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Abstract. The two-winged insect hovering flight is investigated numerically us-
ing the lattice Boltzmann method (LBM). A virtual model of two elliptic foils with
flapping motion is used to study the aerodynamic performance of the insect hov-
ering flight with and without the effect of ground surface. Systematic studies have
been carried out by changing some parameters of the wing kinematics, including
the stroke amplitude, attack angle, and the Reynolds number for the insect hover-
ing flight without ground effect, as well as the distance between the flapping foils
and the ground surface when the ground effect is considered. The influence of the
wing kinematic parameters and the effect of the ground surface on the unsteady
forces and vortical structures are analyzed. The unsteady forces acting on the flap-
ping foils are verified to be closely associated with the time evolution of the vortex
structures, foil translational and rotational accelerations, and interaction between
the flapping foils and the existed vortical flow. Typical unsteady mechanisms of
lift production are identified by examining the vortical structures around the flap-
ping foils. The results obtained in this study provide some physical insight into
the understanding of the aerodynamics and flow structures for the insect hovering
flight.

AMS subject classifications: 74F10, 74L15, 92C10, 76P05, 76D0, 76D17

Key words: Insect hovering flight, lattice Boltzmann method, ground effect, unsteady force,
vortical structure.

1 Introduction

Insects flying through the air display superior maneuverability in their active flight in
the complex environments, such as taking off backwards, flying sideways, and land-
ing upside down [1, 2]. Such complex aerial feats are benefited from the unsteady
and vortical flow induced by the wing flapping motion [3–6], which gives rise to the
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high aerodynamic force needed for the insect flight. Typically, the wing stroke of an
insect can be divided into four kinematic portions: two translational phases (upstroke
and downstroke) when the wings sweep through the air with a high angle of attack,
and two rotational phases (pronation and supination) when the wings rapidly rotate
and reverse direction. How the flapping wings generate high aerodynamic lift for the
insect hovering flight still is an important problem and is highly desired to be studied.

Several mechanisms about the enhanced production of the unsteady aerodynamic
lift have been identified in the experimental studies, which are related to different
stages of the wing flapping motion. A novel rotational mechanism, termed ‘rotational
lift’, was found for the unsteady flow induced by the ‘clap and fling’ motion in the
small insect flight [8–13]. During the fling phase of the ‘clap and fling’ motion, large
attached leading edge vortices (LEVs) arise as the wings open up to form a V-shape by
rotating around the trailing edges. The formation of LEVs is verified to result in a high
lift production without the delay of Wagner effect [14, 15]. In the translational phases,
LEVs are also found attached to the leading edges when the wings move apart or to-
wards each other at high attack angles. The stabilized LEVs are responsible for the
large circulatory forces generated transiently in the upstroke and downstroke phases.
This translational mechanism for high lift generation is called ‘delayed stall’ (or dy-
namic stall) [4,16]. Therefore, the existence of LEVs has been confirmed to be the most
important aspect of the insect aerodynamics to generate significant lift on the flap-
ping wings [17–22]. Another rotational mechanism is termed ‘wake capture’, which
accounts for the large lift peak observed at the beginning of the stroke in case of ad-
vanced rotation, i.e., wing rotation preceding the stroke reversal [19]. It is suggested
that the enhanced lift production in the insect hovering flight is due to the interac-
tion of these three mechanisms occurring during the cyclic process of the two-winged
flapping motion [16].

The unsteady mechanisms of the lift production in the insect hovering flight have
also been investigated by numerical simulations [23–32]. Different wing kinematic
modes have been employed to study the aerodynamic features in the insect hovering
flight [25–37]. It is found that the wing kinematic parameters, such as the translational
and rotational speeds, stroke amplitude, attack angle during the translational phases,
are of appreciable effects on the lift production and the unsteady vortical flow [38–41].
Recently, Gao and Lu [42] first carried out the numerical simulations to study the
ground effect on the unsteady forces and vortical structures around a flapping wing,
and found that the ground effect plays an important role on the flight performance in
the insect hovering flight. According to their study, three typical regimes of force be-
havior, i.e., force enhancement, force reduction, and force recovery regimes, are iden-
tified, depending on the distance between the flapping wing to the ground surface.
To our knowledge, the aerodynamic forces and vortical flow evolution induced by
the two-winged flapping motion are still not fully understood for the insect hovering
flight, and the relevant studies are highly desired. We will thus investigate system-
atically the effects of the wing kinematic parameters and the ground effect on the
unsteady aerodynamic mechanisms of the lift production in the two-winged insect
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hovering flight.
In the present study, a 2D virtual model, which includes two elliptic foils with

symmetric flapping motion, is used to deal with the effects of the wing kinematic pa-
rameters and the ground effect on the insect hovering flight. Although we recognize
the limitation of this model, we nevertheless feel that it is reasonable to employ the
2D simulations to study the two-winged insect hovering flight. This consideration is
confirmed by the experimental observations that even the 3D flow patterns are iden-
tified in insect flight [6], the spanwise flow within the vortex core is much weaker at
low Reynolds number about 150 [5], and would not lead to the full separation of the
LEVs for the amplitude-to-chord ratio between 3 and 5 [17, 18]. It is also confirmed
that the unsteady forces predicted by the 2D computations agree well with the 3D ex-
perimental data [27] and the 3D computational results [29]. Thus, a 2D approach can
be reasonably employed to predict the aerodynamic behaviors in the two-winged in-
sect hovering flight. To deal with the unsteady forces and flow structures in the insect
hovering flight, the 2D incompressible Navier-Stokes equations are solved using the
lattice Boltzmann method (LBM), which can deal with the rigid wall condition [43]
and determine the aerodynamic forces acting on the flapping wings conveniently [44].

