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Abstract

The wave scattering problem by a crack Γ in R
2 with impedance type boundary is

considered. This problem models the diffraction of waves by thin two-sided cylindrical

screens. A numerical method for solving the problem is developed. The solution of the

problem is represented in the form of the combined angular potential and single-layer

potential. The linear integral equations satisfied by the density functions are derived for

general parameterized arcs. The weakly singular integrals and the Cauchy singular integral

arising in these equations are computed using a highly accurate scheme with a truncation

error analysis. The advantage of the scheme proposed in this paper is, in one hand, the fact

that we do not need the analyticity property of the crack and we allow different complex

valued surface impedances in both sides of the crack. In the other hand, we avoid the

hyper-singular integrals. Numerical implementations showing the validity of the scheme

are presented.

Mathematics subject classification: 35P25, 35R30, 78A45.
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Numerics.

1. Introduction

The scattering problems for acoustic waves in R
2 are of great importance, which can be

considered as a model problem of cylinder scattering in R
3. Mathematically, such problems are

governed by the Helmholtz equations in R
2 with boundary value specified on the boundary of

the scatterer and the radiation condition at infinity for scattered wave. In case the scatterer

D is a body with a closed smooth surface, these scattering problems have been extensively

studied using the potential methods [4,9,25,28,32], the scattering problem for multiple obstacle

is also considered in [31]. In these cases, the combined single- and double-layer potential

schemes [4, 9, 28] are proposed to express the scattered wave as well as its far-field pattern by

density functions, which satisfies an integral equation derived from the boundary condition in
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∂D. However, to guarantee the solvability for the density functions in the combined single– and

double–layer potential scheme, the hyper-singular integrals need to be computed numerically

for ∂D with Neumann or Robin boundary condition [3, 23, 24].

To describe the diffraction of waves by thin two-side cylindrical screens, the scattering

problems of Helmholtz equation by a crack Γ (or, an open arc) in R
2 are considered recently.

In this case, the boundary condition on the arc should be specified, while the acoustic property

of the arc in both sides may be different. For arc scattering problems, the scattered wave is

continuous at the tips, but its gradient has weak power singularity. Consequently, the potential

functions introduced for solving the scattering problems are not periodic nor smooth in the

closure of Γ any more. Hence, compared with the scattering problems of obstacles with closed

smooth boundary, these crack scattering problems are more complicated due to the eventual

different surface impedances on both sides as well as the presence of the tips of crack. The inverse

scattering problems for arc with Dirichlet or Neumann data on the arc has been considered

in [12, 14, 17, 18, 22, 30, 33, 34] using iterative methods. Physically, this means that the arc is

sound-soft or sound hard. For the Lapalce equation in R
2 with a cut inside the domain, the

Cauchy problem is also considered in [6], where both the Dirichlet and the Neumann condition

are posed in both sides of the cut in the iteration process.

Let us emphasize that the impedance condition specified on the obstacle boundary is of

great importance in application [10]. The introduction of surface impedance specified on the

boundary has a big influence on the scattered wave. For example, an inverse scattering problem

for an impenetrable obstacle with smooth surface has been studied in [5, 26, 27], where the

impedance coefficients on the boundary are found to have a strong influence on the scattering

process. This is related to the so-called coating effect which, in few words, means that these

coefficients can increase or decrease the amount of scattering. In [21], an inverse scattering

problem for an arc with different impedance coefficients at two sides of the arc is studied using

a direct method, where the direct scattering process is simulated by the combined single- and

double-layer potential method.

In this paper, we develop a numerical method for the direct scattering problem of a two-sided

impedance arc Γ ∈ R
2. By two-sided arc, we mean that the acoustic property of the arc in two

sides may be different. If we specify two sides of Γ by Γ+ and Γ−, then the boundary impedance

coefficient as well as the boundary data in Γ+ and Γ− may be different. The numerical method

developed in the present paper is based on the boundary integral equation approach proposed

in [15], where the integral representation for a solution of the problem is obtained in the form

of a sum of a single layer potential and an angular potential. In the case of an arc with the

same impedance condition on both sides, the computational scheme has been given in [11, 13],

where the analytic property of the arc and the hyper-singular integral are required. But their

approach seems not clear how to be applied for different impedances. On the other hand, we

would like to point out the recent developments in connection with our studied problem and

suggested techniques, specially for small cracks, see, e.g., [1, 2].

The purpose of this paper is to give an efficient realization scheme for computing the scat-

tered wave caused by a two-sided complex arc, using the combined angular- and single-layer

potential method. Although the integral equation for the density functions has been derived

in [15] and its solvability is proven there, the efficient numerical realization of this scheme is

still open. More precisely, the integral system consists of a Cauchy singular integral equation

of the 1st kind with additional integral condition and an integral equation of the second kind

with smooth kernels. Since the Cauchy singular operator has additional weak singularities at
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the ends, then we need to be more careful about the method of computation. On the other

hand, the arc Γ is represented in [15–17] using the arc length for the parametrization, which is

the restriction on this scheme. The novelty of our paper is the new numerical method for com-

puting the integrals with high accuracy and therefore solving this very complicated system of

integral equations efficiently. We produce different number of unknowns in algebraic equations

for different densities in potentials, since we need to use discrete vortices for Cauchy singular

integral and to take into account another additional integral condition. The problem solved

in the paper has not been treated before numerically, while the problem studied numerically

in [11,13] is a particular case of our problem. One of our motivations to analyze this numerical

scheme is to generate synthetic far fields needed in the corresponding inverse problem for the

detection of complex cracks from far field data, see [20]. We also note that, in considering the

direct scattering process in [21], the Maus’s identity is applied to milden the hypersingularity

caused from the double-layer potential and the impedance boundary condition of the cut, while

the angular layer potential in our paper is applied directly to express the scattered wave and

therefore avoid the hypersingularity in the integral equations.

This paper is organized as follows. In Section 2, we state the potential method for express-

ing the scattered wave using the combined angular and single-layer potential method. The

modification required for the crack representation with general parametrization is given. Then

we derive the discrete system for these integral equations in Section 3, with careful truncation

error estimates for all the integral terms. This forms the basis for the error estimate of the con-

vergence order for the scattered wave computation. In Section 4, we derive the discrete system

for computing the scattered wave as well as its far-field pattern using the density functions and

give some numerical results. The numerical performance shows that the computing scheme is

of a stable convergence order.

2. Statement of the Problem and Preliminary Results

For given arc Γ := {x := (x1(s), x2(s)), s ∈ [a, b]} ∈ R
2, we define its two sides by the

following way. When the parameter s increases, the side Γ+ is in the left-hand of Γ, and the other

side, correspondingly, is denoted by Γ−. The normal unit vector n on Γ, it is always directed

into the side Γ−, see Fig. 2.1 for the configuration. That is, when n(x) is rotated anticlockwise

through an angle π/2, it coincides with τ(x), the tangent direction of Γ is directed into the

direction of s increasing. Obviously, it follows for x(s) ∈ Γ that the unit normal direction is

x(a) 

x(b) 
x(s) 

n(x) τ(x) 

y(σ) 

Γ+ 

Γ− 

x
1
 

x
2
 

Γ: x=(x
1
(s),x

2
(s)), a<s<b 

Fig. 2.1. Geometric configuration of an arc.
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given by

n
(

x(s)
)

=

(

ẋ2(s),−ẋ1(s)
)

∣

∣ẋ(s)
∣

∣

=
ẋ(s)⊥
∣

∣ẋ(s)
∣

∣

,

where |ẋ(s)| :=
√

ẋ1(s)2 + ẋ2(s)2, ḟ(s) := f ′(s) means the derivative with respect to variable

s. Moreover, we assume that Γ is smooth enough such as Γ ∈ C2,λ, λ ∈ (0, 1], but the analytic

smoothness is not necessary.

