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Abstract

The direct numerical simulation of Navier-Stokes equations in the turbulent regime

is not computationally feasible either in the deterministic or (especially) in the stochas-

tic case. Therefore, turbulent modeling must be employed. We consider the family of

approximate deconvolution models (ADM) for the simulation of the turbulent stochastic

Navier-Stokes equations (NSE). For moderate values of the Reynolds number, we investi-

gate the effect stochastic forcing (through the boundary conditions) has on the accuracy

of solutions of the ADM equations compared to direct numerical simulations. Although

the existence, uniqueness and verifiability of the ADM solutions has already been proven

in the deterministic setting, the analyticity of a solution of the stochastic NSE is diffi-

cult to prove. Hence, we approach the problem from the computational point of view. A

Smolyak-type sparse grid stochastic collocation method is employed for the approximation

of first two statistical moments of the solution − the expected value and variance. We show

that for different test problems, the modeling error in the stochastic case is the same as

predicted for the deterministic setting. Although the ADMs are arguably only applicable

for certain boundary conditions (zero or periodic), we test the model on a problem with a

boundary layer and recirculation region and demonstrate that the model correctly predicts

the solution of the stochastic NSE with the noise in the boundary data.

Mathematics subject classification: 65M70, 76F65.
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1. Introduction

Realistic simulations of complex systems governed by nonlinear partial differential equa-

tions (in this paper we consider the case of fluid flow, described by Navier-Stokes equations

(NSE)) must account for “noisy” features of modeled phenomena, such as material properties,

coefficients, domain geometry, excitations and boundary data. “Noise” can be understood as

uncertainties in the specification of the physical model. In an attempt to capture the noisy as-

pects of the system, we describe the input data on the boundary as random fields. In this work

we consider the boundary data that can be described by a finite number of random variables.

Direct numerical simulation of a turbulent flow is often not computationally economical or

even feasible. The problem is magnified many times over in the case of the stochastic NSE

because deterministic sampling must be employed; one solves the discrete turbulent Navier-

Stokes system with random coefficients many times, once for each sampling of the random

data. Although these computations can be parallelized, the direct simulation in the turbulent
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case is not feasible in the foreseeable future. One has to introduce a turbulent model, as is the

case for the deterministic turbulent NSE.

The largest structures in the flow (containing most of the energy) are responsible for much

of the mixing and most of the momentum transport. This observation led to the development

of various numerical regularizations; one of these is Large Eddy Simulation (LES) that is based

on the idea that the flow can be represented by a collection of scales with different sizes and,

instead of trying to approximate all of them down to the smallest one, one defines a filter width

δ > 0 and computes only the scales of size bigger than δ (large scales) whereas the effect of the

small scales on the large scales is modeled. This reduces the number of degrees of freedom in a

simulation and represents accurately the large structures in the flow.1 In this report we consider

one particular LES model, the Approximate Deconvolution Model (ADM), introduced in [1].

The model has been extensively studied in the deterministic setting; see, e.g., [11,13,15,18] and

the references therein.

The ADM for the stochastic NSE with the noise on the boundary is given by

wt −
1

Re
∆w +∇ · (GNw)(GNw)

δ
+∇q = f

δ
, (1.1a)

∇ · w = 0, (1.1b)

subject to

w(0, x, ω) = uδ0(x)

and noisy boundary conditions

w(t, x, ω)|∂Ω = uδ(t, x)|∂Ω +

K
∑

i=1

ωiΦi.

Here GN is an approximate deconvolution operator, defined in Section 2. For the computational

tests we consider the zeroth order ADM with N = 0.

The solution of (1.1) therefore depends on K random variables. In the computational tests

we use K = 2 to reduce the computational cost. We assume Γk = [−1, 1], ∀k = 1, · · · ,K, where

Γk denotes the image of k-th random variable. We let ΓK =
∏K

k=1 Γk; assume also that the

random variables have a joint probability density function

ρ : ΓK → R+, with ρ ∈ L∞(ΓK).

For all the test problems we will assume that the given probability density functions are uniform.

Even though the ADM solution of the deterministic NSE is computationally feasible, the

most popular approach to solving a partial differential equation in a probabilistic setting (the

Monte Carlo method) is too costly due to a large number of sampling. Hence, in order to obtain

a solution to a stochastic turbulent NSE, we need to combine the ADM turbulence model with

a probabilistic method which has higher convergence rate than the Monte Carlo method.