This paper is organized as follows. The physical problem and mathematical for-
mulation are described in Sec. 2. The numerical method and validation are given in
Sec. 3. The effects of the wing kinematic parameters and the ground effect on the
unsteady forces and vortical structures are discussed in Sec. 3. Finally, concluding
remarks are given in Sec. 4.

2 Physical problem and mathematical formulation

To investigate the aerodynamic features in the two-winged insect hovering flight, the
incompressible Navier-Stokes equations are used and given as

∂u
∂t

+ u · ∇u = −1
ρ
∇p + ν∇2u, (2.1)

∇ · u = 0, (2.2)

where u is the velocity, p the pressure, ρ the density of the fluid, and ν the kinematic
viscosity, respectively. To study the small insect flight, an idealized wing kinematic
model was proposed by Miller and Peskin [31] to define the ‘clap and fling’ motion,
which is a single wing stroke including only once upstroke, supination, and down-
stroke phase in sequence. Here, we extend this kinematic model to one full cycle of
wing flapping motion and employ it to specify the kinematics of the two foils in Fig. 1.
The kinematics of the left foil are described here. The right foil as it is applicable is the
mirror image of the left foil during the flapping motion. As shown in Fig. 2, the trans-
lational phase is divided into three stages in sequence: the translational acceleration,
the steady translation with a fixed velocity V and an attack angle αm, and the trans-
lational deceleration. The translational velocities in the acceleration and deceleration
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Figure 1: Sketch of the two-winged insect hovering flight without (a) and with ground effect (b).

stages are given as

v(τ) = (−1)n+1 1
2

V{1− cos[
π(τ − τa)

∆τa
]}, τa =

n
2

T, (2.3)

and

v(τ) = (−1)n+1 1
2

V{1 + cos[
π(τ − τd)

∆τd
]}, τd =

n + 1
2

T − ∆τd, (2.4)

respectively, where τ is the dimensionless time defined as τ=tV/c, c is the chord
length of the foil, n is an integer (n ≥ 0), ∆τa (or ∆τd) is the dimensionless duration of
the translational acceleration (or deceleration), and T is the dimensionless duration of
a full cycle of wing flapping motion defined as

T = 2(∆τa + ∆τs + ∆τd), (2.5)

where ∆τs is the dimensionless duration of the steady translation. Therefore, the trans-
lation phase with v(τ)<0 denotes the downstroke motion for the left foil, and that with
v(τ)>0 the upstroke motion. Here, ∆τa and ∆τd are taken to be 1.3, T is adjusted to
obtain the stroke amplitude Am desired by

Am =
1
2

V(T − ∆τa − ∆τd), (2.6)

During the rotational phase, the flapping foils rotate about the their centers. The an-
gular velocity of the left wing during the rotational phase is given by

ω(τ) = (−1)n+1 1
2

Ω{1− cos[
2π(τ − τr)

∆τr
]}, (2.7)

τr =
n
2

T, or
n
2

T − ∆τr, (2.8)
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Figure 2: Kinematics of the left wing in one full cycle of flapping motion specified by the translational and
rotational velocities.

where Ω is a constant obtained by Ω=(π − 2αm)V/(∆τr c), ∆τr is the dimensionless
duration of the rotational phase, which is set to be 1.74. Then, the rotational phase
with ω(τ)<0 denotes the pronation motion for the left foil, and that with ω(τ)>0 the
supination motion. Thus, the kinematics of the left wing in one full cycle of flapping
motion is given by the time traces of the translational velocity v and rotational velocity
ω depicted in Fig. 2. We use the chord length of the foil c and the steady translation
velocity V as the length and velocity scales, respectively [31]. The Reynolds number
is defined as Re=Vc/ν. The corresponding non-dimensional variables shown in Eqs.
(2.3)-(2.8) are still represented by the same symbols for writing convenience. To deal
with the ground effect on the insect hovering flight, another parameter D is intro-
duced to represent the distance between the flapping foils and the ground, or called
the ground clearance [42, 45, 46]. In the present calculations, no-slip boundary con-
dition is used on the flapping foils and the ground surface when present, and the
boundary normal derivatives of velocity vanish in the far flow field. Initial flow field
is set as rest for all the calculations.