For given incident plane wave ui(x) = eikx·d with wave number k > 0 and incident direction

d, consider the following scattering problem for total wave v(x) = ui(x) + us(x) by arc Γ:



























∆v + k2v = 0, R
2 \ Γ,

∂v
∂n − ikσ+v = 0, Γ+,
∂v
∂n + ikσ−v = 0, Γ−,
∂us

∂|x| − ikus(x) = o
(

1√
|x|

)

, |x| → ∞.

(2.1)

The boundary condition on Γ± means that the acoustic property of arc in the two sides is

different, where the impedance functions σ± are smooth satisfying ℜσ± > σ0 > 0 in Γ.

Noticing that ui(x) is an entire function, (2.1) is an special case of the following problem

after renaming the function



























∆u+ k2u = 0, R
2 \ Γ,

∂u
∂n + β1(x)u = f1(x), Γ+,
∂u
∂n − β2(x)u = f2(x), Γ−,
∂u
∂|x| − iku(x) = o( 1√

|x|
), |x| → ∞

(2.2)

with k = ℜk > 0 and ℑβj(x) ≤ 0 for j = 1, 2, where the boundary conditions at the ends of

arc Γ are not required.

Firstly, we introduce a function space so that we can describe the singularity of solution to

(2.2). In this paper, Γ means the closed arc, that is, it contains the tips x(a) and x(b).

Definition 2.1. The function u(x) belongs to the class K, if it satisfies the following conditions:

(1). u ∈ C2(R2 \Γ), u(x) is continuously extendable on the cut Γ from the left and right, u(x)

is continuous at X := {x(a), x(b)}, the ends of Γ;

(2). ∇u(x) is continuously extendable on the cut Γ \X from the left and right;

(3). In the neighborhood of x(d) ∈ X with d = a, b, there exists a constant C > 0 and ε ∈
(−1, 0] such that

|∇u(x)| ≤ C|x − x(d)|ε, x→ x(d).

The following well-posedness result for problem (2.2) has been proved in [15].

Theorem 2.1. There exists a unique solution u(x) ∈ K of (2.2), provided Γ ∈ C2,λ and

β1, β2, f1, f2 ∈ C0,λ[a, b] for λ ∈ (0, 1].

The proof for the uniqueness of solution is carried out using the standard energy method,

noticing the radiation condition and the continuity of solution, especially on the tips of Γ.

However, the proof for the existence of solution in K is constructive. The main technique is to
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represent the solution by potential functions and then to prove the unique solvability of density

functions such that the solution is in K. Since such a construction scheme is crucial to our

computational scheme, we state the main process and make the correspondent modification for

the case that the arc Γ is represented by general parameter s ∈ [a, b], rather than arch length.

Such an modification is necessary to the singularity analysis of density functions.

Denote by H
(1)
0 (z) the Hankel function of the first kind of zero order. Consider the angular

potential introduced in [17]

v[µ1](x) =
i

4

∫

Γ

µ1(σ)V (x, σ)dlσ , x ∈ R
2 \ Γ, (2.3)

where arc length dlσ > 0 as σ increases, and V (·, σ) is defined in R
2 \ Γ by an integral

V (x, σ) :=

∫ σ

a

∂H
(1)
0

(

k
∣

∣x− y(ξ)
∣

∣

)

∂n
(

y(ξ)
)

∣

∣ẏ(ξ)
∣

∣dξ, σ ∈ [a, b]

for y(ξ) = (y1(ξ), y2(ξ)) ∈ Γ, |x− y(ξ)| is the Euclidian distance of x, y(ξ).

Definition 2.2. We say that µ1(σ) ∈ Cω
q [a, b] for ω ∈ (0, 1], q ∈ [0, 1), if µ1(s)(s−a)q(b−s)q ∈

C0,ω[a, b]. The norm is given by

∥

∥µ1(s)
∥

∥

Cω
q [a,b]

:=
∥

∥µ1(s)(s− a)q(b − s)q
∥

∥

C0,ω[a,b]
.

Inserting the expression of V (x, σ) into (2.3) and integrating by parts yield ( [17])

v[µ1](x) =
i

4

∫ b

a

µ1(ξ)
∣

∣ẏ(ξ)
∣

∣dξ

∫ b

a

∂H
(1)
0

(

k
∣

∣x− y(ξ)
∣

∣

)

∂n(y)

∣

∣ẏ(ξ)
∣

∣dξ

− i

4

∫ b

a

∫ σ

a

µ1(ξ)
∣

∣ẏ(ξ)
∣

∣dξ
∂H

(1)
0

(

k
∣

∣x− y(σ)
∣

∣

)

∂n(y)

∣

∣ẏ(σ)
∣

∣dσ.

Since we will use v[µ1](x) to construct u ∈ K, so we need v[µ1](·) ∈ K, which means v[µ1](x)

should be continuous at two ends x(a), x(b). However, it is shown in [19, Theorem 2(1)]

that
∫ b

a

∂H
(1)
0 (k|x−y(ξ)|)

∂n(y) |ẏ(ξ)|dξ, the first term of the right-hand side, is not continuous at

x = x(a), x(b). To remove this difficulty, the following condition has been proposed in [17, 18]

∫

Γ

µ1(ξ)dlξ = 0. (2.4)

Under this condition, v[µ1](x) given by (2.3) becomes

v[µ1](x) = − i

4

∫

Γ

ρ[µ1](σ)
∂H

(1)
0

(

k
∣

∣x− y(σ)
∣

∣

)

∂n(y)
dlσ, (2.5)

which is in K (see [19, Theorem 2]) and solves the Helmholtz equation with radiation condition,

where we introduce

ρ[µ1](σ) =

∫ σ

a

µ1(ξ)
∣

∣ẏ(ξ)
∣

∣dξ. (2.6)

Obviously, under the condition (2.4), the angular potential (2.3) with density µ1 ∈ Cω
q [a, b]

becomes the double-layer potential (2.5) with density ρ[µ1] ∈ C[a, b].



146 J.J. LIU, P.A. KRUTITSKII AND M. SINI

In [15], the solution to (2.2) in K is constructed in the form of sum of an angular potential

and single layer potential:

u[µ1, µ2](x) = v[µ1](x) + w[µ2](x), (2.7)

where w is the single-layer potential

w[µ2](x) =
i

4

∫

Γ

µ2(σ)H
(1)
0

(

k
∣

∣x− y(σ)
∣

∣

)

dlσ

with µ2 ∈ C0,λ/4[a, b], and µ1 ∈ C
λ/4
1/2 [a, b] satisfying (2.4). For these density functions, (2.7)

gives a function in K solving (2.2), except the boundary condition on Γ±. These conditions

are used in [15] to determine µ1, µ2. To this end, let us introduce some known kernel functions

from [15]. Denote by φ0(x, y) the angle between −→xy and n(x), and define

h(z) = H
(1)
0 (z)− 2i

π
ln
z

k
, V0(x, σ) =

∫ σ

a

∂h
(

k
∣

∣x− y(ξ)
∣

∣

)

∂n(y)

∣

∣ẏ(ξ)
∣

∣dξ, (2.8a)

A±
22(s, σ) =

i

4
(β2(s)± β1(s))H

(1)
0

(

k
∣

∣x(s) − y(σ)
∣

∣

)

, (2.8b)

Y11(s, σ) =
1

π

(

sinφ0
(

x(s), y(σ)
)

∣

∣x(s)− y(σ)
∣

∣

− 1

(σ − s)
∣

∣ẏ(σ)
∣

∣

)

− i

2

∂V0
(

x(s), σ
)

∂n(x)

− i

4

(

β1(s)− β2(s)
)

V
(

x(s), σ
)

, (2.8c)

