
Advances in Applied Mathematics and Mechanics
Adv. Appl. Math. Mech., Vol. 1, No. 6, pp. 769-780

DOI: 10.4208/aamm.09-m09S10
December 2009

Collocation Methods for Hyperbolic Partial
Differential Equations with Singular Sources

Jae-Hun Jung1∗and Wai Sun Don2

1 Department of Mathematics, the State University of New York at Buffalo, Buffalo,
NY 14260-2900, USA
2 Department of Mathematics, Hong Kong Baptist University, Hong Kong, China

Received 05 July 2009; Accepted (in revised version) 25 August 2009
Available online 18 November 2009

Abstract. A numerical study is given on the spectral methods and the high order
WENO finite difference scheme for the solution of linear and nonlinear hyperbolic
partial differential equations with stationary and non-stationary singular sources.
The singular source term is represented by the δ-function. For the approximation
of the δ-function, the direct projection method is used that was proposed in [6].
The δ-function is constructed in a consistent way to the derivative operator. Non-
linear sine-Gordon equation with a stationary singular source was solved with the
Chebyshev collocation method. The δ-function with the spectral method is highly
oscillatory but yields good results with small number of collocation points. The
results are compared with those computed by the second order finite difference
method. In modeling general hyperbolic equations with a non-stationary singu-
lar source, however, the solution of the linear scalar wave equation with the non-
stationary singular source using the direct projection method yields non-physical
oscillations for both the spectral method and the WENO scheme. The numerical
artifacts arising when the non-stationary singular source term is considered on the
discrete grids are explained.

AMS subject classifications: 65M06, 65M30, 65M70
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1 Introduction

In various mathematical modeling of physical processes, such as the shock-particle
laden flows [5] and the collisions of black-holes [7], the system of partial differential
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equations (PDEs) often involves point sources as a forcing term on the right hand side
of PDEs. For example, consider the following 1D scalar hyperbolic equation

Ut + Fx(U) = S(x, t), U : R×R+ → R, t > 0, (1.1)

where F(U) is the flux whose Jacobian ∂F/∂U has real eigenvalues and S(x, t) is the
source term consisting of a singular function such as the δ-function and its deriva-
tive(s).

In this work, we consider some numerical issues related to the solution of PDEs
with a stationary source (S(x) is a function of space only) and a non-stationary sin-
gular source (S(x, t) is a function of both space and time) with the collocation meth-
ods such as the spectral methods and high order weighted essentially non-oscillatory
(WENO) finite difference methods (see [1, 3, 4, 12] and references therein for details of
these methods). It should be noted that the WENO methods are particularly suitable
for solving problem with solution containing discontinuities. Following the conven-
tion, the singular sources are represented by the Dirac-δ-function and/or its deriva-
tive(s).

Due to the singular nature of the point sources, a smooth initial condition may
yield a solution containing discontinuities even for a linear scalar equation. High or-
der numerical approximations of such nonsmooth solutions would suffer from the
well-known Gibbs phenomenon [3, 4]. Consequently, the numerical solutions become
oscillatory near the singularity and high order convergence will be lost near the singu-
larity. For the time-dependent problem, the scheme would even become unstable. To
handle this situation, the point sources are often regularized to obtain a smoother rep-
resentation of the δ-function so that the approximation converges to the δ-function
in the usual limit sense. Several related regularization methods have been devel-
oped [2,10,11,13]. The Gaussian function approximation (GA) method is the simplest
approximation popularly used. One can also make use of an alternative definition of
the δ-function that the derivative of the Heavside function H(x) is the δ-function in
the distribution sense, namely, dH(x)/dx = δ(x). The derivative operator will then
be incorporated into the derivative operator of the flux function F. This is what we
call the Direct Projection (DP) method in this study which was proposed in [6].

In this paper, we focus our discussion on the numerical approximations of PDEs on
a set of discrete grid points and we shall limit our discussion to the one-dimensional
scalar linear and nonlinear problems. We will demonstrate the application of the DP
method for solving the nonlinear sine-Gordon equation with a stationary singular
source term using the Chebyshev collocation method [3, 4, 6] and compare the results
obtained by the second order finite difference scheme using the GA method. The so-
lution with the spectral method converges quickly when the number of grid points is
increased.

