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Abstract

In this paper we consider approximate eigenvalues and approximate eigenspaces for the

generalized Rayleigh quotient, and present some residual bounds. Our obtained bounds

will improve the existing ones.
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1. Introduction

By Cm×n we denote the set of m × n complex matrices, by A∗ we denote the conjugate

transpose, and by I we denote the identity matrix. The Frobenius norm and the spectral norm

of a matrix · are denoted by ‖ · ‖F and ‖ · ‖2, respectively.
Let A and H be diagonalizable matrices with the following decompositions:

A = XΛX−1 ≡
(
X1 X2

)( Λ1 0

0 Λ2

)(
Y ∗
1

Y ∗
2

)
and H = ZΛ̃Z−1 , (1.1)

respectively, where X ∈ Cn×n, Z ∈ Cm×m , X1 ∈ Cn×m (m ≤ n),

Λ1 = diag(λ1, λ2, · · · , λm), Λ2 = diag(λm+1, λm+2, · · · , λn),
∼

Λ= diag(
∼

λ1,
∼

λ2, · · · ,
∼

λm).

Let A and H have the decomposition (1.1). Then δi is denoted by

δi = min
λ∈λ(Λi),λ̃∈λ(Λ̃)

|λ− λ̃|, i = 1, 2. (1.2)

Notice that the decomposition (1.1) implies that

X−1 =

(
Y ∗
1

Y ∗
2

)
. (1.3)

Let

R = AQ1 −Q1H (1.4)

be the residual matrix of A with Q1, where A ∈ Cn×n, H ∈ Cm×m and Q1 ∈ Cn×m (m ≤ n),

rank(Q1) = m. The spectrum of H is denoted by σ(H) = {
∼

λ1,
∼

λ2, · · · ,
∼

λm}.
The quantity ||R|| can be used to measure the difference between the spectrum σ(H) and

the spectrum σ(Λ1) , and between the subspace ℜ(Q1) and the approximate subspace ℜ(X1).

Some classical results in this topic are listed below:
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1.1. Approximate eigenvalues

If A and H are Hermitian matrices and Q1 has orthonormal columns, Kahan proved that

there exists a permutation τ of 〈m〉 such that the following bound

m∑

i=1

|λτ(i) − λ̃i|2 ≤ 2||R||2F (1.5)

holds (e.g., see [17]), where 〈m〉 = {1, 2, ...,m}.
If A is Hermitian andQ1 has the orthonormal columns, H = Q∗

1AQ1 is the Rayleigh quotient

matrix, then it holds that [15]

m∑

i=1

|λi − λ̃i|2 ≤ ‖ sinΘ(Q1, X1)‖22
1− ‖ sinΘ(Q1, X1)‖22

||R||2F , (1.6)

where the angle matrix Θ(Y,
∼

Y ) between subspaces ℜ(Y ) and ℜ(
∼

Y ) is defined by

Θ(Y,
∼

Y ) = arccos((Y ∗Y )−
1
2Y ∗

∼

Y (
∼

Y ∗
∼

Y )−1
∼

Y ∗ Y (Y ∗Y )−
1
2 )

1
2 ,

Y and
∼

Y ∈ Cn×k(n > k) are full column rank matrices. In particular, if Y and
∼

Y ∈ Cn×k(n > k)

have orthonormal columns, then for any unitarily invariant norm || · || we have

|| sinΘ(Y,
∼

Y )|| = ||(
∼

Y c)
∗Y ||, (1.7)

where (
∼

Y ,
∼

Y c) is an n× n unitary matrix (e.g., see [13]).

If A and H are diagonalizable matrices with the decomposition (1.1), and Q1 has full column

rank, then Liu [11] obtained a result as follows: There exists a permutation τ of 〈m〉 such that

σ2
min(Q1)

m∑

i=1

|λ
τ(i)

− λ̃i|2 ≤ κ2(X)κ2(Z)||R||2F , (1.8)

where σmin(Q1) denotes the smallest singular value of Q1. In particular, if A and H are Her-

mitian matrices, then

σ2
min(Q1)

m∑

i=1

|λ
τ(i)

− λ̃i|2 ≤ ||R||2F . (1.9)

It is easy to see that the bound (1.9) generalizes the one in (1.5).