Y12(s, σ) = − i

2

∂H
(1)
0

(

k
∣

∣x(s)− y(σ)
∣

∣

)

∂n(x)
, Y [µ2](s) =

∫

Γ

µ2(σ)A
−
22(s, σ)dlσ, (2.8d)

A21(s, σ) =
i

4

(

β1(s) + β2(s)
)

V
(

x(s), σ
)

. (2.8e)

Now we have the following

Theorem 2.2. Let Γ ∈ C2,λ, β1, β2, f1, f2 ∈ C0,λ[a, b] with λ ∈ (0, 1]. If µ1(s) ∈ Cω
q [a, b] for

ω ∈ (0, 1], q ∈ [0, 1) and µ2(s) ∈ C0,λ/4[a, b] satisfy (2.4) and the following system

1

π

∫ b

a

µ1(σ)
1

σ − s
dσ +

∫

Γ

µ1(σ)Y11(s, σ)dlσ +

∫

Γ

µ2(σ)Y12(s, σ)dlσ + Y [µ2](s)

− 1

2

(

β1(s) + β2(s)
)

ρ[µ1](s) = −
(

f1(s) + f2(s)
)

, (2.9a)

µ2(s) +

∫

Γ

µ1(σ)A21(s, σ)dlσ +

∫

Γ

µ2(σ)A
+
22(s, σ)dlσ

+
1

2

(

β1(s)− β2(s)
)

ρ[µ1](s) = f1(s)− f2(s), (2.9b)

then u(x) given by (2.7) belongs to K and solves the scattering problem (2.2).

Please notice the different expression of the first term in Y11 from that arising in [15, 16],

which is due to the situation considered here that s may not be the arc length.

Proof. It is easy to see that the boundary condition in (2.2) is equivalent to

∂u

∂n

∣

∣

∣

∣

x(s)∈Γ+

+
∂u

∂n

∣

∣

∣

∣

x(s)∈Γ−

+ (β1u)
∣

∣

x(s)∈Γ+ − (β2u)
∣

∣

x(s)∈Γ− = f1(s) + f2(s), (2.10a)

∂u

∂n

∣

∣

∣

∣

x(s)∈Γ+

− ∂u

∂n

∣

∣

∣

∣

x(s)∈Γ−

+ (β1u)
∣

∣

x(s)∈Γ+ + (β2u)
∣

∣

x(s)∈Γ− = f1(s)− f2(s). (2.10b)
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Since w[µ2](x) is a single-layer potential with density function µ2, it is continuous in Γ and
the jump relation of its normal derivative is standard [17, Theorem 5]. Now let us consider
the angular potential v[µ1](x), which is essentially a double-layer potential under the condition
(2.4). The properties of the angular potential have been studied in [17] in details. It follows
from [17, Theorem 5] that as x→ x(s) ∈ Γ± the normal derivative of the angular potential has
the following limiting values on Γ+ and on Γ−

lim
x→x(s)∈Γ±

∂v[µ1]

∂n(x)
(x) = − 1

2π

∫

Γ

µ1(σ)
sin(φ0(x(s), y(σ))

|x(s)− y(σ)| dlσ +
i

4

∫

Γ

µ1(σ)
∂V0(x(s), σ)

∂n(x(s))
dlσ, (2.11)

where

sinφ0(x(s), y(σ)) = − (x(s)− y(σ)) · ẋ(s)
|x(s) − y(σ)||ẋ(s)| ,

and φ0(x(s), y(σ)) is the angle between −→xy and n(x).

Substituting u(x) from (2.7) into the boundary conditions (2.10a) and using this key rela-

tion for the angular potential, we observe that the density functions (µ1, µ2) should obey the

following integral equations, which have been derived in [15]

− 1

π

∫

Γ

µ1(σ)
sinφ0

(

x(s), y(σ)
)

∣

∣x(s)− y(σ)
∣

∣

dlσ +
i

2

∫

Γ

µ1(σ)
∂V0

(

x(s), σ
)

∂n(x)
dlσ

+
i

2

∫

Γ

µ2(σ)
∂H

(1)
0

(

k
∣

∣x(s)− y(σ)
∣

∣

)

∂n(x)
dlσ +

1

2

(

β1(s) + β2(s)
)

ρ[µ1](s)

+
i

4

(

β1(s)− β2(s)
)

(∫

Γ

µ2(σ)H
(1)
0

(

k
∣

∣x(s)− y(σ)
∣

∣

)

dlσ +

∫

Γ

µ1(σ)V (x(s), σ)dlσ

)

=f1(s) + f2(s),

µ2(s) +
1

2

(

β1(s)− β2(s)
)

ρ[µ1](s)

+
i

4

(

β1(s) + β2(s)
)

(
∫

Γ

µ2(σ)H
(1)
0

(

k
∣

∣x(s)− y(σ)
∣

∣

)

dlσ +

∫

Γ

µ1(σ)V
(

x(s), σ
)

dlσ

)

=f1(s)− f2(s).

Finally by decomposing the kernel in the first integral as

sinφ0
(

x(s), y(σ)
)

∣

∣x(s) − y(σ)
∣

∣

=
1

(σ − s)
∣

∣ẏ(σ)
∣

∣

+
sinφ0

(

x(s), y(σ)
)

∣

∣x(s)− y(σ)
∣

∣

− 1

(σ − s)
∣

∣ẏ(σ)
∣

∣

and inserting it into the first equation, we derive the first equation in (2.9), noticing dlσ =

|ẏ(σ)|dσ. The second equation in (2.9) is obtained directly. The proof is complete. �

Let Γ ∈ C2,λ, λ ∈ (0, 1]. The regularity for the kernels in (2.9), except for

sinφ0
(

x(s), y(σ)
)

∣

∣x(s) − y(σ)
∣

∣

− 1

(σ − s)
∣

∣ẏ(σ)
∣

∣

,

is thoroughly analyzed in [15] with the help of the smoothness properties of h(z). Now we study

regularity of this kernel. Using the same arguments as that in Lemmas 2 and 3 in [17], it can

be shown that
(

sinφ0
(

x(s), y(σ)
)

∣

∣x(s) − y(σ)
∣

∣

− 1

(σ − s)
∣

∣ẋ(s)
∣

∣

)

∈ C0,λ
(

[a, b]× [a, b]
)

.
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Therefore, it follows from the decomposition

sinφ0
(

x(s), y(σ)
)

∣

∣x(s)− y(σ)
∣

∣

− 1

(σ − s)
∣

∣ẏ(σ)
∣

∣

=
sinφ0

(

x(s), y(σ)
)

∣

∣x(s) − y(σ)
∣

∣

− 1

(σ − s)
∣

∣ẋ(s)
∣

∣

+

∣

∣ẏ(σ)
∣

∣ −
∣

∣ẋ(s)
∣

∣

(σ − s)
∣

∣ẋ(s)
∣

∣

∣

∣ẏ(σ)
∣

∣

that
sinφ0

(

x(s), y(σ)
)

∣

∣x(s)− y(σ)
∣

∣

− 1

(σ − s)
∣

∣ẏ(σ)
∣

∣

is also in C0,λ
(

[a, b]2
)

,

noticing
∣

∣ẏ(σ)
∣

∣ −
∣

∣ẋ(s)
∣

∣

(σ − s)
∣

∣ẋ(s)
∣

∣

∣

∣ẏ(σ)
∣

∣

∈ C0,λ
(

[a, b]2
)

.

In addition, if Γ ∈ C4, then from the same arguments it follows that

(

sinφ0
(

x(s), y(σ)
)

∣

∣x(s) − y(σ)
∣

∣

− 1

(σ − s)
∣

∣ẏ(σ)
∣

∣

)

∈ C2
(

[a, b]2
)

.

The regularity of kernels in the system (2.9) will be used in deriving the discrete form of this

system.