3 Numerical method and validation

To solve Eqs. (2.1) and (2.2), the lattice Boltzmann equations with D2Q9 model are
employed, which are proved to be second-order accuracy to recover the Navier-Stokes
equations [47, 48], and given as

fi(x + ei∆t, t + ∆t)− fi(x, t) = − 1
τrt

[ fi(x, t)− f eq
i (x, t)], (3.1)

where fi(x, t) is the distribution function for particles with velocity ei at position x
and time t, ∆t is the time increment, and τrt is the relaxation time. The equilibrium
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Figure 3: Time-dependent vertical (a) and horizontal (b) force coefficients of the left wing in the insect
hovering flight without ground effect for Am=4.0, αm=45◦ and Re=100. Case 1: finest lattice spacing
∆x=0.025 with the computational domain [−10, 10] × [10,−20] in the x- and y-directions, respectively;
Case 2: finest lattice spacing ∆x=0.0125 with [−20, 20]× [15,−30] in the x- and y-directions, respectively.

distribution function f eq
i is defined as

f eq
i = ωiρ

[
1 +

e · u
c2

s
+

uu : (eiei − c2
s I)

2c4
s

]
, (3.2)

where ωi is the weighing factor, cs is the sound speed, ρ and u are the fluid density
and velocity, respectively, which can be obtained by the distribution function,

ρ = ∑
i

fi, ρu = ∑
i

ei fi. (3.3)

To obtain the details of unsteady flow behaviors induced by the two-winged flapping
motion, the grid refinement technique, i.e. the multi-block LBM [49, 50], is employed
to obtain fine grid resolution around the flapping foils. A bounce-back rule based on
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Figure 4: Validation of the present code and method by comparison of the vertical (a) and horizontal (b)
force coefficients of the left wing induced by the ‘single fling’ motion for Am=3.5, αm=45◦ and Re=128.
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the second-order accuracy interpolation [43] is employed to enforce the no-slip bound-
ary condition on the flapping foils and the ground surface when present. Due to the
wing flapping motion, some boundary nodes (computational nodes located within
the moving foils) will change into fluid nodes (computational nodes located in the
fluid flow field). In the present study, a second-order accuracy extrapolation strategy
is used to define the distribution function right on such boundary nodes once they
turns into the fluid nodes [51]. Since a 2D virtual mode is considered for the insect
hovering flight, the vertical and horizontal force coefficients are used and defined as
CV=FV/(0.5ρUV2c) and CH=FH/(0.5ρUV2c), respectively, where FV and FH are the
vertical and horizontal forces acting on the flapping foils. Here, FV and FH are deter-
mined by use of the momentum-exchange method [44, 52]. The method to deal with
the moving boundary and that to determine the aerodynamic forces were described
in detail in the previous work referred above.

Here, to check the grid convergence, calculations by different lattice spacings were
carried out for the unsteady flow induced by the two-winged flapping motion with-
out ground effect. The time-dependent vertical and horizontal force coefficients for
the left wing are typically shown in Fig. 3. It is seen that the results obtained by differ-
ent computational conditions agree well with each other, indicating the independence
of the lattice spacing and the computational domain size. Thus, the calculated results
obtained by the computational conditions used in Case 2, i.e., finest lattice spacing
∆x=0.0125 with a computational domain [−20, 20] × [15,−30] in the x− and y− di-
rections, respectively, are used to deal with the insect hovering flight without ground
effect. Further, a typical flow induced by the one-winged ‘single fling’ motion studied
extensively by Miller and Peskin [31] was calculated to validate the present code and
method. In Fig. 4, the calculated time histories of the vertical and horizontal force
coefficients are compared well with those obtained by Miller and Peskin [31]. More-
over, based on the extensive convergence studies (not shown here) and our previous
work [42], the calculations to deal with the insect hovering flight under the ground
effect are performed by used of the following computational conditions, finest lattice
spacing ∆x=0.0125 with a computational domain [−20, 20]× [ 0, 30] in the x− and y−
directions, respectively.

4 Results and discussion

In this section, we present some typical results on the force behaviors and vortical
structures of the two-winged insect hovering flight with and without ground effect.
Based on the previous studies on modeling insect hovering flight [27, 28, 31, 42], the
parameters used here are given as follows: the stroke amplitude Am changes from 2.0
to 5.0, and the attack angle αm from 30◦ to 60◦ [17,18]. The Reynolds number Re varies
from 25 to 200, covering the range of Reynolds number in the small insect flight [8–13].
The thickness ratio of the foil is 0.04. As shown in Fig. 1, when the flapping wings
follow the kinematics indicated in Fig. 2, a distance will be left between them when
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they are in the parallel apposition together. This distance is set as c/ 6 in the present
study. When the ground effect is considered, the ground clearance D ranges from 1
to 10. In the following subsections, the unsteady force behaviors of the left foil are
discussed, the forces acting on the right foil are basically the mirror images of those
on the left foil in the most calculations.