Different methods have been proposed for solving probabilistic partial differential equations

with (in certain cases) a much higher convergence rate than the Monte Carlo method. We

1) One should notice that there is always a dilemma when choosing the filtering width δ. The larger δ is, the

less costly the computations are (less degrees of freedom left), but the larger the modeling error is. On the other

hand, choosing δ too small makes the problem too computationally costly. Usually δ is taken to be of order h,

the diameter of the mesh employed. This guarantees that the computations are feasible and at the same time

we only need to model the eddies of the size smaller than the mesh diameter.
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mention the Spectral Galerkin Method [5, 6], the method of Neumann expansions [2, 10], and

the Stochastic Collocation Method [4, 14]. In this paper we will combine the ADM turbulence

model with the stochastic collocation method to treat the finite number of random parameters in

the boundary data. See [4] for the detailed description of the stochastic collocation techniques.

We employ the Smolyak isotropic formulas [3, 19] for the sparse grid stochastic collocation.

For the test problem we choose the circular flow (Chorin’s model) and flow past an obstacle.

We compare the expected values of the (spacially averaged) velocity obtained by direct nu-

merical simulation (with sufficiently low Reynolds number) of the noisy NSE, and the velocity

obtained by 1.1. Next, we consider the case of flows with Re = 500 - the near turbulent regime,

where the direct numerical simulation is still feasible.

Finally, we apply the model to a problem with a boundary layer and recirculation region

− flow past a forward-facing step. Again, the computational results demonstrate that for flow

with Re = 100 the convergence rates of expected value and variance are exactly as predicted

by theory for the deterministic setting (for the problem with boundary layer at Re = 500 and

with reasonably small mesh size the direct numerical simulation is no longer feasible).

2. Preliminaries

Definition 2.1 (Approximate Deconvolution Operator) For a fixed finite N , define the

N th approximate deconvolution operator GN by

GNφ =

N
∑

n=0

(I −A−1
δ )nφ,

where the averaging operator A−1
δ is the differential filter: given φ ∈ L2

0(Ω), φ
δ
∈ H2(Ω)∩L2

0(Ω)

is the unique solution of

Aδφ
δ
:= −δ2∆φ

δ
+ φ

δ
= φ in Ω, (2.1)

subject to periodic boundary conditions. Under periodic boundary conditions, this averaging

operator commutes with differentiation.

Lemma 2.1. The operator Gi
N is compact, positive, and is an asymptotic inverse to the filter

A−1
δi

, i.e., for very smooth φ and as δi → 0 satisfies

φ = G1
Nφ

δ1
+ (−1)N+1δ2N+2

1 ∆N+1A
−(N+1)
δ1

φ,

φ = G2
Nφ

δ2
+ (−1)N+1δ2N+2

2 ∆N+1A
−(N+1)
δ2

φ.
(2.2)

The proof of Lemma 2.1 can be found in [8].

2.1. Stochastic collocation. Smolyak formula

The detailed explanation of stochastic collocation idea and the Smolyak approximation

can be viewed in [3, 16]. The idea of the collocation method is to approximate the function

w = w(y, x), ∀y ∈ ΓK , ∀x ∈ Ω.

Introduce the span of tensor product polynomials with degree at most p = (p1, · · · , pK):

Pp(Γ
K) ⊂ L2

ρ(Γ
K), Pp(Γ

K) =
K
⊗

k=1

Ppk
(Γk),
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where Ppk
(Γk) = span(ylk, l = 0, · · · , pk), k = 1, · · · ,K. Here

L2
ρ(Γ

K) =

{

v

∣

∣

∣

∣

∫

ΓK

‖v(ω, ·)‖2L2(Ω)dρ(ω) <∞

}

.

Stochastic collocation provides the approximation to the solution w(y) on a suitable set of

points yk ∈ ΓK . The fully discrete solution wh,p is then a global interpolation

wh,p(y, ·) =
∑

k∈K

wh(yk, ·)l
p

k (y),

where the functions lpk can be Lagrange polynomials.

Also, we will use this formulation to compute the first moments (mean value and variance)

of w, since the expected value of functionals ψ(w) could be approximated (see [4], [16]) as

E[ψ(w)] ≈ E[ψ(wh,p)] ≈
∑

k∈K

ψ(wh(yk))E[lpk ].

Let i ∈ N+ be an index. For each value of i, let {yi1, · · · , y
i
mi

} ⊂ [−1, 1] be a sequence of

abscissas for Lagrange interpolation in [−1, 1].