It is proved in [15] that under conditions of Theorem 2.2, the system (2.9), (2.4) has unique

solution (µ1(s), µ2(s)), where µ1(s) ∈ C
λ/4
1/2 [a, b], µ2(s) ∈ C0,λ/4[a, b]. Define

Q1/2(s) = (s− a)1/2(b− s)1/2 (2.12)

and take the transform

µ1(s) =
µ1∗(s)

Q1/2(s)
. (2.13)

Then (2.9) can be rewritten for new unknown (µ1∗, µ2) as

1

π

∫ b

a

µ1∗(σ)

Q1/2(σ)(σ − s)
dσ +

∫

Γ

µ1∗(σ)

Q1/2(σ)
Y11(s, σ)dlσ +

∫

Γ

µ2(σ)Y12(s, σ)dlσ + Y [µ2](s)

− 1

2

(

β1(s) + β2(s)
)

ρ

(

µ1∗
Q1/2

)

(s) = −
(

f1(s) + f2(s)
)

, (2.14a)

µ2(s) +

∫

Γ

µ1∗(σ)

Q1/2(σ)
A21(s, σ)dlσ +

∫

Γ

µ2(σ)A
+
22(s, σ)dlσ

+
1

2

(

β1(s)− β2(s)
)

ρ

(

µ1∗
Q1/2

)

(s) = f1(s)− f2(s). (2.14b)

Under the transform (2.13), (2.4) becomes

∫ b

a

µ1∗(s)
∣

∣ẏ(s)
∣

∣

Q1/2(s)
ds = 0. (2.15)

Eqs. (2.14) and (2.15) constitute a system for determining (µ1∗, µ2). It follows from [15]

that this system is uniquely solvable in the function space C0,λ/4[a, b]× C0,λ/4[a, b] under the

regularity f1, f2, β1, β2 ∈ C0,λ[a, b],Γ ∈ C2,λ.

Let Γ ∈ C4. For the computation of

∂V0(x(s), σ)

∂n(x)
=

∫ σ

a

∂

∂n(x)

∂h
(

k
∣

∣x(s)− y(ξ)
∣

∣

)

∂n(y)
|ẏ(ξ)|dξ,
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we need the singularity decomposition

∂

∂n(x)

∂h
(

k
∣

∣x(s)− y(ξ)
∣

∣

)

∂n(y)
=
i

π
k2 ln |s− ξ|+ g(s, ξ), (2.16)

where the function g(s, ξ) has the expression

g(s, ξ) = −k
2
h
′′
(

k
∣

∣x(s)− y(ξ)
∣

∣

)

(

x(s)− y(ξ)
)

· ẋ(s)⊥
∣

∣x(s)− y(ξ)
∣

∣

∣

∣ẋ(s)
∣

∣

(

x(s)− y(ξ)
)

· ẏ(ξ)⊥
∣

∣x(s)− y(ξ)
∣

∣

∣

∣ẏ(ξ)
∣

∣

− kh
′
(

k
∣

∣x(s)− y(ξ)
∣

∣

)

(

x(s)− y(ξ)
)

· ẋ(s)
∣

∣x(s)− y(ξ)
∣

∣

∣

∣ẋ(s)
∣

∣

(

x(s)− y(ξ)
)

· ẏ(ξ)
∣

∣x(s)− y(ξ)
∣

∣

∣

∣ẏ(ξ)
∣

∣

1
∣

∣x(s)− y(ξ)
∣

∣

− i

π
k
2 ln |s− ξ|,

h
′′(z) = −1

z
H

(1)
1 (z) +H

(1)
2 (z) +

2i

π

1

z2
= − i

π
ln z + C +O(z2 ln z),

h
′(z) = −H

(1)
1 (z)− 2i

π

1

z
= − i

π
z ln z + constant z +O(z3 ln z)

from the direct computations. Here ẋ(s)⊥ = (ẋ2(s),−ẋ1(s)), ẏ(ξ)⊥ = (ẏ2(ξ),−ẏ1(ξ)). It
follows from proof of Lemma 2 in [18] that g(s, ξ) = g̃(s, ξ) + constant (s − ξ)2 ln |s − ξ| with
g̃(s, ξ) ∈ C2([a, b]2). Such a decomposition will be used in the discretization process. The

remaining integrals are easy to handle.

Using these relations, all integrals in the final equations (2.14) and (2.15) will be changed

into the integrals with respect to non arc length parameter s. Once (µ1∗, µ2) is solved from the

above system, the solution u can be computed from the potentials. However, many integrals in

the above system with weak singularity should be discretized carefully so that the high accuracy

can be obtained. These issue will be discussed in the next section.

Remark 2.1. It is interesting to consider the possibility of the proposed angular potential

method for the crack scattering in R
3. Such an extension needs the modification of (2.3) for

Γ ⊂ R
3 and the introduction of fundamental solution eik|x−y|

4π|x−y| for the Helmholtz equation in R
3,

with V (x, σ) being the integral in the surface Γ. In this case, the numerical computations will

become complicated, similarly to the applications of single- and double-layer potential methods.

3. Production of Discrete System

Now we compute each integral in the system (2.14) and (2.15), such that a finite linear system

can be produced. To guarantee the numerical accuracy, we assume that Γ ∈ C4;β1, β2, f1, f2 ∈
C2[a, b]. Under these strong assumptions, we can look for the numerical solution (µ1∗(s), µ2(s))

of the system (2.14) and (2.15) for µ1∗(s), µ2(s) ∈ C0,λ/4[a, b].

In our computation, we set zj = a + (b − a)/M × j := a + τ × j with j = 0, 1, · · · ,M to

divide [a, b] intoM−subintervals, and take sj := (zj−1+zj)/2 for j = 1, · · · ,M , i.e. the middle

point of the interval [zj−1, zj].

To compute the integrals, we need the following standard Lemma.

Lemma 3.1. Suppose F (σ) ∈ C2[a, b]. Then we have the estimates

∫ z1

z0

F (σ)√
σ − a

√
b− σ

dσ =

(

4

3

F (z0)√
b− z0

+
2

3

F (z1)√
b− z1

)√
τ +O(τ5/2),

∫ zM

zM−1

F (σ)√
σ − a

√
b − σ

dσ =

(

2

3

F (zM−1)√
zM−1 − a

+
4

3

F (zM )√
zM − a

)√
τ +O(τ5/2),
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∫ zM−1

z1

F (σ)√
σ − a

√
b− σ

dσ =

M−1
∑

j=2

τ

2

(

F (zj−1)√
zj−1 − a

√

b− zj−1

+
F (zj)√

zj − a
√

b− zj

)

+O(τ2).

Step 1. Compute the first integral

T1(s) :=
∫ b

a

µ1∗(σ)

Q1/2(σ)(σ − s)
dσ,

which is a Cauchy singular integral. Use the decomposition

T1(s) :=
∫ b

a

µ1∗(σ)

Q1/2(σ)(σ − s)
dσ =

∫ z1

z0

+

∫ zM−1

z1

+

∫ zM

zM−1

(3.1)

and compute the integrals at s = sn (n = 1, · · · ,M) in terms of Lemma 3.1 approximately.