4.1 Effect of stroke amplitude Am

The time evolution of vortical structures is closely associated with the aerodynamic
feature in insect flight [17–22]. The unsteady lift production arises mainly from the
interaction between the vortical structures (for example, the leading edge and trailing
edge vortices) with the flapping foils [53, 54]. Here, as a typical case for the insect
hovering flight without ground effect, the vortex evolution in one full cycle of wing
flapping motion for Am=4.0, αm=45◦ and Re=100 is visualized in Fig. 5 and is dis-
cussed to understand the underlying mechanisms of lift production. Figs. 5(a)-5(d)
show the vortical structures around the flapping foils during the wing downstroke
phase from t/T=1/8 to 4/8. Large scale LEVs are formed mainly due to the wing
pronation motion in Fig. 5(a), resulting in the high lift acting on the flapping foils by
the ‘rotational lift’ mechanism [21, 31]. When these two foils are in the steady transla-
tion state, the LEVs remain attached to the flapping foils, contributing to the enhanced
lift production in accordance with the ‘delayed stall’ mechanism [16]. At the end of
the downstroke motion, the trailing edge vortices (TEVs) are shed from the flapping
foils in Fig. 5(d). Figs. 5(e)-5(h) are the vorticity contours during the upstroke phase
from t/T=5/8 to 8/8. After the translational acceleration of the upstroke phase, the
foils move towards each other through the vortical wakes separated in the previous
downstroke phase in Fig. 5(e). Meanwhile, new LEVs with opposite signs begin to
grow and interact with those shed off in the previous downstroke phase. This vortex
development is associated with the ‘wake capture’ mechanism of lift production [19].
In the steady translation stage of the upstroke phase in Fig. 5(f), the LEVs grow gradu-
ally and remain attached to the flapping foils. Due to the interaction of LEVs with the
wake vortices and the growing TEVs, the lift production associated with the ‘delayed
stall’ mechanism in the upstroke phase is expected to be relatively small. In Fig. 5(h),
vortex shedding of the LEVs and TEVs is observed due to the translational decelera-
tion. At the end of one cycle of wing flapping motion, two vortex pairs of TEVs shed
from the flapping foils are drifted into the downwind flow, indicating a jetlike flow
induced by the flapping motion of the insect wings [27].

To examine the effect of the stroke amplitude Am on the insect hovering flight
without ground effect, the time-averaged force coefficients C̄V and C̄H are discussed
further. Based on our calculations, periodic variation of the time-dependent forces
are achieved after about four cycles of wing stroke for all the calculations. The time-
averaged values used below are obtained over several cycles of wing flapping motion
in the periodic state. As suggested in the previous work [42], the absolute value of hor-
izontal force is used when taking the average. The time-averaged force coefficients C̄V
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Figure 5: Vorticity contours during one full cycle of wing flapping motion without ground effect for Am=4.0,
αm=45◦ and Re=100 at t/T =(a) 1/8, (b) 2/8, (c) 3/8, (d) 4/8, (e) 5/8, (f) 6/8, (g) 7/8 and (h) 8/8.
Here, solid lines represent positive values (i.e, counterclockwise vortex) and dashed lines negative values
(i.e., clockwise vortex). Increment of the contours is 1. The lines and increment used here are the same as
ones shown in the following figures for all the vorticity plots.
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and C̄H versus the stroke amplitude Am are shown in Fig. 6(a). With the increase of Am
from 2.0 to 4.0, the vertical and horizontal force coefficients increase slightly, and reach
their maxima about Am=4.0 with C̄V=0.69 and C̄H=1.20, respectively. The computa-
tional results are comparable to those obtained for the harmonic wing motion [27]. As
Am increases further to 5.0, C̄V and C̄H turn to decrease weakly. These behaviors of C̄V
and C̄H are consistent with the experimental observation that the amplitude-to-chord
ratio prefers to be in the range from 3.0 and 5.0 in small insect flight [17, 18].