For any Banach space W (Ω) of functions v : Ω → R we introduce a sequence of one-

dimensional Lagrange interpolation operators U i in a corresponding stochastic Banach space

C0(Γ1;W (Ω)) as follows:

U i(w)(y) =

mi
∑

j=1

w(yij)l
i
j(y), ∀w ∈ C0(Γ1;W (Ω)),

where lij ∈ Pmi−1(Γ
1) are the Lagrange polynomials of degree mi − 1:

lij(y) =

mi
∏

k=1,k 6=j

(y − yik)

(yij − yik)
.

In the multivariate case K > 1, for each w ∈ C0(Γ1;W (Ω)) and the multi-index i =

(i1, · · · , iK) define the full tensor product interpolation formulas

IK
i w(y) = (U i1 ⊗ · · · ⊗ U iK )(w)(y) =

mi1
∑

j1=1

· · ·

miK
∑

jK=1

w(yi1j1 , · · · , y
iK
jK

)(li1j1 ⊗ · · · ⊗ liKjK ). (2.3)

The above product needs
∏K

k=1mik function evaluations, i.e., solutions of deterministic

Navier-Stokes equations. The Smolyak isotropic formulas A(m,K) are linear combinations of

(2.3), but only the products with a relatively small number of points are used. Set U0 = 0; for

i ∈ N+ define

∆i = U i − U i−1.

Given an integer level m ∈ N+ and for i ∈ N+ with |i| = i1 + · · ·+ iK define the sets

X(m,K) =

{

i ∈ N
K
+ , i ≥ 1 :

K
∑

k=1

(ik − 1) ≤ m

}

, (2.4)

X̃(m,K) =

{

i ∈ N
K
+ , i ≥ 1 :

K
∑

k=1

(ik − 1) = m

}

, (2.5)

Y (m,K) =

{

i ∈ N
K
+ , i ≥ 1 : m−K + 1 ≤

K
∑

k=1

(ik − 1) ≤ m

}

. (2.6)
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The isotropic Smolyak formula is given by

A(m,K) =
∑

i∈X(m,K)

(∆i1 ⊗ · · · ⊗∆iK ).

To compute A(m,K)(w), one only needs to know function values on the sparse grid

H(m,K) =
⋃

i∈Y (m,K)

(νi1 × · · · × νiK ) ⊂ [−1, 1]K,

where νi = {yi1, · · · , y
i
mi

} ⊂ [−1, 1] denotes the set of abscissas used by U i. We will use the

nested sets (see Section 2.2), therefore H(m,K) ⊂ H(m+ 1,K) and

H(m,K) =
⋃

i∈X̃(m,K)

(νi1 × · · · × νiK ).

The Smolyak approximation (especially with nested a bscissas) requires much less function

evaluations than the tensor product formula (2.3), which is very important in the case of

turbulent NSE. In the computational tests we consider the problem with two random variables

(K = 2) and we employ stochastic collocation method with Smolyak approximation at the level

m = 2.

2.2. Interpolation abscissas

We use Clenshaw-Curtis abscissas, which are the extrema of Chebyshev polynomials. The

number of abscissas on the i-th level is mi. One sets m1 = 1 and mi = 2i−1+1 for i > 1. Then

the abscissas are given by

y1j = 0; yij = − cos

(

π(j − 1)

mi − 1

)

, ∀j = 1, · · · ,mi, i > 1.

With this choice the sets of abscissas are nested (see [7] for details).

3. Computational Results

In this section we test the verifiability of the approximate deconvolution model for the

stochastic Navier-Stokes equations by looking into the first moments (expected value and vari-

ance) of the quantity wADM − ūDNS, where wADM is the velocity field computed by the model,

and ūDNS is the average of the DNS solution of the NSE. The solution obtained by the ADM in

the deterministic setting, was proven to be second order accurate (see, e.g., [15] and references

therein). Hence, we anticipate the expected value E(wADM − ūDNS) at the final time T to be

second order accurate

∥

∥E(wADM (T )− ūDNS(T ))
∥

∥

L2(Ω)
≤ C(Re, f)h2, (3.1)

and therefore the variance to be fourth order accurate:

∥

∥var(wADM − ūDNS ,x, T )
∥

∥

L2(Ω)
≤ C(Re, f)h4. (3.2)

Note that the expressions in the right hand sides of (3.1) − (3.2) should be Cδ2 and Cδ4

respectively, but we have chosen the filtering width δ = h, as was discussed in the footnote in

the introduction.
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The computations are made for the two-dimensional problem. The results presented are

obtained by using the software FreeFEM + + [17]. The velocity field is sought in the finite

element space of piecewise quadratic polynomials, and the pressure in the space of piecewise

linears.