For a non-stationary singular source that is moving in time, one has to consider the
effect of the movement of the singular source in time and space. The δ-function can be
located between two discrete grid points causing errors in modeling of the δ-function.
We demonstrate, through a simple linear scalar wave equation with a non-stationary
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singular source, that numerical oscillations could be generated due to the movement
of the δ-function through the discrete grids as the location of the δ-function is no longer
located exactly at the grid point at a given time. The frequency or wavelength of the
oscillations is directly related to the product of the number of the grid points and the
speed of the propagation of the δ-function.

The paper is composed of the following sections. In Section 2, we briefly describe
two approximation methods for the singular source term, namely, the GA method
and the DP method. In Section 3, we consider scalar PDEs with the stationary sin-
gular source term. We solve the linear scalar wave equation with stationary singular
source by the Chebyshev collocation method and the fifth order WENO finite differ-
ence scheme and the singular source term is approximated by the DP method. We also
solve the nonlinear sine-Gordon equation with a stationary singular source. The nu-
merical experiments based on the Chebyshev collocation method with the DP method
and the second order finite difference method with the GA method for the singular
source are presented. We present some results of the sine-Gordon problem at the
sub-critical and super-critical velocities. In Section 4, we illustrate the non-physical
oscillations generated by a non-stationary singular source on a finite grid. The lin-
ear scalar wave equation with a non-stationary singular source is served as a model
to demonstrate the phenomenon. The PDEs is solved by the high order WENO-Z fi-
nite difference scheme while the singular source is approximated by the DP and GA
methods. A brief summary and future research direction are given in Section 5.

2 Approximations of singular sources

In this study, we consider the equation (1.1), the scalar hyperbolic equation with a
singular source (forcing) term, S(x, t) = S(x + ct). For simplicity, we consider the
case that the propagating speed c of the singular source term is either zero or a real
constant for all time t.

Let S be represented by the Dirac δ-function and/or its derivative(s). The Dirac δ-
function and its derivatives are defined by the following equations in the distribution
sense, i.e., for a given real-valued function f (x) in the domain Ω = [−1, 1]∫ 1

−1
f (x)δ(x− y)dx = f (y), (2.1)

and ∫ 1

−1
f (x)δ′(x− y)dx = − f ′(y),

∫ 1

−1
f (x)δ′′(x− y)dx = f ′′(y), · · · , (2.2)

where −1 < y < 1 and the superscript ′ denotes the derivative with respect to x.
Since the Dirac δ-function is singular in nature and only defined in the distribution

sense, it is not possible to calculate its value directly. In order to model the δ-function,
we consider the following two possible cases;
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• approximate the δ-function using the GA method as

δG(x− a) =
1

σ
√

π
exp

(
− (x− a)2

σ2

)
, (2.3)

where σ is chosen such that δG is sufficiently small near x = ±1. On a given grid with
N + 1 collocation points, σ also decays with N such that

σ = σ(N) =
α0

N
.

The free parameter α0 is chosen such that the integral value of δG over [−1, 1] con-
verges to 1 based on the quadrature if N → ∞.
• approximate the δ-function using the DP method, i.e.,

δN(x− a) = DN Ha
N(x), (2.4)

where DN is the derivative operator for a certain numerical method such as the finite
difference method on a prescribed set of N + 1 grid points, the spectral collocation
method of a given type of Gauss-quadrature points, or the WENO method. And the
δN(x− a) and Ha

N(x) are the approximations of the δ-function and the Heaviside func-
tion defined on the given set of collocation points.

The rationality of the above definition of the δ-function for the DP method is that

δ(x− a) =
d

dx
Ha(x), (2.5)

where Ha(x) is defined by

Ha(x) =


0, x < a,
1
2

, x = a,

1, x > a.

(2.6)

If the δ-function exists between the grid point such that xj<a<xj+1 for a certain grid
index j, the discrete Heaviside function Ha

N(x) is given by

Ha
N(xj) =

{
0, xj < a,
1, xj > a.

(2.7)

In this work, we employed the derivative operator DN for the spectral method
with the Chebyshev-Gauss-Lobatto collocation points, xj=− cos(π j/N), j = 0, . . . , N,
where N + 1 is the total number of collocation points. For the WENO finite difference
scheme, we define the derivative operator in a consistent way to the WENO derivative
operation.
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3 PDEs with a stationary singular source

In [6], several equations were used to demonstrate the accuracy and efficiency of the
DP method mostly for the linear problems. In this section, we present numerical re-
sults for both linear and nonlinear scalar PDEs with a stationary singular source term.
For the linear scalar PDEs, we solve the linear wave equation with a stationary sin-
gular source by the Chebyshev collocation method and the fifth order WENO finite
difference method. For the nonlinear scalar sine-Gordon equation, we solve the PDEs
with both the Chebyshev collocation method with the DP method and the second or-
der finite difference method with the GA method.