1.2. Approximate eigenspaces

If A and H are Hermitian matrices and Q1 has orthonormal columns, Kahan and Davis [1]

obtained a well-known result, i.e., sinΘ Theorem:

‖ sinΘ(Q1, X1)‖F ≤ ‖R‖F
δ2

(1.10)

provided δ2 > 0, where δ2 is given by (1.2). If A and H are Hermitian matrices, and Q1 is a

full column rank matrix, then (see, e.g., [13])

σmin(Q1)‖ sinΘ(Q1, X1)‖F ≤ ‖R‖F
δ2

(1.11)
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provided δ2 > 0. Notice that if Q1 has orthonormal columns, then σmin(Q1) = 1, and hence the

bound in (1.11) reduces to the one in (1.10).

Now let A be a diagonalizable matrix with the decomposition (1.1), and let Q1 ∈ Cn×m be

any full column rank matrix. Setting Q2 ∈ Cn×(n−m) such that Q = (Q1, Q2) is nonsingular,

and

Q−1 ≡
(

Q̃∗
1

Q̃∗
2

)
. (1.12)

The matrix H ≡ Q̃∗
1AQ1 is called the generalized Rayleigh quotient [13].

In some applications, the column of the matrix Q1 in (1.4) may not be orthonormal and

the matrix H in (1.4) may be more general. By this motivation, our work in this paper is

to generalize the bound for approximate eigenvalues and eigenvectors, from which one can

understand the accuracy of approximate eigenpairs computed by numerical approaches. As

we know, the residual bounds for approximate eigenpairs in the following cases have not been

studied:

Case 1 A and H are diagonalizable, H is a generalized Rayleigh quotient, and Q1 is any full

rank matrix.

Case 2 A and H are diagonalizable, and Q1 is any full rank matrix.

Case 3 A is Hermitian and Q1 has orthonormal columns, but H is an arbitrary matrix.

Hence, in this paper we will consider to bound approximate eigenvalues and approximate

eigenspaces in the cases 1-3.

The rest of this paper is organized as follows. In second 2 we consider the case 1, and give

bounds for approximate eigenvalues and approximate eigenspaces, which extend some existing

bounds; see Theorem 2.1 and Corollary 2.1. In second 3, the residual bounds for approximate

eigenvalues and eigenspaces in the case 2 are also provided; see Theorems 3.1 and 3.2 and

Corollary 3.1. When H is any matrix, the approximate eigenvalue bound has not been discussed

so far, in section 4 we consider the case 3, and obtain some residual bounds for approximate

eigenvalues; see Theorem 4.1.

2. Approximate Eigenvalue and Eigenspace Bounds for the

Generalized Rayleigh Quotient Case

In this section we consider the case 1 and give bounds for approximate eigenvalues and

eigenspaces.

Now let X1 and
∼

X1∈ Cn×k(n ≥ k) have full column rank, and let P and P̃ be the orthonor-

mal projector on to ℜ(X1)
⊥ and ℜ(

∼

X1), respectively. Then (see, e.g., [5]) for any unitarily

invariant norm || · ||,
|| sinΘ(X1,

∼

X1)|| = ||PP̃ ||, (2.1)

where ℜ(X1) and ℜ(
∼

X1) are defined the subspaces spanned by the column vectors of X1 and
∼

X1, respectively.

Let X2 be an n× (n−m) matrix such that X = (X1, X2) is nonsingular, and let X−1 have

the block form (1.3).



50 W. Li AND X.S. CHEN

The following lemma is useful to prove the main result.

Lemma 2.1. ([2]) Let T ∈ Cn×n and Λi = diag(λ
(i)
1 , ..., λ

(i)
n ) ∈ Cn×n, i = 1, 2, 3, 4. Then there

exists a permutation τ of 〈n〉 such that

σ2
min(T )

∑∣∣∣λ(1)
i λ

(2)
τ(i) − λ

(3)
i λ

(4)
τ(i)

∣∣∣
2

≤ ||Λ1TΛ2 − Λ3TΛ4||2F ,

where σmin(T ) is the smallest singular value of T .