For n = 1, · · · ,M , the second term in the right-hand side of (3.1) can be computed by the

method of discrete vortices developed in [3, 23, 24], i.e.,

∫ zM−1

z1

=
M−1
∑

m=2

1

2
τ

(

µ1∗(zm−1)

Q1/2(zm−1)(zm−1 − sn)
+

µ1∗(zm)

Q1/2(zm)(zm − sn)

)

+O(τ2). (3.2)

For the first and the third term in the right-hand side of (3.1), it follows from Lemma 3.1

that
∫ z1

z0

=
2

3

[

2µ1∗(z0)√
M(z0 − sn)

+
µ1∗(z1)√

M − 1(z1 − sn)

]

+O(τ5/2), n = 2, 3, · · · ,M, (3.3a)

∫ zM

zM−1

=
2

3

[

2µ1∗(zM )√
M(zM − sn)

+
µ1∗(zM−1)√

M − 1(zM−1 − sn)

]

+O(τ5/2), n = 1, 3, · · · ,M − 1. (3.3b)

Now let us compute the following two integrals:

I1(s1) :=

∫ z1

z0

µ1∗(σ)

Q1/2(σ)(σ − s1)
dσ, IM (sM ) :=

∫ zM

zM−1

µ1∗(σ)

Q1/2(σ)(σ − sM )
dσ.

For computing I1(s1), we use the linear approximation for σ ∈ [z0, z1] to get

1√
b− σ

µ1∗(σ) =
µ1∗(z0)√
b− z0

+
σ − z0
τ

(

µ1∗(z1)√
b− z1

− µ1∗(z0)√
b− z0

)

+O(τ2).

Since
∫ z1

z0

1√
σ − z0(σ − s1)

dσ = P,

∫ z1

z0

σ − z0√
σ − z0(σ − s1)

dσ = 2
√
τ + (s1 − z0)P,

with P :=
√

2/τ ln |
√
2−1√
2+1

|, we finally obtain

I1(s1) = r11µ1∗(z0) + r21µ1∗(z1) +O(τ3/2), (3.4)

with the weights

r11 =
1√
b− z0

(P − 2√
τ
− s1 − a

τ
P ), r21 =

1√
b− z1

(

2√
τ
+
s1 − a

τ
P

)

.



Numerical Solution of the Scattering Problem for Acoustic Waves 151

By a similar treatment, we obtain

IM (sM ) = r1Mµ1∗(zM−1) + r2Mµ1∗(zM ) +O(τ3/2), (3.5)

with the weights

r1M =
1√

zM−1 − a

(

− 2√
τ
− b− sM

τ
P

)

, r2M =
1√

zM − a

(

−P +
2√
τ
+
b− sM
τ

P

)

.

Conclusion. The values of T1(sn) are given by

T1(sn) =































































































r11µ1∗(z0) + r21µ1∗(z1) +
2

3

(

2µ1∗(zM )√
M(zM − s1)

+
µ1∗(zM−1)√

M − 1(zM−1 − s1)

)

+

M−1
∑

m=2

1

2
τ

(

µ1∗(zm−1)

Q1/2(zm−1)(zm−1 − s1)
+

µ1∗(zm)

Q1/2(zm)(zm − s1)

)

, n = 1,

2

3

(

2µ1∗(z0)√
M(z0 − sn)

+
µ1∗(z1)√

M − 1(z1 − sn)

)

+
2

3

(

2µ1∗(zM )√
M(zM − sn)

+
µ1∗(zM−1)√

M − 1(zM−1 − sn)

)

+
M−1
∑

m=2

1

2
τ

(

µ1∗(zm−1)

Q1/2(zm−1)(zm−1 − sn)
+

µ1∗(zm)

Q1/2(zm)(zm − sn)

)

, n = 2, · · · ,M − 1,

2

3

(

2µ1∗(z0)√
M(z0 − sM )

+
µ1∗(z1)√

M − 1(z1 − sM )

)

+ r1Mµ1∗(zM−1) + r2Mµ1∗(zM )

+

M−1
∑

m=2

1

2
τ

(

µ1∗(zm−1)

Q1/2(zm−1)(zm−1 − sM )
+

µ1∗(zm)

Q1/2(zm)(zm − sM )

)

, n = M. (3.6)

The accuracy of this integral is O(τ3/2).

Step 2. Compute

T2(s) :=
∫

Γ

µ1∗(σ)

Q1/2(σ)
Y11(s, σ)dlσ.

We still use the decomposition

T2(sn) =
M
∑

m=1

∫ zm

zm−1

µ1∗(σ)

Q1/2(σ)
Y11(sn, σ)

∣

∣ẋ(σ)
∣

∣dσ =

M
∑

m=1,m 6=n

∫ zm

zm−1

+

∫ zn

zn−1

.

Since Y11(s, σ) is not smooth for s = σ, we need to compute

∫ zn

zn−1

µ1∗(σ)

Q1/2(σ)
Y11(sn, σ)

∣

∣ẋ(σ)
∣

∣dσ.

In fact, it follows from the properties of functions presented in [17, 18] that

Y11(sn, σ) = Ỹ11(sn, σ) +
1

2π
k2(σ − sn) ln |σ − sn|

with Ỹ11 ∈ C2(Γ× Γ). We notice that

∫ zn

zn−1

µ1∗(σ)
∣

∣ẋ(σ)
∣

∣

Q1/2(σ)
(σ − sn) ln |σ − sn|dσ

=O(τ ln τ)

∫ zn

zn−1

1

Q1/2(σ)
dσ = O(τ3/2 ln τ)
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for n = 1, · · · ,M . This means that the integral of the weakly singular part can be considered

as the truncation error. That is,

∫ zn

zn−1

µ1∗(σ)

Q1/2(σ)
Y11(sn, σ)

∣

∣ẋ(σ)
∣

∣dσ ≈
∫ zn

zn−1

µ1∗(σ)

Q1/2(σ)
Ỹ11(sn, σ)

∣

∣ẋ(σ)
∣

∣dσ,

where the integral in the right-hand side can be computed by the schemes given in Lemma 3.1.

Finally, we obtain the approximation

T2(sn) =
M
∑

m=1

∫ zm

zm−1

µ1∗(σ)

Q1/2(σ)
Y11(sn, σ)|ẋ(σ)|dσ +O(τ3/2 ln τ),

where the integral can be computed as if Y11 is a smooth function. That is,

∫ zm

zm−1

µ1∗(σ)

Q1/2(σ)
Y11(sn, σ)dσ

=p1mµ1∗(zm−1)Y11(sn, zm−1) + p2mµ1∗(zm)Y11(sn, zm) + εn,m(τ) (3.7)

with the weights

p1m =
τ
∣

∣ẋ(zm−1)
∣

∣

2Q1/2(zm−1)
, p2m =

τ
∣

∣ẋ(zm−1)
∣

∣

2Q1/2(zm)
, m = 2, · · · ,M − 1. (3.8)

The coefficients (p11, p21), (p1M , p2M ) can be computed again from Lemma 3.1:

p11 =
4

3

√
τ
∣

∣ẋ(z0)
∣

∣

√
b− z0

, p21 =
2

3

√
τ
∣

∣ẋ(z1)
∣

∣

√
b− z1

, (3.9a)

p1M =
2

3

√
τ
∣

∣ẋ(zM−1)
∣

∣

√
zM−1 − a

, p2M =
4

3

√
τ
∣

∣ẋ(zM )
∣

∣

√
zM − a

. (3.9b)

We notice that Y11(sn, zm) for all m = 0, 1, · · · ,M and n = 1, 2, · · · ,M are well-defined due to

sn 6= zm. The truncation error εl,m(τ) in (3.7) is given by

εn,m(τ) =























O(τ3/2 ln τ), n = m = 1, or n = m =M,

O(τ2 ln τ), n = m and n 6= 1,M,

O(τ5/2), m = 1,M and n = 2, · · · ,M − 1,

O(τ3), other cases.