For clearly exhibiting the force variation, the time-dependent force coefficients CV
and CH over only one cycle of wing flapping motion after reaching the periodic state
are shown in Figs. 6(b) and 6(c). Three typical stroke amplitudes Am=3.0, 4.0 and 5.0
are considered here. In Fig. 6(b), the first peak of CV occurs at t/T=0.065 approxi-
mately, corresponding to the rotational acceleration of the wing pronation motion that
gives rise to the large attached LEVs resulting in high lift [31], as observed in Fig. 5(a).
CV approaches its second peak then drops to a platform distribution with relatively
large value during the steady translation stage of the wing downstroke motion. This
vertical force behavior contributes greatly to the lift production, as indicated in Figs.
5(b)-5(c). The third peak of CV is small, occurring at t/T=0.42 approximately therefore
corresponding to the supination motion of the wing downstroke phase. Another two
peaks of CV appear sequentially around t/T=0.58 and 0.65, as the consequences of the
rotational and translational accelerations at the beginning of the wing upstroke mo-
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Figure 7: Vorticity contours during one full cycle of wing flapping motion without ground effect for Am=3.0,
αm=45◦ and Re=100 at t/T=(a) 1/8, (b) 2/8, (c) 3/8, (d) 4/8, (e) 5/8, (f) 6/8, (g) 7/8 and (h) 8/8.
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Figure 8: Vorticity contours during one full cycle of wing flapping motion without ground effect for Am=5.0,
αm=45◦ and Re=100 at t/T =(a) 1/8, (b) 2/8, (c) 3/8, (d) 4/8, (e) 5/8, (f) 6/8, (g) 7/8 and (h) 8/8.
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tion in Figs. 5(d)-5(e). During the steady translation stage of the wing upstroke phase,
a platform distribution with nearly constant small CV is observed, in accordance with
the vortex evolution in Figs. 5(g)-5(h). This feature of lift force differs from that in-
duced by the single stroke of ‘clap and fling’ wing motion [28, 31], which presents a
platform distribution of high lift coefficient during the ‘fling’ phase, since in that case
the wings move toward each other through the undisturbed fluid [28,31]. The signifi-
cant drop of CV around t/T=0.87 corresponds to the translational deceleration of the
wing upstroke phase. The last peak of CV is presented at t/T=0.93 approximately,
resulted from the rotational acceleration of the wing pronation motion at the end of
upstroke phase. In Fig. 6(c), CH reaches its first peak at t/T=0.03 approximately, due
to the translational and rotational accelerations at the beginning of the wing down-
stroke motion. In sequence, the second small peak of CH then its platform distribution
with relatively steady values are observed during the steady translation stage of the
downstroke motion. Due to the wing supination motion, another two peaks of CH
arise around t/T=0.42 and t/T=0.55, respectively. As the flapping wings move to-
wards each other with fixed velocity V in the upstroke phase, CH presents a small
constant value. Then, CH drops greatly due to the translational deceleration. In the
late of the upstroke phase, the last peak value of CH occurs at t/T=0.93 approximately,
as the result of the wing pronation motion.

The weak dependence of C̄V and C̄H on Am is also confirmed by the overview on
Figs. 6(b) and 6(c), where little difference can be identified by integrating CV or CH
over one full cycle of wing flapping motion for different Am. As indicated in Figs.
7 and 8 for the vortical structures around the flapping foils, the time evolutions of
vortical structures in one cycle of wing flapping motion for Am=3.0 and 5.0 are quite
similar to those for Am=4.0 in Fig. 5. This visualization of vortex evolution is con-
sistent with the time-dependent vertical and horizontal force behaviors predicted in
Figs. 6(b) and 6(c).

4.2 Effect of attack angle αm

The attack angle αm during the steady translation stages of the wing flapping motion
is an important parameter closely related to the vertical force [18]. Here, the effect
of the attack angle αm is investigated by examining the unsteady force behaviors and
the time evolution of vortical structures around the flapping foils, with αm ranging
from 30◦ up to 60◦ for Am=4.0 and Re=100. Fig. 9(a) shows the time-averaged force
coefficients C̄V and C̄H versus the attack angle αm. As measured in the previous experi-
ments [17,18], the variation of αm results in appreciable effect on the aerodynamic force
behaviors. It is seen in Fig. 9(a) that C̄H presents the considerable monotonic increase
when αm varies from 30◦ to 60◦. Differently, C̄V approaches to its maximum value 0.70
around αm=50◦, then decreases slightly when αm increases further. This aerodynamic
performance is basically consistent with the results of previous work [16, 20].

To specify the effect of αm on the unsteady forces, the time-dependent force coeffi-
cients CV and CH are typically shown in Figs. 9(b) and 9(c) for αm=30◦, 45◦ and 60◦.
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Figure 9: Force coefficients for the insect
hovering flight without ground effect at dif-
ferent attack angles: mean force coefficients
(a), vertical (b) and horizontal (c) force co-
efficients during one cycle of wing flapping
motion for Am=4.0 and Re=100.

In Fig. 9(b), the vertical force coefficients CV for αm=30◦ and 60◦ present the same
time histories as that for αm=45◦ in one cycle of wing flapping motion, which is de-
scribed above in detail. The effect of αm can be identified from the peak values of CV
associated with the wing pronation and supination motions, which decrease consid-
erably with the increase of αm from 30◦ to 60◦, and from the platform distribution of
CV corresponding to the steady translation stages, which increase greatly as αm varies
up to 45◦ then drop appreciably when αm increases further to 60◦. This feature of CV
is responsible for the variation of C̄V versus αm depicted in Fig. 9(a). In Fig. 9(c), the
peaks of CH drops greatly during the wing pronation and supination motions when
αm varies from 30◦ to 60◦. Different from the behavior of CV in Fig. 9(b), the platform
distribution of CH increases monotonically with the increase of αm from 30◦ to 60◦.
Considering the trends of C̄V and C̄H versus αm in Fig. 9(a), the overview on Figs.
9(b)-9(c) reasonably leads to a conclusion that the aerodynamic features are mainly
dominated by the unsteady force production associated with the steady translation
stages.

To deal with the effect of αm on the vortical structures, the vorticity contours for
αm=30◦ and 60◦ are shown in Figs. 10 and 11, respectively. The typical phenomena
of vortical structures around the flapping foils can be identified in Figs. 10 and 11,
such as the LEVs which are formed during the wing pronation motion and remain at-
tached to the leading edges when the foils move apart during the downstroke phase,
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Figure 10: Vorticity contours during one full cycle of wing flapping motion without ground effect for Am=4.0,
αm=30◦ and Re=100 at t/T =(a) 1/8, (b) 2/8, (c) 3/8, (d) 4/8, (e) 5/8, (f) 6/8, (g) 7/8 and (h) 8/8.



