set D̂=0.01.

In Table 1, the accuracy analysis results, obtained considering four different lattice
steps, are summarized. For the selected diffusivity coefficients, a decay behaviour is
observed for each increase of the number of lattice points. A slower decay is seen for
computations with λ=2× 103 m2/s than those computed with λ=103 m2/s. This fact
can be attributed to the large physical diffusion in the advection-dispersion problem
such that the Gaussian spreads strongly and the solution is significantly different from
zero at the boundaries and outside of the domain. It is evident, however, that our LB
method converges to the correct solution also for this advection-dispersion problem.

Surface plots of the solution at times t=T/4, T/2, 3T/4 and T are presented in Fig.
4. Those corresponding to contour plots are displayed in Fig. 5. Here, we used

λ = 103 m2/s, ∆x = ∆y = 100 Km, T = 628318 s,

which corresponds to the time necessary for a complete rotation. In the figures, we can
clearly see that there are no spurious numerical oscillations in vicinity of the Gaussian
pulse, verifying the of the LB method.

Table 1: L1, L2 and L∞ errors for the advection-dispersion problem after a complete rotation.

λ=103 m2/s λ=2× 103 m2/s
N L∞-error L1-error L2-error L∞-error L1-error L2-error
40 3.733E-02 2.338E-02 2.416E-02 2.435E-03 2.293E-02 1.856E-02
80 9.650E-03 5.811E-03 6.093E-03 2.435E-03 7.170E-03 5.944E-03

160 2.935E-03 1.456E-03 1.527E-03 4.940E-03 3.218E-03 3.658E-03
320 6.098E-04 3.679E-04 3.821E-04 3.907E-03 2.067E-03 2.277E-03
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Figure 4: Surface plots for the advection-dispersion problem at four different times.
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Figure 5: Contour plots for the advection-dispersion problem at four different times.

4.3 Free-surface temperature in the Strait of Gibraltar

The purpose of this test problem is to examine the performance of our LB model for
simulating sea-surface temperature in the Strait of Gibraltar. The basic circulation in
the Strait of Gibraltar consists in an upper layer of cold, fresh surface Atlantic wa-
ter and an opposite deep current of warmer, salty Mediterranean outflowing water,
compare [3, 15]. The sea-surface temperatures in the Strait of Gibraltar are maxima in
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Figure 6: Computational domain for the Strait of Gibraltar.

summer (August-September) with average values of 23-24◦C and minima in winter
(January-February) with averages of 11-12◦C. The north Atlantic water is about 5-6◦C
colder than the Mediterranean water, elaborate details are available in [21, 24].

Fig. 6 shows the computational domain used in our simulations along with ma-
jor locations in the Strait of Gibraltar. The domain is about 60 Km long between its
west Barbate-Tangier section and its east Gibraltar-Ceuta section. Its width varies
from a minimum of about 14 Km at Tarifa-Punta Cires section and a maximum of
44 Km at Barbate-Tangier section. Here, the simulation domain is restricted by the
Tangier-Barbate axis from the Atlantic ocean and the Ceuta-Algeciras axis from the
Mediterranean. This domain is taken in the simulation mainly because measured data
is usually provided by stations located on the above mentioned cities. Therefore, we
have adapted the same domain for our simulations. In addition, vast water areas of
the Strait of Gibraltar is shallow with less than 1 Km maximum depth. In the present
study we consider a reconstructed bathymetry from [15] as depicted in Fig. 7.

In all our simulations, the Chezy friction coefficient Cz=h1/6/η with nb=0.012s/m1/3
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Figure 7: Bathymetry for the Strait of Gibraltar. The water depth is given in meters.
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is the Manning constant, the coefficient of wind friction Cω=10−5, the Coriolis param-
eter Ω=8.55× 10−5 1/s, and the horizontal eddy viscosity of νH=100 m2/s, see for
example [15,33]. A mesh with lattice size ∆x=∆y=250 m is used for all the results pre-
sented in this section. This mesh structure has been selected after a grid independence
study assessed by comparing numerical results obtained using different meshes, com-
pare [34] for more details. Depending on the wind conditions, three situations are
simulated namely:

1. Calm situation corresponding to (ωx=0 m/s, ωy=0 m/s);
2. Wind blowing from the east corresponding to (ωx=−1 m/s, ωy=0 m/s);
3. Wind blowing from the west corresponding to (ωx=1 m/s, ωy=0 m/s).

A no-slip boundary condition for velocity variables has been applied at the coastal
boundaries. At the open boundaries, Neumann boundary conditions are imposed for
the velocity, and the water elevation is prescribed as a periodic function of time using
the main semidiurnal and diurnal tides. The tidal constants at the open boundary lat-
tice nodes were calculated by interpolation from those measured at the coastal stations
Tangier and Barbate on the western end and the coastal stations Ceuta and Algeciras
on the eastern end of the Strait. We considered the main semidiurnal M2, S2 and N2
tidal waves, and the diurnal K1 tidal wave in the Strait of Gibraltar. Thus,

H = H0 + AM2 cos (ωM2 t + ϕM2) + AS2 cos (ωS2 t + ϕS2)
+AN2 cos (ωN2 t + ϕN2) + AK1 cos (ωK1 t + ϕK1) , (4.5)

where Ak is the wave amplitude, ωk the angular frequency and ϕk the tide phase for
the considered tide k, with k=M2, S2, N2 or K1. The measured data for these pa-
rameters are provided for the cities defining the computational domain and are given
in [5, 15]. In (4.5), H0 is the averaged water elevation set to 3m in our simulations.
Initially, the simulated flow has been at warm rest, i.e.,

U = V = 0, H = H0 and Θ = Θh, (4.6)

where Θh=23◦C is the Mediterranean temperature and the western temperature bound-
ary of the Strait is fixed to the Ocean temperature Θc=17◦C. Note that, in order to
ensure that the initial conditions of the water flow and sea-surface temperature are
consistent we proceed as follows. The shallow water equations (2.9b) are solved with-
out temperature dispersion for two weeks of real time to obtain a well-developed flow.
The obtained results are taken as the real initial conditions and the sea-surface tem-
perature is included at this stage of the simulation. At the end of the simulation time
the velocity fields and temperature contours are displayed after 12, 18 and 24 hours
from the inclusion of sea-surface temperature.