From the expression of Y11, we need to compute

V (x(sn), zm) =k

∫ zm

z0

H
(1)
1

(

k
∣

∣x(sn)− y(ξ)
∣

∣

) (x(sn)− y(ξ)) · ẏ(ξ)⊥
∣

∣x(sn)− y(ξ)
∣

∣

dξ

:=k

∫ zm

z0

F1(sn, ξ)dξ,

for m = 0, · · · ,M and fixed n = 1, · · · ,M . We use the asymptotic

H
(1)
1 (z) = −2i

π

1

z
+

i

πΓ(2)
z ln

z

2
+ constant z − i

4πΓ(3)
z3 ln

z

2
+ · · ·

to compute this integral for sn ∈ (z0, zm−1).
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It follows from the proof of Lemma 2 in [17] that F1(s, ξ) ∈ C2([a, b]2) for Γ ∈ C4. Moreover,

for more smooth Γ, the smoothness of the above function will also be increased. Therefore we

know that F1(sn, ξ) for all ξ is, in fact, a smooth function with removable singularity if ξ = sn.

More precisely, F1(s, ξ) = F̃1(s, ξ) + Constant (s − ξ)2 ln |s − ξ| with F̃1(s, ξ) ∈ C2([a, b]2).

Therefore V (x(sn), zm) can be computed by standard formula with the understanding that
∫ zl

zl−1

F1(sn, ξ)dξ ≈
τ

2

(

F1(sn, zl−1) + F1(sn, zl)
)

, l, n = 1, 2, · · · ,M,

and finally we get V (x(sn), zm).

Step 3. Compute

T3(s) :=
∫

Γ

µ2(σ)Y12(s, σ)dlσ, for s = sn.

The function Y12(s, σ) has the same smoothness as that of F1(s, σ) in the previous step,

since

Y12(s, σ) = − i

2

∂H
(1)
0

(

k
∣

∣x(s) − y(σ)
∣

∣

)

∂n(x)
=
ik

2
H

(1)
1

(

k
∣

∣x(sn)− y(σ)
∣

∣

)

(

x(s)− y(σ)
)

· ẋ(s)⊥
∣

∣x(s)− y(σ)
∣

∣

∣

∣ẋ(s)
∣

∣

,

which means that

Y12(s, σ) = Ỹ12(s, σ) + constant (s− σ)2 ln |s− σ|,

with Ỹ12(s, σ) ∈ C2(Γ× Γ), see again the proof of Lemma 2 in [17].

For the integral T3(s), we use the decomposition

T3(sn) =
M
∑

m=1

∫ zm

zm−1

µ2(σ)Y12(sn, σ)
∣

∣ẋ(σ)
∣

∣dσ,

and the Taylor expansion

µ2(σ)Y12(sn, σ) = µ2(σ)Y12(sn, σ)
∣

∣

∣

σ=sm
+

d

dσ
µ2(σ)Y12(sn, σ)

∣

∣

∣

∣

σ=sm

(σ − sm) + ηn,m(τ)

for σ ∈ [zm−1, zm], where ηn,m(τ) = O(τ2) for n 6= m and ηn,m(τ) = O(τ2 ln τ) for n = m. So

we are led to

T3(sn) = τ

M
∑

m=1

µ2(sm)Y12(sn, sm)
∣

∣ẋ(sm)
∣

∣+O(τ2), n = 1, 2, · · · ,M, (3.10)

noticing that sm is the middle point of [zm−1, zm]. Since Y12(s, σ) is smooth with a removable

singularity at s = σ, we can compute

Y12(sn, sn) ≈
1

2

(

Y12(sn, sn − τ/4) + Y12(sn, sn + τ/4)
)

, n = 1, · · · ,M,

without changing the accuracy of (3.10).

Step 4. Compute

Y [µ2](s) =
(

β2(s)− β1(s)
)

∫ b

a

µ2(σ)
i

4
H

(1)
0

(

k
∣

∣x(s)− y(σ)
∣

∣

)∣

∣ẋ(σ)
∣

∣dσ

:=
(

β2(s)− β1(s)
)

T4(s)
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for s = sn, which is an integral with weak singularity.

Using the singularity expansion of H
(1)
0 (z) at z = 0, it follows that

i

4
H

(1)
0

(

k
∣

∣x(s) − y(σ)
∣

∣

)

= − 1

2π
ln |s− σ|+ ψ

(∣

∣x(s)− y(σ)
∣

∣

)

with

ψ
(∣

∣x(s) − y(σ)
∣

∣

)

:= ψ̃
(∣

∣x(s)− y(σ)
∣

∣

)

+ constant (s− σ)2 ln |s− σ|,
where ψ̃ ∈ C2(Γ×Γ) and we omit the dependence of functions ψ, ψ̃ on k. For the smooth part,

we also have that

∫ b

a

µ2(σ)ψ
(∣

∣x(sn)− y(σ)
∣

∣

)∣

∣ẋ(σ)
∣

∣dσ = τ

M
∑

m=1

µ2(sm)ψ
(∣

∣x(sn)− y(sm)
∣

∣

)∣

∣ẋ(sm)
∣

∣+O(τ2).

Again, since ψ(|x(s)− y(σ)|) is continuous, ψ(|x(sn)− y(sn)|) can be evaluated by

ψ
(∣

∣x(sn)− y(sn)
∣

∣

)

≈ 1

2

(

ψ
(∣

∣x(sn)− y(sn − τ/4)
∣

∣

)

+ ψ
(∣

∣x(sn)− y(sn + τ/4)
∣

∣

)

)

.

For the singular term, we consider that

∫ b

a

µ2(σ) ln |sn − σ|
∣

∣ẋ(σ)
∣

∣dσ =
M
∑

m=1

∫ zm

zm−1

µ2(σ) ln |sn − σ|
∣

∣ẋ(σ)
∣

∣dσ

=τ

M
∑

m=1,m 6=n

µ2(sm)
∣

∣ẋ(sm)
∣

∣ ln |sn − sm|+O(τ2) +

∫ zn

zn−1

µ2(σ)
∣

∣ẋ(σ)
∣

∣ ln |sn − σ|dσ. (3.11)

By using Taylor expansion and the facts
∫ zn

zn−1

ln |σ − sn|dσ = τ
(

ln
τ

2
− 1
)

and

∫ zn

zn−1

(σ − sn) ln |σ − sn|dσ = 0,

the last term in (3.11) can be rewritten as:
∫ zn

zn−1

µ2(σ) ln |sn − σ|
∣

∣ẋ(σ)
∣

∣dσ = τ
(

ln
τ

2
− 1
)

µ2(sn)
∣

∣ẋ(sn)
∣

∣ +O(τ3 ln τ).

Conclusion.

T4(sn) =τ
M
∑

m=1

µ2(sm)
∣

∣ẋ(sm)
∣

∣ψ
(∣

∣x(sn)− y(sm)
∣

∣

)

− τ

2π

(

ln
τ

2
− 1
)

µ2(sn)
∣

∣ẋ(sn)
∣

∣

− τ

2π

M
∑

m=1,m 6=n

µ2(sm)|ẋ(sm)
∣

∣ ln |sn − sm|+O(τ2). (3.12)

Step 5: Compute

T5(sn) = ρ

(

µ1∗
Q1/2

)

(sn) =

∫ sn

a

µ1∗(σ)√
σ − a

√
b− σ

∣

∣ẋ(σ)
∣

∣dσ, for n = 1, · · · ,M.