496 Y. J. Liu, N. S. Liu, X. Y. Lu / Adv. Appl. Math. Mech., 4 (2009), pp. 481-509

x

y

-5 -2.5 0 2.5 5
-6

-4

-2

0

2

(a) x

y

-5 -2.5 0 2.5 5
-6

-4

-2

0

2

(b)

x

y

-5 -2.5 0 2.5 5
-6

-4

-2

0

2

(c) x

y

-5 -2.5 0 2.5 5
-6

-4

-2

0

2

(d)

x

y

-5 -2.5 0 2.5 5
-6

-4

-2

0

2

(e) x

y

-5 -2.5 0 2.5 5
-6

-4

-2

0

2

(f)

x

y

-5 -2.5 0 2.5 5
-6

-4

-2

0

2

(g) x

y

-5 -2.5 0 2.5 5
-6

-4

-2

0

2

(h)

Figure 11: Vorticity contours during one full cycle of wing flapping motion without ground effect for Am=4.0,
αm=60◦ and Re=100 at t/T =(a) 1/8, (b) 2/8, (c) 3/8, (d) 4/8, (e) 5/8, (f) 6/8, (g) 7/8 and (h) 8/8.
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and the ‘wake capture’ process occurring due to the wing supination motion in the
upstroke phase. In Fig. 10, the TEVs shed from the flapping foils do not drift away
into the downwind evidently, indicating that the downward velocity of the jetlike flow
induced by the flapping foils is trivial [27]. This feature of shedding TEVs is qualita-
tively consistent with the relatively small C̄V for αm=30◦ in Fig. 9(a). In Fig. 11, weak
asymmetry of vortical structures is observed around the flapping foils, in particular
during the wing pronation motion. According to the dynamics of vortical flow, this
feature of vortex evolution is expected to break the symmetry of the unsteady forces
acting on the left and right foils, which consequently leads to the instability in the
insect hovering flight.

4.3 Effect of Reynolds number Re

We further discuss the effect of Reynolds number Re on the force behaviors and vor-
tical structures in the insect hovering flight. Here, the Reynolds number varies from
25 to 200, and the stroke amplitude and attack angle are fixed at Am=4.0 and αm=45◦,
respectively. In Fig. 12(a), the time-averaged vertical and horizontal force coefficients,
C̄V and C̄H, are shown versus the Reynolds number Re. It is indicated that the vari-
ation of Reynolds number have a little influence on the time-averaged vertical force
coefficient C̄V , which increases weakly to its maximum about 0.73 as Re changes from
25 up to 175, and decreases slightly when Re increases further to 200. Differently, the
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Figure 12: Force coefficients for the insect
hovering flight without ground effect at dif-
ferent Reynolds numbers: mean force coef-
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force coefficients during one cycle of wing
flapping motion for Am=4.0 and αm=45◦.
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Figure 13: Vorticity contours during one full cycle of wing flapping motion without ground effect for Am=4.0,
αm=45◦ and Re=50 at t/T=(a) 1/8, (b) 2/8, (c) 3/8, (d) 4/8, (e) 5/8, (f) 6/8, (g) 7/8 and (h) 8/8.
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Figure 14: Vorticity contours during one full cycle of wing flapping motion without ground effect for Am=4.0,
αm=45◦ and Re=200 at t/T =(a) 1/8, (b) 2/8, (c) 3/8, (d) 4/8, (e) 5/8, (f) 6/8, (g) 7/8 and (h) 8/8.
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effect of Re on the time-averaged horizontal force coefficient is more remarkable in
Fig. 12(a). C̄H presents a high value about 1.73 at low Reynolds number Re=25, and
drops greatly to about 1.20 as Re increases to 75. In the range 75≤Re≤175, C̄H remains
nearly a constant value, indicating the weak dependence of C̄H on the Reynolds num-
ber. When Re increases up to 200, C̄H decrease considerably to a value about 1.05. This
behavior of C̄H is basically in agreement with the experimental measurements [21].

In Figs. 12(b) and 12(c), the time-dependent force coefficients CV and CH are typ-
ically shown for Re=50, 100 and 200 to examine in detail the force behaviors. In Fig.
12(b), the peak values of CV corresponding to the wing pronation and supination mo-
tions, as well as the platform distribution of CV related to the steady translation stages
in the downstroke and upstroke phases, increase weakly when Re increase from 50
to 100, then decrease slightly as Re varies up to 200. This behavior of CV in response
to the variation of Re is consistent with the weak influence of Re on C̄V indicated in
Fig. 12(a). Basically, CH in Fig. 12(c) drops with the increase of Re, in accordance with
the behavior of C̄H shown in Fig. 12(a). The trend of CV versus Re is different from
that induced by the single stroke of ‘clap and fling’ motion, which decrease greatly
with the increase of Re. [28, 31] This difference of CV in response to the increase of
Re should mainly arise from the interaction of the flapping wings with the vortical
structures separated in the previous cycles of wing flapping motion.