First, consider the fluid flow in Ω = (0.5, 1.5)× (0.5, 1.5). The flow is laminar with Reynolds

number Re = 100, the final time is T = 1, and the filtering radius is set to be the mesh size

δ = h.

For the Chorin’s model (circular motion in a square) we take

f =

(

1
2π sin(2πx)e

−4π2t/Re

1
2π sin(2πy)e

−4π2t/Re

)

.

The noisy boundary conditions are w∂Ωi
= u∂Ωi

+ αiΦi, i = 1, · · · , 4 where

∂Ω1 =
{

(x, y)
∣

∣ 0.5 ≤ x ≤ 1.5, y = 0.5
}

,

∂Ω2 =
{

(x, y)
∣

∣ x = 1.5, 0.5 ≤ y ≤ 1.5
}

,

∂Ω3 =
{

(x, y)
∣

∣ 0.5 ≤ x ≤ 1.5, y = 1.5
}

,

∂Ω4 =
{

(x, y)
∣

∣ x = 0.5, 0.5 ≤ y ≤ 1.5
}

.

The value u∂Ωi
is obtained from the value of the known true solution of the deterministic

problem with αi = 0, ∀i:

u(x, y, t) =

(

− cos(πx) sin(πy)e−2π2t/Re

sin(πx) cos(πy)e−2π2t/Re

)

.

We let α2 = α4 = 0, so that the parameter space is Γ2 = {(α1, α3)} ⊂ [−1, 1]× [−1, 1]. This

way we still need to implement the stochastic collocation method (the Monte-Carlo method is

computationally expensive, since solving each deterministic NSE is costly), but the number of

sample deterministic problems is moderate. We introduce noise on the boundary by choosing

Φ1(x, y) =

(

0

(x− 1
2 )(

3
2 − x)

)

, Φ3(x, y) =

(

0

−(x− 1
2 )(

3
2 − x)

)

.

We compute the Smolyak approximation with Clenshaw-Curtis nested abscissas at the level

ω = 2 (see, e.g., [16], [4]). Using the stochastic collocation method, we obtain

E[w − ūDNS ] ≈
∑

k∈K

(w(yk)− ūDNS(yk))E[ℓk],

where the sum is taken over the Smolyak points yk ∈ Γ2. Finally, we use Lagrange polynomials

as functions ℓk and we approximate the integrals in E[ℓk] by three-point Gaussian quadrature

rule. Similarly, the variance var(w − ūDNS ,x, T ) is computed as

var
(

(w − ūDNS),x, T
)

= E
(

((

w(T )− ūDNS(T )
)

− E
(

w(T )− ūDNS(T )
))2
)

.

The convergence rates of the error in the case of laminar flow (Re = 100) are

This verifies our prediction of the expected convergence rates (3.1),(3.2). Now we test the

convergence rates on the near-turbulent flow, with Re = 500. The obtained results are shown

in Table 3.2.
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Table 3.1: L2 norm of expected value and variance, Re = 100.

h ‖E[w(T )− ūDNS(T )]‖L2(Ω) rate(E) ‖var[(w − ūDNS),x, T ]‖L2(Ω) rate(var)

1/4 0.238434 0.120709

1/8 0.104785 1.186 0.0185519 2.702

1/16 0.0327235 1.679 0.00190266 3.285

1/32 0.00856659 1.934 0.000137505 3.79

1/64 0.00216618 1.984 0.00000894536 3.942

Table 3.2: L2 norm of expected value and variance, Re = 500.

h ‖E[w(T )− ūDNS(T )]‖L2(Ω) rate(E) ‖var[(w − ūDNS),x, T ]‖L2(Ω) rate(var)

1/4 0.461581 0.3470543

1/8 0.16789 1.459 0.052419 2.727

1/16 0.0578959 1.536 0.00617369 3.086

1/32 0.0162982 1.829 0.00055579 3.474

1/64 0.0042095 1.953 0.000037463 3.891

Thus, as the Reynolds number increases the convergence rates increase slower, but we still

obtain the desired rates.