Next we consider to bound approximate eigenvalues and approximate eigenspaces, respec-

tively. Let A ∈ C n×n and H ∈ C m×m be both diagonalizable matrices with the decompositions

(1.1). Let Q1 have full column rank, R, Y1 and Y2 be given by (1.3) and (1.4), respectively.

Left-multiplying by X−1 on both sides of (1.4) gives

X−1R = ΛX−1Q1 −X−1Q1H.

Substituting H = ZΛ̃Z−1 into the above equation reveals that

ΛX−1Q1Z −X−1Q1ZΛ̃ = X−1RZ.

Since X−1 has the block form (1.3), the above equation can be rewritten as in the block form:

(
Λ1Y

∗
1 Q1Z − Y ∗

1 Q1ZΛ̃

Λ2Y
∗
2 Q1Z − Y ∗

2 Q1ZΛ̃

)
= X−1RZ. (2.2)

Set

S1 = Λ1Y
∗
1 Q1Z − Y ∗

1 Q1ZΛ̃, S2 = Λ2Y
∗
2 Q1Z − Y ∗

2 Q1ZΛ̃.

By (2.2), we have

X−1RZ =

(
S1

S2

)
.

Consequently,

||X−1RZ||2F = ‖S1‖2F + ‖S2‖2F . (2.3)

It can be verified that,

Q̃∗
1R = Q̃∗

1AQ1 − Q̃∗
1Q1H = Q̃∗

1AQ1 −H = 0.

By the block form of X , we have

Q̃∗
1X =

(
Q̃∗

1X1 Q̃∗
1X2

)
,

and hence Q̃∗
1XX−1RZ = 0, which leads to

Q̃∗
1X1S1 + Q̃∗

1X2S2 = 0.

Multiplying by ||Q̃∗
1X2||22 on both sides of (2.3) and using the inequality

σmin(M)‖L‖F ≤ ||ML||F ≤ ‖M‖2‖L‖F
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gives

||Q̃∗
1X2||22||X−1RZ||2F ≥ ||Q̃∗

1X2||22‖S1‖2F + ‖Q̃∗
1X2S2‖2F

= ||Q̃∗
1X2||22‖S1‖2F + ‖Q̃∗

1X1S1‖2F
≥ (||Q̃∗

1X2||22 + σ2
min(Q̃

∗
1X1))||S1‖2F ,

which implies that

||S1‖2F ≤ ||Q̃∗
1X2||22

||Q̃∗
1X2||22 + σ2

min(Q̃
∗
1X1)

||X−1RZ||2F . (2.4)

It follows from Lemma 2.1 that

σ2
min(Y

∗
1 Q1Z)

m∑

i=1

|λτ(i) − λ̃i|2 ≤ ‖S1‖2F ,

which, together with (2.4), gives

σ2
min(Y

∗
1 Q1)

m∑

i=1

|λτ(i) − λ̃i|2 ≤ ||Q̃∗
1X2||22

||Q̃∗
1X2||22 + σ2

min(Q̃
∗
1X1)

κ2(Z)||X−1R||2F .

Then we have the following theorem:

Theorem 2.1. Let Q1 ∈ Cn×m have full column rank, and let A and H = Q̃∗
1AQ1 be diago-

nalizable matrices with the decomposition (1.1). Then there exists a permutation τ of 〈m〉 such
that

σ2
min(Y

∗
1 Q1)

m∑

i=1

|λτ(i) − λ̃i|2 ≤ ||Q̃∗
1X2||22

||Q̃∗
1X2||22 + σ2

min(Q̃
∗
1X1)

κ2(Z)||X−1R||2F . (2.5)

Remark 2.1. If A is Hermitian and Q1 has orthonormal columns, then Q∗
1 = Q̃∗

1 and H =

Q∗
1AQ1. Hence X and Z are unitary, and thus X∗

1 = Y ∗
1 . So we have

||Q̃∗
1X2||2 = ‖ sinΘ(Q1, X1)‖2

and

σ2
min(Y

∗
1 Q1) = σ2

min(Q̃
∗
1X1) = 1− ‖ sinΘ(Q1, X1)‖22.