Since sn < b, only the singularity at σ = a needs to be considered. Use the same decompo-

sition and Lemma 3.1 but approximate d
dσ (µ1∗(σ)|ẋ(σ)|)zn−1 by

d

dσ

(

µ1∗(σ)
∣

∣ẋ(σ)
∣

∣

)

zn−1
=
µ1∗(zn)

∣

∣ẋ(zn)
∣

∣− µ1∗(zn−1)
∣

∣ẋ(zn−1)
∣

∣

τ
+O(τ)
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when considering the integral in [zn−1, sn], we obtain

T5(sn) =
√

τ

2

(

5

3

µ1∗(a)
∣

∣ẋ(a)
∣

∣

√
b− a

+
1

3

µ1∗(z1)
∣

∣ẋ(z1)
∣

∣

√
b− z1

)

+O(τ5/2), n = 1, (3.13a)

T5(sn) =
(

4

3

µ1∗(a)
∣

∣ẋ(a)
∣

∣

√
b− a

+
2

3

µ1∗(z1)
∣

∣ẋ(z1)
∣

∣

√
b− z1

)

√
τ + c12µ1∗(z1)

∣

∣ẋ(z1)
∣

∣

+ c22
µ1∗(z2)

∣

∣ẋ(z2)
∣

∣− µ1∗(z1)
∣

∣ẋ(z1)
∣

∣

τ
+O(τ5/2), n = 2, (3.13b)

and

T5(sn) =
(

4

3

µ1∗(a)
∣

∣ẋ(a)
∣

∣

√
b− a

+
2

3

µ1∗(z1)
∣

∣ẋ(z1)
∣

∣

√
b− z1

)

√
τ + c1nµ1∗(zn−1)

∣

∣ẋ(zn−1)
∣

∣

+

n−1
∑

m=2

τ

2

(

µ1∗(zm−1)|ẋ(zm−1)|√
zm−1 − a

√

b − zm−1

+
µ1∗(zm)

∣

∣ẋ(zm)
∣

∣

√
zm − a

√
b− zm

)

+ c2n
µ1∗(zn)

∣

∣ẋ(zn)
∣

∣ − µ1∗(zn−1)|ẋ(zn−1)|
τ

+O(τ2), n = 3, · · · ,M, (3.13c)

where

c1n =

∫ sn

zn−1

1√
σ − a

√
b− σ

dσ = arcsin
2σ − (b + a)

b− a

∣

∣

∣

∣

sn

zn−1

,

c2n =

∫ sn

zn−1

σ − zn−1√
σ − a

√
b− σ

dσ

=

(

−1

2
(a+ b− 2zn−1) arctan

a+ b− 2σ

2
√
σ − a

√
b− σ

−
√
σ − a

√
b− σ

)

∣

∣

∣

∣

∣

sn

zn−1

.

Step 6: Compute

T6(sn) :=
∫

Γ

µ1∗(σ)

Q1/2(σ)
A21(sn, σ)dlσ.

Since A21 is smooth (see the computation of V (x(s), σ) in step 2), we only need to consider
the singularity at σ = a, b. Using Lemma 3.1, we have

T6(sn) =

(

4

3

µ1∗(z0)|ẋ(z0)|A21(sn, z0)√
b− z0

+
2

3

µ1∗(z1)|ẋ(z1)|A21(sn, z1)√
b− z1

)√
τ

+

M−1
∑

m=2

τ

2

(

µ1∗(zm−1)|ẋ(zm−1)|A21(sn, zm−1)√
zm−1 − a

√
b− zm−1

+
µ1∗(zm)|ẋ(zm)|A21(sn, zm)√

zm − a
√
b− zm

)

+

(

2

3

µ1∗(zM−1)|ẋ(zM−1)|A21(sn, zM−1)√
zM−1 − a

+
4

3

µ1∗(zM )|ẋ(zM )|A21(sn, zM )√
zM − a

)√
τ +O(τ 2).

Step 7: Compute

T7(sn) :=
∫

Γ

µ2(σ)A
+
22(s, σ)dlσ.

This computation is completely the same as that in Step 4 for Y [µ2](s). That is,

T7(sn) =
(

β2(sn) + β1(sn)
)

T4(sn).
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Step 8. Compute

T8 :=

∫ b

a

µ1∗(σ)

Q1/2(σ)

∣

∣ẋ(σ)
∣

∣dσ

in Eq. (2.15). Using Lemma 3.1 and taking F (σ) = µ1∗(σ)|ẋ(σ)|, we are led to

T8 =

(

4

3

µ1∗(z0)|ẋ(z0)|√
b− z0

+
2

3

µ1∗(z1)|ẋ(z1)|√
b− z1

)√
τ

+

(

2

3

µ1∗(zM−1)|ẋ(zM−1)|√
zM−1 − a

+
4

3

µ1∗(zM )|ẋ(zM )|√
zM − a

)√
τ

+

M−1
∑

j=2

τ

2

(

µ1∗(zj−1)|ẋ(zj−1)|√
zj−1 − a

√

b− zj−1

+
µ1∗(zj)|ẋ(zj)|√
zj − a

√

b − zj

)

+O(τ2). (3.14)

Step 9. Compute
∂V0(x(sm),zj)

∂n(x) . Using the decomposition (2.16), we have that

∂V0
(

x(sm), zj
)

∂n(x)
=

∫ zj

z0

(

i

π
k2 ln |sm − ξ|+ g(sm, ξ)

)

∣

∣ẏ(ξ)
∣

∣dξ.

Therefore we can compute ∂V0(x(sm),z0)
∂n(x) = 0 and

∂V0
(

x(sm), zj
)

∂n(x)
=

j
∑

l=1

∫ zl

zl−1

(

i

π
k2 ln |sm − ξ|+ g(sm, ξ)

)

|ẏ(ξ)|dξ

=

j
∑

l=1,l 6=m

∫ zl

zl−1

(

i

π
k2 ln |sm − ξ|+ g(sm, ξ)

)

∣

∣ẏ(ξ)
∣

∣dξ

+

∫ zm

zm−1

g(sm, ξ)|ẏ(ξ)|dξ +
i

π
k2τ

(

ln
τ

2
− 1
)

∣

∣ẏ(sm)
∣

∣

for j = 1, · · · ,M and m ≤ j. For m > j, it follows that

∂V0
(

x(sm), zj
)

∂n(x)
=

j
∑

l=1

∫ zl

zl−1

(

i

π
k2 ln |sm − ξ|+ g(sm, ξ)

)

∣

∣ẏ(ξ)
∣

∣dξ.

Using all the above expressions, we can solve the linear algebra equations. The convergence

rate of the solution could be tested by doubling the mesh number M , which will be shown in

the following section.

Remark 3.1. Generally, the coefficient matrix obtained from these schemes has no special

structure and therefore will lead to a large scale computing problems with fine meshes even

if in two dimensional case. A possible scheme to overcome this difficulty may be the matrix

contraction technique, which represents the general matrix approximately by some sparse matrix

using some base function expansion, for example see [7, 8].

4. Determination of the Scattered Wave by the Density Function

Using the scattered wave representation given in the previous section, we know that the

scattered wave outside Γ can be computed from

u(x) = v[µ1](x) + w[µ2](x), x ∈ R
2 \ Γ, (4.1)
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where the angular potential

v[µ1](x) :=
i

4

∫

Γ

µ1(σ)V (x, σ)dlσ , (4.2)

and the single layer potential

w[µ2](x) :=
i

4

∫

Γ

µ2(σ)H
(1)
0 (k|x− y(σ)|)dlσ . (4.3)

Although (4.2) can also be expressed by a double layer potential with respect to ρ[µ1](x)

due to (2.4), such an expression has more strong singularity near Γ compared with the angular

potential. So we use (4.2) near Γ directly.