To examine the effect of Re on the time evolution of vortical structures, the vorticity
contours for Re=50 and 200 are shown in Figs. 13 and 14, respectively. Similar to the
vortical structures in Fig. 5, symmetrical vortex development is observed in Fig. 13 for
low Reynolds number Re=50. The relevant mechanisms of unsteady forces have been
well discussed in the previous subsections. Fig. 14 shows the vorticity contours during
one cycle of wing flapping motion for Re=200. Obviously, strong vortex asymmetry
is visualized from the time evolution of vortical structures, in particular by examining
the TEVs shed into the downwind flow from the flapping foils. The symmetry break
of the vortical structures should be due to the nonlinear dynamics of vortical flow
for high Reynolds number, as reported by the numerical study of Lu and Liao. [33]
The asymmetry of vortical structures for Re=200 are expected to lead to the instability
in the insect hovering flight. This finding of vortex development for high Reynolds
number is consistent with the fact that the ‘clap and fling’ motion is mainly employed
by small insects, with the Reynolds number no more than 150 [8–13].

4.4 Effect of ground clearance D

The ground effect is verified to play an important role on the unsteady forces induced
by the one-winged flapping motion [42]. Here, calculations are carried out to deal
with the ground effect on the aerodynamic forces and vortical structures induced by
the two-winged flapping motion, with the clearance D varying from 1 to 10, and the
other computational parameters fixed at Am=4.0, αm=45◦ and Re=100.

We first discuss the ground effect on the force behaviors. Fig. 15(a) shows the
time-averaged force coefficients C̄V and C̄H versus the ground clearance D. When the
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flapping foils are close to the ground surface, i.e. D=1, C̄V and C̄H are greatly en-
hanced. This force behaviors are also observed in the our previous work [42]. The
force coefficients C̄V and C̄H present the monotonic trends with the increase of D,
decreasing gradually to the corresponding values without ground effect when D in-
creases to 10. Here, to be recalled that C̄V and C̄H without ground effect have been
obtained in Fig. 6(a), which are about 0.69 and 1.20, respectively. Different from the
force behaviors induced by the one-winged flapping motion [42], no force reduction
regime is identified in the present calculations. These trends of force behaviors in-
duced by the two-winged flapping motion should be resulted from the difference of
the kinematics of the flapping foils and the wing-wing interaction between the flap-
ping foils [21].

In Figs. 15(b) and 15(c), the time-dependent force coefficients CV and CH are shown
for typical ground clearances D=1, 4 and 8, to examine the detail force behaviors un-
der the influence of the ground surface. When the ground clearance is small (D=1), it
is indicated in Fig. 15(b) that the great enhancement of C̄V in Fig. 15(a) is mainly due
to three augmented contributions of CV in one cycle of wing flapping motion. One is
the first peak of CV linked to the wing rotational acceleration at the beginning of the
downstroke phase, which is greatly augmented for the small ground clearance. The
other two come from the peaks of CV around t/T=0.16 and 0.68, which are enhanced
so greatly that the sequent platform distributions of CV in the steady translation stages
disappear. Therefore, for a small ground clearance, e.g. D=1, the platform distribu-
tions of CV associated with the ‘delayed stall’ mechanism are no longer the major con-
tributions to the lift production. As the ground clearance D increases to 8, the ground
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Figure 15: Force coefficients for the insect
hovering flight subjected to the ground effect
at different ground clearances: mean force
coefficients (a), vertical (b) and horizontal
(c) force coefficients during one cycle of wing
flapping motion for Am = 4, αm = 45◦ and
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Figure 16: Vorticity contours during one full cycle of wing flapping motion subjected to the ground effect
for Am=4.0, αm=45◦, Re=100 and D=1.0 at t/T =(a) 1/8, (b) 2/8, (c) 3/8, (d) 4/8, (e) 5/8, (f) 6/8,
(g) 7/8 and (h) 8/8.
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Figure 17: Vorticity contours during one full cycle of wing flapping motion subjected to the ground effect
for Am=4.0, αm=45◦, Re=100 and D=4.0 at t/T =(a) 1/8, (b) 2/8, (c) 3/8, (d) 4/8, (e) 5/8, (f) 6/8,
(g) 7/8 and (h) 8/8.
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Figure 18: Vorticity contours during one full cycle of wing flapping motion subjected to the ground effect
for Am=4.0, αm=45◦, Re=100 and D=8.0 at t/T =(a) 1/8, (b) 2/8, (c) 3/8, (d) 4/8, (e) 5/8, (f) 6/8,
(g) 7/8 and (h) 8/8.
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effect on CV is damped quickly and CV presents the same time-dependent behavior as
that without ground effect, consistent with trend of C̄V shown in Fig. 15(a). Similar
to the response of CV to the ground effect for D = 1, the first peak of CH linked to
the wing rotational acceleration at the beginning of the downstroke phase, together
with the peaks of CH related to the steady translation stages during the downstroke
and upstroke phases, are remarkably augmented. This feature of CH is responsible
for the great enhancement of C̄H at small ground clearance in Fig. 15(a). With the
increase of D up to 8, the ground effect becomes weak and CH quickly recovers the
time-dependent behavior without ground effect.