It should be noted that the accurate, efficient and state-of-the-art algorithms are
provided in the optimized Fortran 95 library PseudoPack2009 and used in the follow-
ing examples.

3.1 Linear wave equation

Consider the scalar wave equation with a stationary singular source term in the do-
main x ∈ [−1, 1],

ut + ux = δ(x), x ∈ [−1, 1], t > 0, (3.1)
u(x, 0) = sin(πx),
u(−1, t) = sin(π(−1− t)),

where a stationary singular source term is located at x = 0. The exact solution of the
problem above is u(x, t) = sin

(
π(x− t)

)
+ H(x).

Using the Chebyshev collocation method for the spatial differential term and the
DP method for the singular source term, the semi-discrete formulation of the equation
(3.1) can be expressed as

d
dt

Uj(t) = −DN

(
U(x, t)− HN(x)

)
|x=xj ,

where HN(x) is the discrete Heaviside function with a jump at x = 0 and U(t) is the
solution vector defined on the grid points xj. The system of ODE can now be advanced
in time by a third order Runge-Kutta scheme. In [6], it has been shown that the DP
method yields spectral accuracy for the linear wave equation (Fig. 4, in [6]).

To show that the DP method for the singular source is also applicable for the high
order finite difference scheme, we also solve the equation with the fifth order WENO
finite difference scheme. The right figure of Fig. 1 shows the pointwise errors in loga-
rithmic scale with the WENO scheme using N=64 and N=100 grid points at the final
time t=10.3. For the comparison, the result with the Chebyshev collocation method
using N=16, 32, and 64 collocation points is also shown in the left figure of Fig. 1.
As shown in the figure, the DP method also works well with the WENO method and
convergence near x=0 is also observed although it is slower than the other region.
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Chebyshev collocation method Fifth Order WENO scheme

Figure 1: Pointwise error (in logarithmic scale) of the solution for the linear wave equation (3.1) with a
stationary source term at t = 10.3. Left: the Chebyshev collocation method using N = 16, 32, and 64
Chebyshev-Lobatto collocation points. Right: with the fifth order WENO finite difference method using
N = 64, and 100. The DP method is applied to the approximation of the δ-function.

3.2 Nonlinear sine-Gordon equation

Now we consider solving a non-linear scalar PDE with a stationary singular source,
namely, the sine-Gordon equation. The sine-Gordon equation in a disordered media
[8, 9] might possess a point-like defect. The defect is modeled as a δ-function as a
source term in the following equation

utt − uxx + sin(u) = P(u), −∞ < x < ∞, t > 0, (3.2)

where P(u) is the potential term due to the defect and can be described as

P(u) = ε δ(x) sin(u). (3.3)

The non-zero constant ε is the measure of the strength of the defect. If ε is zero, we
obtain the regular sine-Gordon equation. If ε is large, the effect by the defect is also
large to the global structure of the solution.

The governing equation (3.2) can be rewritten as

utt − uxx + (1− εδ) sin u = 0. (3.4)

This equation is not integrable due to the term involving the δ-function if ε 6= 0. How-
ever, ignoring the δ-function source term, the sine-Gordon equation is integrable and
there exists a soliton solution, known as the kink solution,

u(x, t) = 4 tan−1 exp(σz(x, t)), (3.5)

where

z(x, t) =
x− X√
1−V2

, X = Vt + X0, (3.6)



J. Jung, W. S. Don / Adv. Appl. Math. Mech., 6 (2009), pp. 769-780 775

and X is the kink coordinate, V is the kink velocity and σ = ±1 is the kink polarity.
X0 is the initial location of the kink.

Using the DP method, we will attempt to simulate the interaction of the kink so-
lution of the sine-Gordon equation with a stationary singular source term. We per-
formed the numerical study using the Chebyshev collocation method and the second
order finite difference scheme in space x ∈ [−8, 8]. The solution is advanced in time
using the second order finite difference scheme.