In Fig. 8, we present numerical results obtained using calm wind conditions. Those
obtained for the wind blowing from the east and the wind blowing from the west are
displayed in Figs. 9 and 10, respectively. In these figures, we show the velocity field
and 10 equi-distributed contours between Θc and Θh of the temperature at the instants
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Figure 8: Flow field (first row) and temperature contours (second row) for calm situation at three different
times. From left to right t=12, 18 and 24 hours.

t=12, 18 and 24 hours. It is clear that using the conditions for the tidal waves and the
considered wind situations, the flow exhibits a recirculating zone with different order
of magnitudes near the Caraminal Sill (i.e. the interface separating the water bodies
betwen the Mediterranean sea and the Atlantic Ocean). At the beginning of simulation
time, the water flow enters the Strait from the eastern boundary and flows towards
the eastern exit of the Strait. At later time, due to tidal waves, the water flow changes
the direction pointing towards the Atlantic Ocean. A recirculating flow region is also
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Figure 9: The same as in Fig. 8 but for a wind blowing from the east.
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Figure 10: The same as in Fig. 8 but for a wind blowing from the west.

detected on the top eastern exits of the strait near Algeciras. Similar flow behaviours
have been also reported in [3, 15, 34].

The effects of wind conditions are observed in the temperature distributions pre-
sented in Figs. 8, 9 and 10. A boundary layer of high sea-surface temperatures has
been detected on the Spanish coastal lines. For the considered tides and wind condi-
tions, the buoyancy force has been seen to play a weak role for driven the sea-surface
tamperature in the Strait of Gibraltar which results in thiner mixing layers. In Fig-
ure 11 we display the time evolution of the water free-surface elevation at the Tarifa
narrows for a time period of two weeks. As expected, the time series show two tidal
periods with different amplitude and frequencies. They are in good agreement with
those previously computed in [9, 33]. Similar results not presented here, have been
obtained at other locations in the Strait of Gibraltar.

Note that the proposed lattice Boltzmann shallow water model performs well for
this test problem since it does not diffuse the moving fronts and no spurious oscilla-
tions have been observed near steep gradients of the flow field in the computational
domain. It can be clearly seen that the complicated flow structures on the Caraminal
Sill and near Tarifa narrows and Tangier basin are being captured by the LB method. In
addition, the presented results clearly indicate that the method is suited for prediction
of sea-surface temperature dispersion in the Strait of Gibraltar. It should be stressed
that ideally, results from the temperature dispersion model should be compared with
observations of real sea-surface temperatures in the Strait of Gibraltar. However, there
are no available data until now to carry out this work. Thus, we could only simulate
some hypothetical simulations simply to show that LB results are logical and consis-
tent.
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5 Conclusions

In this paper, an accurate and stable numerical algorithm is implemented, using the
lattice Boltzmann method, for the solution of free-surface temperature dispersion in
the shallow water flows. The model has been derived from a depth-averaged incom-
pressible Navier-Stokes equations including bed frictions, eddy viscosity, wind shear
stresses and Coriolis forces. The coupling between the water flow and the free-surface
temperature is modelled using the Boussinesq approximation. A depth-averaged
advection-diffusion equation has been used to describe the dispersion of temperature
on the water free-surface.

The numerical method is based on single relaxation BGK models, and it is char-
acterized by two distribution functions in the lattice Boltzmann method to recover
the flow and temperature variables using the same lattice structure. The method is
simple, accurate, easy to implement, and can be used to solve both steady and un-
steady depth-averaged problems. The method also provides a straightforward treat-
ment of source terms without relying on complicated discretization techniques. More
precisely, the method avoids (i) Riemann solvers, (ii) well- balanced discretization of
gradient terms and source terms in the shallow water equations, (iii) iterative solvers
required for convection-diffusion problems, and (iv) special treatment of irregular do-
main and complex bathymetry.

To demonstrate the performance and the capability of the algorithm, the method
has been applied to solve classical test problems, both on shallow water and advection-
diffusion equations. Then, the algorithm is applied to solve the sea-surface tempera-
ture dispersion in the Strait of Gibraltar. This last example represents a practical ex-
ample for the lattice Boltzmann shallow water flow for two major reasons. Firstly,
the computational domain in the Strait of Gibraltar is a large-scale domain includ-
ing high gradients of the bathymetry and well-defined shelf regions. Secondly, the
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Strait contains complex fully two-dimensional tidal flow structures, eddy viscosity,
Coriolis forces and wind shear stresses, which present a challenge for most numerical
methods used for the shallow water modelling. The presented results demonstrate
the accuracy of the lattice Boltzmann method and its capability to simulate tidal flows
and sea-surface temperature transport in the hydrodynamic regimes considered.
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