Here, the time evolution of vortical structures around the flapping foils is dis-
cussed for D=1 to understand the effect of ground surface. Figs. 16(a)-16(d) shows
the vorticity contours during the downstroke phase. Compared to the vortex develop-
ment without ground effect shown above, the vortical structures become more com-
plicated when the ground surface present. During the wing pronation motion of the
downstroke phase, large scale LEVs are formed and attached to the flapping foils in
Fig. 16(a), contributing to the first high peaks of CV (Fig. 15(b)) and CH (Fig. 15(c)).
Meanwhile, the TEVs are shed from the flapping foils to form a relative strong vortex
pair close to the trailing edge, with the positive vortex under the right foil in Fig. 16(a).
Due to the ground effect, this vortex pair gives rise to another vortex pair right on the
ground surface. According the dynamics of vortical flow, the jetlike downwind flow
induced by these two vortex pairs is of benefit to the enhanced force production in the
following steady translation stage, and should be responsible for the high peaks of CV
(Fig. 15(b)) and CH (Fig. 15(c)) at t/T=0.16 approximately. When the flapping foils
move apart, large scale LEVs and TEVs are shed off alternatively, as shown in Figs.
16(c)-16(d). During the upstroke phase in Figs. 16(e)-16(h), the flapping foils move to-
wards each other through the vortical structures shed off in the previous downstroke
phase. The strong ‘wake capture’ process is visualized in Fig. 16(e) at the beginning
of the upstroke phase, which is responsible for the peaks of CV (Fig. 15(b)) and CH
(Fig. 15(c)) about t/T=0.68. During the upstroke phase, strong interaction between
the flapping foils and ground surface can be identified by the elongated vortical struc-
tures right on the ground surface in Figs. 16(f)-16(g). In Fig. 16, weak vortex asym-
metry is observed over one cycle of wing flapping motion, indicating the consequent
weak instability in the insect hovering flight subjected to the effect of small ground
clearance.

In Figs. 17 and 18, the vortical structures for the ground clearances D=4 and 8 are
shown over one cycle of wing flapping motion. With D increases over 4, the effect of
ground surface on the vortical structures around the flapping foils becomes weak, the
symmetrical vortex development is observed in Figs. 17 and 18, similar to the typical
vortex evolution without ground effect, as shown in Fig. 5. Due to the presence of
ground surface, the TEVs shed from the flapping foils are swept horizontally in the
downwind flow. This influence of ground surface on the vortical structures is also
observed in our previous work to study the one-winged flapping motion under the
ground effect [42].
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5 Conclusions

We have investigated the two-winged insect hovering flight by extensive calculations
using the lattice Boltzmann method (LBM). By examing the unsteady forces and vor-
tical structures, the effects of wing kinematic parameters, including the stroke ampli-
tude, attack angle, and Reynolds number, as well as the ground effect, are studied to
provide physical understanding of the aerodynamic performance in the insect hov-
ering flight. Here, we briefly summary the results obtained in the present study and
discuss the underlying mechanisms of the insect hovering flight with and without
ground effect.

By examining in detail the time evolution of vortical structures around the flap-
ping foils without ground effect, typical unsteady mechanisms of high lift production,
including ‘rotational lift’, ‘delayed stall’, and ‘wake capture’, are identified during one
cycle of wing flapping motion. Based on the systematic parameter studies, the force
characteristics are verified to be closely associated with vortical structures, foil trans-
lational and rotational accelerations, and interaction between the flapping foil and the
existing vortical flow. Basically, the present results are qualitatively consistent with the
experimental observation of small insect flight. The time-averaged vertical and hori-
zontal forces are found to be weakly dependent on the stroke amplitude as it varies
from 3.0 to 5.0, corresponding to the range of amplitude-to-chord ratio employed in
the small insect flight. By checking the effect of attack angle, the maximum of lift force
is obtained for the attack angle 45◦. It is found that the unsteady forces associated
with the steady translation stages are dominant to the flight performance. Weak de-
pendence of aerodynamic performance is identified for Reynolds number in the range
from 50 to 100. For high Reynolds number, strong vortex asymmetry is visualized by
examining the vortical structures, which indicates the flight instability for small insect
flight. When the ground effect is considered, the aerodynamic forces are significantly
enhanced for small ground clearance. As the ground clearance increases, the unsteady
force quickly recover their behaviors without ground effect.

The results obtained in this study are helpful to understand the aerodynamics and
flow structures in the insect hovering flight, and the flying mechanisms relevant to the
high lift production. However, the flow characteristics in this problem are certainly
far more complex and diverse than the simple model considered here. Ideally, three-
dimensional computation of the insect hovering flight is desirable and is a target in
our further work.
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