The solution of the problem is defined by the boundary conditions at x = ±8. The
incoming boundary condition is imposed at the left boundary

u(−8, t) =
−8− X√

1−V2
, X = Vt + X0, (3.7)

and the outflow boundary condition is imposed at the right boundary x = 8, such that
at the boundary point the PDE ut + ux = 0 is satisfied, that is,

u(8, t)← u(8, t)− ∆t
∆x

(u(8, t)− u(8− ∆x, t)). (3.8)

With these boundary conditions, the problem models the nonlinear interaction be-
tween the δ-like forcing term and the kink solution which is coming into the physical
domain through the left boundary with the constant speed V. The global solution
moves toward the right boundary and exits the physical domain at the right bound-
ary. The singular potential term yields the so-called critical behavior of the solution.
It has been discussed that there exists a critical velocity Vc [8, 9] such that

• if V < Vc, the kink solution u(x, t) is trapped at the potential well.
• if V > Vc, the kink solution u(x, t) will eventually penetrate the potential well.

Hence, when V ∼ Vc, one can expect to observe the critical behavior of the solution.
For more details about the critical behavior of the problem, we refer the readers to
[8, 9].

Using the Chebyshev collocation method with the DP method for the singular
source term, the semi-discretized version of the sine-Gordon equation can be written
in the form of

d2Uj(t)
dt2 = D2

NU(x, t)|x=xj −
(

I − εDN HN(x)
)
|x=xj sin(U(xj, t)), (3.9)

where I = (1, · · · , 1)T. A simple second order finite difference in time is used such
that

d2Uj(t)
dt2 →

Un+1
j − 2Un

j + Un−1
j

∆t2 . (3.10)

where Un
j = U(xj, tn), n=2, . . . , with a time step ∆t and tn=n∆t. The starting solution

at the first time step U1
j can be computed via a high order multi-step method.
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For the comparison, we also solved the problem with a second order finite differ-
ence method with the GA method for the δ-function. For the numerical example, we
use ε=0.5 following [8].

It is quite surprising to see that the global collocation method works very well
despite the fact that the DP method uses highly oscillatory approximation (the Gibbs
phenomenon) of the δ-function on the collocation points. For the numerical approxi-
mation with the spectral method, we note that no filter was used.

Through a series of experiments with different velocity V, the critical velocity Vc
was found to be 0.121582<Vc<0.121583 with the Chebyshev collocation method using
N=128 collocation points, and 0.121581<Vc<0.121582 with the second order finite
difference method using N = 2000 uniformly spaced grid points. Here note that the
critical velocity obtained with the spectral method is different from that obtained with
the finite difference method.

The top two figures of Fig. 2 shows the solution behaviors at the sub-critical ve-
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Figure 2: Subcritical (top) and supercritical (bottom) behaviors of the sine-Gordon equation with stationary
singular source. Left: the second order finite difference method with N = 2000 grid points. Right: the
Chebyshev collocation methods with N = 128 collocation points.
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locity V<Vc for both methods. The solutions are similar but the results with the
Chebyshev collocation method clearly shows the one-bounce solution while the so-
lution computed by the finite difference method monotonically exits the domain. For
the super-critical case V>Vc, results from both methods show that the kink solution
eventually penetrates the potential well and exits the domain (see the bottom two fig-
ures of Fig. 2). The exit times are, however, different and the global behaviors are also
different for both methods. The GA method uses the local approach to the approxima-
tion of the δ-function while the DP method uses the global approach. The DP method
is a more consistent way of approximating the δ-function. Our numerical experiments
show that the global structures of the solutions with the GA and DP methods remain
the same as the grids are refined. More detailed study will be given in our future
work.

4 Linear scalar PDEs with a non-stationary singular source

In this section, we will study the effect of the non-stationary singular source on the
solution of hyperbolic equations. The linear scalar wave equation is employed as the
model of this problem. This particular case illustrates some perils of modeling the
singular source which is moving with a non-zero speed inside the computational do-
main.

Consider the following simple scalar one-way wave equation

ut + ux = εδ(x + ct), x ∈ [−1, 1], t > 0, (4.1)

where c > 0 is the speed of moving δ-function and ε = 1. For simplicity, we assume
that c is a constant with time. Together with the given initial and boundary conditions

u(x, 0) = sin(πx), u(−1, t) = sin(π(−1− t)), (4.2)

the exact solution of this problem is

u(x, t) =
{

sin(π(x− t)), x < −ct,
sin(π(x− t)) + H(x + ct), x ≥ −ct. (4.3)

The equation (4.1) is solved with the fifth order WENO-Z finite difference scheme. We
will use c=1/16 and refine the grid by doubling the number of grid points N=250, 500
and 1000. The scheme is advanced to the final time t=10 using the third order TVD
Runge-Kutta scheme with the CFL number, CFL=0.01 or smaller.