Then the bound (2.5) may reduce to a simple form:

m∑

i=1

|λτ(i) − λ̃i|2 ≤ ‖ sinΘ(Q1, X1)‖22
1− ‖ sinΘ(Q1, X1)‖22

||R||2F ,

which is the Sun’s bound (1.6).

Note that the function f(x) = x
1−x

is an increased function for x ∈ (0, 1) and

‖ sinΘ(Q1, X1)‖2 ≤ ‖ sinΘ(Q1, X1)‖F ≤ ||R||F
δ2

= ρF .

It follows from the above result that

m∑

i=1

|λτ(i) − λ̃i|2 ≤ 1

1− ρ2F

||R||2F
δ22

,

and from (1.6) we have ρF = ||R||F /δ2 < 1 (see [15]).
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Lemma 2.2. Suppose that X = (X1, X2) ∈ Cn×n is a nonsingular matrix, where X1 ∈ Cn×m,

and its inverse has the block form (1.3). Then for 2-or F-norm || · || and any full column matrix

X̃1 ∈ Cn×m,

‖ sinΘ(X1,X̃1)‖ ≤ ‖Y †
2 ‖2‖X̃†

1‖2‖Y ∗
2 X̃1‖, (2.6)

where by M † we denote the Moore-Penrose inverse of a matrix M.

Proof. Let Y2 = Q1R1 and X̃1 = Q̃1R̃1 be QR decompositions, where Q1 and Q̃1 have

orthonormal columns, and R1 and R̃1 are nonsingular. Then P = Q1Q
∗
1 and P̃ = Q̃1Q̃

∗
1 are a

orthogonal projectors on to ℜ(X1)
⊥ and ℜ(X̃1), respectively. By (2.1), we have

‖ sinΘ(X1,X̃1)‖ = ‖Q1Q
∗
1Q̃1Q̃

∗
1‖ = ‖Q∗

1Q̃1‖
= ‖R−∗

1 Y ∗
2 X̃1R̃

−1
1 ‖

≤ ‖R−1
1 ‖2‖R̃−1

1 ‖2‖Y ∗
2 X̃1‖

= ‖Y †
2 ‖2‖X̃†

1‖2‖Y ∗
2 X̃1‖,

which completes the proof. �

By Lemma 2.2 and an analogical proof as Theorem 2.1 we have the following result.

Corollary 2.1. In the notation of Theorem 2.1. If δ2 > 0, then we have

‖ sinΘ(Q1, X1)‖2F ≤ ‖Y †
2 ‖22‖Q†

1‖22κ2(Z)
||Q̃∗

1X2||22
||Q̃∗

1X2||22 + σ2
min(Q̃

∗
1X1)

||X−1R||2F
δ22

, (2.7)

where δ2 is given in (1.2).

Remark 2.2. If A is Hermitian and Q1 has orthonormal columns, then (2.7) reduces to

‖ sinΘ(Q1, X1)‖F ≤ ‖ cosΘ(Q1, X1)‖2
δ2

||R||F . (2.8)

In particular, let µ = ρ(y) = y∗Ay, r(y) = Ay − yµ and δ = min{|µ − λi|, i = 2, ..., n}. Then
by (2.8) we have

δ2 sin2 Θ(x, y) ≤ (1 − sin2 Θ(x, y))||r(y)||2F .
Hence

sinΘ(x, y) ≤ ||r(y)||F√
δ2 + ||r(y)||2F

,

which is always sharper than the one in [1] (see also [12, 17]), i.e.,

sinΘ(x, y) ≤ ||r(y)||F
δ

.

3. Bounds for the Diagonalizable Matrix Case

In this section we deal with the case that H is a diagonalizable matrix. As we know, Liu

gave the bound (1.8) for approximate eigenvalues, however no approximate eigenspace bound

has been given. Here we will provide some alternative bounds for approximate eigenvalues and

approximate eigenspaces, respectively.