Next we want to verify these results for a two dimensional flow past the obstacle. Consider

Ω = [0, 1] × [0, 1] with the obstacle (0.25 + 0.05 cos(t), 0.5 + 0.05 sin(t)), t ∈ [0, 2π), and the

parabolic inflow at the left boundary ∂Ω1 = {(x, y)|x = 0, 0 ≤ y ≤ 1}. We introduce the

two-parameter noise on the left (inflow) boundary

w∂Ω1
= u∂Ω1

+ α1Φ1 + α2Φ2,

w∂Ωi
= u∂Ωi

, i = 2, 3, 4.

Thus, we work in a parameter space Γ2 = (α1, α2) ⊂ [−1, 1]× [−1, 1], and we choose

Φ1(x, y) =

(

ǫy(1− y)

0

)

, Φ2(x, y) =

(

ǫy(1− y)2

0

)

,

with ǫ = 0.001. The right hand side is

f(x, y) =

(

0

2xy − x+ 1

)

,

the pressure is p = xy2 − xy − 2νtx+ y.

As in the previous example, the value u∂Ωi
is obtained from the value of the known true

solution of the deterministic problem with αi = 0, ∀i:

u(x, y, t) =

(

y(1− y)t

0

)

.

The expected value and variance of the modeling error w(T )− ūDNS(T ) are computed for

flow past the obstacle at the Reynolds numbers Re = 100 and Re = 500. As before, we conclude

that convergence rates verify those predicted by the theory.
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Table 3.3: Flow past the obstacle, Re = 100.

h ‖E[w(T )− ūDNS(T )]‖L2(Ω) rate(E) ‖var[(w − ūDNS),x, T ]‖L2(Ω) rate(var)

1/4 0.0245412 0.000408932

1/8 0.0175452 0.513 0.000212643 1.041

1/16 0.00780092 1.198 0.0000422653 2.128

1/32 0.0024091 1.659 0.00000394668 3.401

1/64 0.000458815 2.015 0.00000016644 3.989

Table 3.4: Flow past the obstacle, Re = 500.

h ‖E[w(T )− ūDNS(T )]‖L2(Ω) rate(E) ‖var[(w − ūDNS),x, T ]‖L2(Ω) rate(var)

1/4 0.055516 0.00232432

1/8 0.0452287 0.296 0.00178408 0.382

1/16 0.0276592 0.709 0.000754306 1.242

1/32 0.0111982 1.304 0.000142444 2.408

1/64 0.0030934 1.856 0.0000108547 3.714

At Re = 500 the convergence rates increase slower, similar to the case of Chorin’s model.

Finally, consider the parabolic flow in the domain with the step (Fig. 3.1). The size of the

domain is [0, 1]× [0, 1] and the height of the step is 0.2. We consider the same right hand side

and the parabolic inflow, as in the previous test problem (flow past the obstacle); however, the

step guarantees the presence of a boundary layer.

Fig. 3.1. Flow past the step.

We set the zero boundary conditions except the left boundary (parabolic inflow with noise)

and the right boundary (outflow). Thus, on the left boundary ∂Ω1 = {(x, y)|x = 0, 0 ≤ y ≤ 1}

we introduce the same inflow as in the case of the flow past the obstacle, with two random

parameters:

w∂Ω1
= u∂Ω1

+ α1Φ1 + α2Φ2,

where

Φ1(x, y) =

(

ǫy(1− y)

0

)

, Φ2(x, y) =

(

ǫy(1− y)2

0

)

,

with ǫ = 0.001.
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The direct numerical simulation at Re = 500 for flow past the step is no longer feasible

with the iterative solver we employ; at h = 1/32 the solver fails to converge within the time

constraints imposed (although the Approximate Deconvolution Model still works and provides

approximate solutions even in the case of Reynolds numbers of the order Re = 106).

At the Reynolds number Re = 100 the direct numerical computation is still feasible. The

results demonstrate faster increase (compare with Table 3.3) in the convergence rates to the

values predicted by the theory.

Table 3.5: Flow past the step, Re = 100.

h ‖E[w(T )− ūDNS(T )]‖L2(Ω) rate(E) ‖var[(w − ūDNS),x, T ]‖L2(Ω) rate(var)

1/4 0.0724682 0.00319198

1/8 0.0297043 1.287 0.000543116 2.555

1/16 0.00947135 1.649 0.0000580259 3.226

1/32 0.00259538 1.868 0.00000437377 3.956

1/64 0.00065426 1.988 0.0000002741196 3.996

Hence, the computational results verify the claimed accuracy of the model, even in the case

of probabilistic setting with the noise in boundary data.
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