In the left figure of Fig. 3, the exact and the numerical solution of the problem with
the non-stationary singular source, which is being approximated by the DP method,
are shown at t=10 with N=1000 grid points. The singularity has moved from x=0
to x=−5/8. Here we see that the numerical solution yields a small scale oscillations
to the right of the singularity. It should be noted that similar small scale oscillations
(albeit obscured by the Gibbs oscillations) can also be observed if one simulates the
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same problem with the spectral method. Since the high order WENO finite differ-
ence schemes are often used for capturing solutions exhibiting singular behaviors
like shock solutions, one would lead to believe that the oscillations could be real. To
demonstrate more clearly that the oscillations are not real, we use the simple frequency
analysis. It is found that the frequency of the oscillations is directly proportional to the
number of grid points N. In the right figure of Fig. 3, it is shown that the frequency
of the oscillations is doubled as the number of grid points N is doubled. Furthermore,
the amplitude of the oscillations does not decrease much even when the grid is highly
refined. In other words, these oscillations are purely numerical artifact due to the
discretization of the δ-function on the discrete finite grid. As the δ-function moves,
the discrete grid can no longer support the definition of the δ-function between the
two grid points resulting in the oscillatory behavior. In this particular case, we mea-
sure the wavelength of the oscillations from the data and find that the wavelength
λN=0.137, 0.0675, 0.0339 for N=250, 500 and 1000, respectively. The reason for this is
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Figure 3: Left: the exact solution (black), numerical solution (red) and the pointwise error (blue) of the
scalar wave equation with a non-stationary singular source, which is being approximated by the DP method,
at t = 10 using N = 1000 grid points. Right: the pointwise error of the solution at t = 10 with N = 250, 500
and 1000.
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as following. The grid spacing is ∆x and the speed of propagation of the δ-function
is c. The given PDE will only convey the full effect of the δ-function only when the
δ-function jumps from one grid point xj to the next grid point xj−1. The time interval
that the δ-function takes to make the full jump will be ∆t=λN=∆x/c=2/(Nc), which
yields the corresponding values of λN=0.128, 0.064, 0.032. This is why the frequency
of the oscillations is doubled when the number of grid points is doubled. In the case of
the stationary singular source, c tends to zero. Then the wavelength of the oscillations
tends to become ∞. This explains why the numerical oscillations will not appear in
the stationary singular source.

In Fig. 4, similar small scale oscillations appear in the solution of the problem with
the non-stationary singular source, which is being approximated by the GA method,
at t=10 using N=1000 grid points. The pointwise error of the solution is also shown
with N=250, 500 and 1000 grid points in the right figure.

Similar results have been obtained for different version of the WENO finite dif-
ference methods, different CFL number and different speed of the moving δ-function,
c.

5 Conclusions

In this paper, we consider the linear and nonlinear scalar PDEs for both the station-
ary and non-stationary singular source term represented by the Dirac δ-function. We
use the Gaussian approximation method and the direct projection method for the ap-
proximation of the δ-function. It has been shown that the direct projection method
yields a good result for the nonlinear problems as well. For the nonlinear problem, we
solve the sine-Gordon equation with the point-limit defect modeled by the δ-function.
Compared to the results with the finite difference method, the spectral approximation
with the direct projection method reveals the details of dynamics of the solution with
great efficiency.

We also study the numerical issues arising when the non-stationary source term
is considered for the linear wave equation as the model problem for general hyper-
bolic PDEs with a non-stationary singular source term. We solve numerically such
model problem on a discrete grid system using the spectral collocation and the high
order WENO-Z finite difference scheme. It is shown that the uncertainty of the loca-
tion of the δ-function between grid points causes the numerical oscillations. Since the
δ-function is propagating through the discrete grid points, the oscillations are char-
acterized as the periodic bump solutions when the δ-function passes through the grid
points. Such oscillations are propagating over the domain according to the given PDE.
If the magnitude of the singular source term is small, the oscillations would be small.
They are, however, inevitable as long as the δ-function is approximated on the dis-
crete grid points. We show the relation of the frequency of the oscillations to the step
size of the grids and speed of the propagation of the δ-function. It is shown that the
frequency of oscillations is doubled if the number of grid points is doubled. Such os-
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cillations albeit small should be addressed carefully when the non-stationary singular
source term is involved in hyperbolic PDEs.

In our future work, we will consider more general type of PDEs with the direct
projection method and extend the current method to higher dimensional problems.
Our future work will also center around the development of the accurate and stable
direct projection method for the non-stationary δ-function.
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