Our first result is the residual bound for approximate eigenspaces.
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Theorem 3.1. Let A ∈ C n×n and H ∈C m×m be both diagonalizable matrices with the decom-

position (1.1), and let Q1 have full column rank. If δ2 > 0, then

‖ sinΘ(Q1, X1)‖F ≤ ‖Q†
1‖2κ(Z)κ(Y2)

||R||F
δ2

,

where κ(Y2) = ‖Y2‖2‖Y †
2 ‖2. Moreover, if Q1 has orthonormal columns, then

‖ sinΘ(Q1, X1)‖F ≤ κ(Z)κ(Y2)
||R||F
δ2

,

Proof. By (2.2) we have

‖Λ1Y
∗
1 Q1Z − Y ∗

1 Q1ZΛ̃‖2F + ‖Λ2Y
∗
2 Q1Z − Y ∗

2 Q1ZΛ̃‖2F = ||X−1RZ||2F . (3.1)

Thus
∑

i∈<n−m>,j∈<m>

|
(
Λ2Y

∗
2 Q1Z − Y ∗

2 Q1ZΛ̃
)
ij
|2 ≥ δ22

∑

i∈<n−m>,j∈<m>

|(Y ∗
2 Q1Z)ij |2,

which implies that

δ22 ||Y ∗
2 Q1||2F ≤ ||Z−1||22‖Λ2Y

∗
2 Q1Z − Y ∗

2 Q1ZΛ̃‖2F . (3.2)

By Lemma 2.2, we have

‖ sinΘ(Q1, X1)‖F ≤ ‖Y †
2 ‖2‖Q†

1‖2||Z−1||2‖Y ∗
2 Q1‖F .

which together with (3.2) gives that

δ22

‖Y †
2 ‖22‖Q†

1‖22||Z−1||22
‖ sinΘ(Q1, X1)‖2F ≤ ‖Λ2Y

∗
2 Q1Z − Y ∗

2 Q1ZΛ̃‖2F . (3.3)

By (1.3) and (2.2) we have

Λ2Y
∗
2 Q1Z − Y ∗

2 Q1ZΛ̃ = Y ∗
2 RZ,

combining with (3.3) gives

δ22

‖Y †
2 ‖22‖Q†

1‖22||Z−1||22
‖ sinΘ(Q1, X1)‖2F ≤ ‖Y ∗

2 RZ‖2F ,

from which one may deduce the desired bound. �

Remark 3.1. Let A and its perturbed matrix Ã be diagonalizable, and let

Y ∗
2 A = Λ1Y

∗
2 , ÃX̃1 = X̃1Λ̃1. (3.4)

By Theorem 3.1 we may obtain the bound for ‖ sinΘ(X1, X̃1)‖F . In fact, by (3.4) we have

(A− Ã)X̃1 = AX̃1 − X̃1Λ̃1.

Now let H = Λ̃1, Q1 = X̃1 and R = (A− Ã)X̃1. Then Z = I. It follows from Theorem 3.1 that

δ2‖ sinΘ(X1, X̃1)‖F ≤ ‖X̃†
1‖2κ(Y2)||R||F

= ‖X̃†
1‖2‖X̃1‖2κ(Y2)||A− Ã||F = κ(X̃1)κ(Y2)||E||F ,

where E = A− Ã and κ(X̃1) = ‖X̃†
1‖2‖X̃1‖2, which is a result of [5].
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Theorem 3.2. In the notation of Theorem 3.1. Then there exists a permutation τ of 〈m〉 such
that

σ2
min(Y

∗
1 Q1)

m∑

i=1

|λi − λ̃τ(i)|2 ≤ κ2(Z)||Y ∗
1 R||2F , (3.5)

where Y1 is given by (1.3).

Proof. By (2.2) we have

Λ1Y
∗
1 Q1Z − Y ∗

1 Q1ZΛ̃ = Y ∗
1 RZ.

It follows from Lemma 2.1 that there exists a permutation τ of 〈m〉 such that

σ2
min(Y

∗
1 Q1Z)

m∑

i=1

|λi − λ̃τ(i)|2 ≤ ‖Y ∗
1 RZ‖2F ,

which together with the fact that

σmin(Y
∗
1 Q1Z) ≥ ||Z−1||−1

2 σmin(Y
∗
1 Q1)

gives the bound (3.5). This completes the proof of the theorem. �

The bound (3.5) can be expressed as follows:

Corollary 3.1. In the notation of Theorem 3.1. Then

√√√√
m∑

i=1

|λi − λ̃τ(i)|2 ≤ ‖Q†
1‖2κ(Y1)κ(Z)√

1− ‖sinΘ(Q1, Y2)‖22
||R||F . (3.6)

Proof. Let Q1 = Q̃1R̃1 and Y1 = Q̂1R̂1 be the QR decompositions. Then

σmin(Y
∗
1 Q1) = σmin(R̂

∗
1Q̂

∗
1Q̃1R̃1)

≥ σmin(Q̂
∗
1Q̃1)||R̃−1

1 ||−1
2 ||R̃−1

1 ||−1
2

=
σmin(Q̂

∗
1Q̃1)

‖Y †
1 ‖2‖Q†

1‖2
.

Note that σ2
min(Q̂

∗
1Q̃1) = 1− ‖sinΘ(Q1, Y2)‖22. Then by (3.7) we have

σmin(Y
∗
1 Q1) ≥

√
1− ‖sinΘ(Q1, Y1)‖22

‖Y †
2 ‖2‖Q†

1‖2
,

which, together with (3.5), gives the desired bound (3.6). �

Remark 3.2. Let X1 = X and H = Ã, where Ã = A + E is the perturbed matrix of A, and

Q1 = I. Then R = A− Ã = E. Hence the bounds (3.5) and (3.6) reduce to

√√√√
n∑

i=1

|λi − λ̃τ(i)|2 ≤ κ(X)κ(Z)||E||F . (3.7)

The perturbation bound (3.7) was obtained by Sun [14] and Zhang [18], which is a generalization

of the Hoffman and Wielandt bound.
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Remark 3.3. It is difficult to compare the bound (3.5) with (1.8). But the following example

illustrates that our bound is sharper. Let

A =




1 −1 0 0

0 1 −1 0

0 0 1 −1

0 0 0 1







2 0 0 0

0 2 0 0

0 0 1 0

0 0 0 1







1 −1 0 0

0 1 −1 0

0 0 1 −1

0 0 0 1




−1

=




2 0 0 0

0 2 1 1

0 0 1 0

0 0 0 1




and

Q1 =




1 −1

0.5 1

1 1

1 1


 , H =

(
2.1 0

0 1.1

)
.

Then

R =




−. 1 −. 9

1. 95 2. 9

−1. 1 −. 1

−1. 1 −. 1


 , Z = I

A simple calculation gives
||Y ∗

1 R||2F
σ2
min(Y

∗
1 Q1)

= 6. 722.

However,
κ2(X)||R||2F
σ2
min(Q1)

= 217. 97.

4. Approximate Eigenvalue Bounds for General Cases

In this section we consider the third case, i.e., A is Hermitian and Q1 is column orthonormal,

but H is an m×m matrix. It is known that any matrix can be rewritten as follows:

H = U




H1 · · · 0
...

. . .
...

0 · · · Hs


U∗, (4.1)

where U is unitary, s ≥ 1.

The following lemma is important to deduce our bound.

Lemma 4.1. ([8]) Let H̃ be an m × m normal matrix and H have the decomposition (4.1).

Then there exists a permutation τ of 〈m〉 such that

m∑

i=1

|λτ(i) − λ̃i|2 ≤ (m− s+ 1)||H̃ −H ||2F , (4.2)

where λi ∈ σ(H) and λ̃i ∈ σ(H̃).

Let PQ1 denote the orthonormal projector on to ℜ(Q1). By P⊥
Q1

= I − PQ1 we denote the

projection complementary to PQ1 .
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Theorem 4.1. Let A be Hermitian and Q1 have orthonormal columns, and let H be an m×m

matrix with the decomposition (4.1). Then there exists a permutation τ of 〈m〉 such that

m∑

i=1

|λτ(i) − λ̃i|2 ≤ (m− s+ 1)(||(I, P⊥
Q1

)TR||2F (4.3)

≤ 2(m− s+ 1)||R||2F . (4.4)

Proof. Let Q2 be column orthonormal so that Q = (Q1, Q2) is unitary, and let R̃ =

AQ2 −Q2(Q
∗
2AQ2). Then

(R, R̃) = AQ−Q

(
H 0

0 Q∗
2AQ2

)
.

Left-multiplying by Q on both sides of the above equality gives that

Q∗(R, R̃) = Q∗AQ−
(

H 0

0 Q∗
2AQ2

)
.

Note that Q∗
2AQ2 is Hermitian. Then there exists a unitary matrix V such that

Q∗
2AQ2 = V




α1 · · · 0
...

. . .
...

0 · · · αn−m


V ∗,

where αi is a real number, i = 1, ..., n−m. Let

W =

(
U 0

0 V

)
.

Since H has the decomposition (4.1), we have

(
H 0

0 Q∗
2AQ2

)
= W




H1 · · · 0 0 · · · 0
...

. . .
...

...
...

0 · · · Hs 0 · · · 0

0 · · · 0 α1 · · · 0
...

...
...

. . .
...

0 · · · 0 0 · · · αn−m




W ∗.

Applying Lemma 4.1 to matrices Q∗AQ and diag(H,Q∗
2AQ2) reveals that there exists a per-

mutation τ of 〈m〉 such that

m∑

i=1

|λτ(i) − λ̃i|2 ≤ (m− s+ 1)(||Q∗(R, R̃)||2F

= (m− s+ 1)(||Q∗R||2F + ||Q∗R̃||2F )
= (m− s+ 1)(||R||2F + ||Q∗R̃||2F ). (4.5)

Note that

Q∗R̃ =

(
Q∗

1R̃

Q∗
2R̃

)
,
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Q∗
2R̃ = Q∗

2(AQ2 −Q2Q
∗
2AQ2) = 0 and Q∗

1R̃ = Q∗
1AQ2 = R∗Q2. Then

||Q∗R̃||2F = ||Q∗
2R||2F = ||P⊥

Q1
R||2F .

Hence

||R||2F + ||Q∗R̃||2F
= ||R||2F + ||P⊥

Q1
R||2F = ||(I, P⊥

Q1
)TR||2F ,

which together with (4.5) gives the bound (4.3).

The bound (4.4) follows from (4.3) and the fact that ||(I, P⊥
Q1

)TR||2F ≤ 2||R||2F . This com-

pletes the proof of the theorem. �

Without any restriction on H , then s ≥ 1, and hence by Theorem 4.1 we have the following

corollary:

Corollary 4.1. Let A be Hermitian and Q1 have orthonormal columns, and let H be any m×m

matrix. Then there exists a permutation τ of 〈m〉 such that

√√√√
m∑

i=1

|λτ(i) − λ̃i|2 ≤
√
m||(I, P⊥

Q1
)TR||F ≤

√
2m||R||F (4.6)

Remark 4.1. If H is Hermitian, then H has the spectral decomposition, and thus s = m. In

this case the bound (4.4) reduces to (1.5). Taking Q1 = I and H = Ã, then the bound (4.3)

reduces to the bound (4.2), similarly, the first inequality in the bound (4.6) can reduce to the

Sun’s bound (see [16]): √√√√
n∑

i=1

|λτ(i) − λ̃i|2 ≤
√
n||R||F .

If we do some restriction on Q1, then we have

Corollary 4.2. In the notation of Theorem 4.2. If ℜ(Q1) is an invariant subspace of A, then

there exists a permutation τ of 〈m〉 such that

√√√√
m∑

i=1

|λτ(i) − λ̃i|2 ≤
√
(m− s+ 1)||R||F . (4.7)

Proof. Let Q2 be defined as in the proof of Theorem 4.1. Since Q1 is an invariant subspace

of A, we have Q∗
2AQ1 = 0. By the proof of Theorem 4.1 we have Q∗

1R̃ = Q∗
1AQ2 = 0, and

hence ||Q∗R̃||2F = 0, which together with (4.5) gives the bound (4.7). �

Remark 4.2. Many examples illustrate that the bound (4.7) holds without the restriction on

Q1. However, we can not prove it, which remains open.
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