Assuming that the point x is situated far away from Γ and using the asymptotic behavior

of the Hankel function at infinity, we obtain

w[µ2](x) =
eik|x|
√

|x|

(

eiπ/4√
8πk

∫

Γ

µ2(σ)e
−ikx̂·y(σ)dlσ +O

(

1

|x|

))

and

v[µ1](x) =
ik

4

∫

Γ

ρ[µ1](σ)H
(1)
1

(

k
∣

∣x− y(σ)
∣

∣

)

(

y(σ)− x
)

· ẏ(σ)⊥
∣

∣x− y(σ)
∣

∣

∣

∣ẏ(σ)
∣

∣

dlσ

=
eik|x|
√

|x|

(

e−i(π
4 +π

2 )−ik
4

√

2

πk

∫

Γ

ρ[µ1](σ)
x̂ · ẏ(σ)⊥
|ẏ(σ)| e−ikx̂·y(σ)dlσ +O

(

1

|x|

)

)

as |x| → ∞. Notice that when we derived the asymptotic formula for the angular potential we

used (2.4). Therefore it follows from these asymptotic and the definition of far-field pattern

that the far-field of u(x) is

u∞(x̂) =
eiπ/4√
8πk

∫

Γ

(

µ2(σ) + ikρ[µ1](σ)
x̂ · ẏ(σ)⊥
|ẏ(σ)|

)

e−ikx̂·y(σ)dlσ, x̂ =
x

|x| . (4.4)

Hence the direct scattering problem for an arc can be solved by (4.1)-(4.4) with x ∈ R
2 \Γ.

We set W to be a closed smooth curve which contains Γ in its interior part. Denote by
W = {x : x = w(t) : t ∈ [0, 2π]} the parametrization of W , where we want to determine the
scattered wave u(x). Assume that W is subdivided by w(tj) for j = 0, 1, · · · , 2M − 1. Since
the integrands are smooth due to w(tj) 6∈ Γ, it follows from (4.1)-(4.3) that

u
(

w(tj)
)

=
i

4

M
∑

l=l

∫ zl

zl−1

(

µ1(σ)V
(

w(tj), σ
)

+ µ2(σ)H
(1)
0

(

k
∣

∣w(tj)− y(σ)
∣

∣

)

)

∣

∣ẏ(σ)
∣

∣dσ

=
i

4

M
∑

l=l

∫ zl

zl−1

µ1∗(σ)

Q1/2(σ)
V
(

w(tj), σ
)
∣

∣ẏ(σ)
∣

∣dσ +
i

4

M
∑

l=l

∫ zl

zl−1

µ2(σ)H
(1)
0

(

k
∣

∣w(tj)− y(σ)
∣

∣

)
∣

∣ẏ(σ)
∣

∣dσ. (4.5)

For the second term, it can be computed by

M
∑

l=l

∫ zl

zl−1

µ2(σ)H
(1)
0 (k|w(tj)− y(σ)|)|ẏ(σ)|dσ ≈ τ

M
∑

l=1

µ2(sl)H
(1)
0 (k|w(tj)− x(sl)|)|ẋ(sl)|, (4.6)
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since the integrands are smooth for w(tj) ∈ W . For the first integral, the weak singularity

appears in σ = z(0) = a, σ = z(M) = b, which can be computed using Lemma 3.1, i.e.,

M
∑

l=l

∫ zl

zl−1

µ1∗(σ)

Q1/2(σ)
V (w(tj), σ)|ẏ(σ)|dσ ≈

∫ z1

z0

+

∫ zM

zM−1

+
M−1
∑

l=2

∫ zl

zl−1

≈4|ẋ(z0)|
3
√
M

µ1∗(z0)V (w(tj), z0) +
2|ẋ(z1)|
3
√
M − 1

µ1∗(z1)V (w(tj), z1)

+
2|ẋ(zM−1)|
3
√
M − 1

µ1∗(zM−1)V (w(tj), zM−1) +
4|ẋ(zM )|
3
√
M

µ1∗(zM )V (w(tj), zM )

+

M−1
∑

l=2

τ

2

( |ẋ(zl−1)|
Q1/2(zl−1)

µ1∗(zl−1)V (w(tj), zl−1) +
|ẋ(zl)|
Q1/2(zl)

µ1∗(zl)V (w(tj), zl)

)

(4.7)

with V (w(tj), z0) = 0. Therefore the scattered wave can be computed from (4.5) to (4.7).

As for the far-field pattern of the scattered wave, its discrete form for computation is

u∞Num(x̂) ≈ eiπ/4τ√
8πk

M
∑

l=1

(

µ2(sl)|ẏ(sl)|+ ik

∫ sl

a

µ1∗(ξ)|ẋ(ξ)|
Q1/2(ξ)

dξ x̂ · ẏ(sl)⊥
)

e−ikx̂·y(sl) (4.8)

from (4.4). Again, the integral
∫ sl
a

µ1∗(ξ)|ẋ(ξ)|
Q1/2(ξ)

dξ has weak singularity at ξ = a for l = 1, · · · ,M ,

which can be computed by previous way. That is,

∫ sl

a

f(ξ)√
ξ − a

dξ ≈



















(

5

3
f(z0) +

1

3
f(z1)

)
√

τ

2
, l = 1,

∫ s1

a

+
l−1
∑

j=1

∫ zj+
τ
2

zj−
τ
2

=

(

5

3
f(z0) +

1

3
f(z1)

)√

τ

2
+

l−1
∑

j=1

f(zj)√
zj − a

τ, l = 2, · · · ,M.

Now we construct a model problem to test our numerical scheme for arc scattering. Since it is

very difficult to give an exact solution to this problem with analytic expression, we construct

this model with known scattered wave numerically. To this end, the single layer potential is

applied.

We construct u(x) by

u(x) :=
i

4

∫

Γ

F (σ)H
(1)
0 (k|x − y(σ)|)dlσ (4.9)

for specified density function F (σ) ∈ C2[a, b] satisfying F (x(a)) = F (x(b)) = 0. Then it can be

proven that for Γ ∈ C4 and β1, β2 smooth enough, this function generates f1, f2 from

f1(σ) :=

(

∂u

∂n(x)
+ β1u

)∣

∣

∣

∣

Γ+

, f2(σ) :=

(

∂u

∂n(x)
− β2u

)∣

∣

∣

∣

Γ−

, (4.10)

which satisfy the regularity required to apply our numerical method to integral equations (2.14),

(2.15). Using (f1, f2), we can solve (µ1∗, µ2) from the system in Section 3. Then the numerical

result for scattered wave obtained by our scheme is generated from (4.5). Finally we can check

the numerical performance by comparing u(w(tj)) obtained in (4.5) with u(w(tj)) computed

by (4.9).
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To simulate f1, f2 from (4.10), we also need to compute the limits of single layer potential as
well as normal derivative. This can be done by the standard theory of potential, which yields

f1(s) =
1

2
F (s) +

i

4

∫

Γ

F (σ)
∂H

(1)
0 (k|x(s)− y(σ)|)

∂n(x)
dlσ + β1(s)

i

4

∫

Γ

F (σ)H
(1)
0 (k|x(s)− y(σ)|)dlσ,

f2(s) = −1

2
F (s) +

i

4

∫

Γ

F (σ)
∂H

(1)
0 (k|x(s)− y(σ)|)

∂n(x)
dlσ − β2(s)

i

4

∫

Γ

F (σ)H
(1)
0 (k|x(s)− y(σ)|)dlσ.

The weakly singular integral can be computed by the schemes given in last section. Notice, to

avoid the so-called ”inversion crime”, here we apply a different discretization scheme to generate

the synthetic data (f1(s), f2(s)) from that used for testing our proposed method, i.e., here we

use finer meshes to simulate (f1, f2).

We present the model problems as follows.

Example 1. We take the wave number as k = 1.2 and the arc as

Γ =
{

x : x =
(

x1(s), x2(s)
)

= 1.4× (cos s, sin s), s ∈ [0, π/3]
}

.

The complex impedance on the both sides of Γ is chosen as

β1(s) := x2(s)− i
(

x1(s) + x2(s)
)2
, β2(s) := −x1(s)− i

(

x1(s)− x2(s)
)2
.

We choose

W :=
{

w := w(t) =
(

w1(t), w2(t)
)

= 6× (cos t, sin t) : t ∈ [0, 2π]
}

,

as the points where we compute the scattered wave.

We generate the exact solution by (4.9) with complex density function

F (s) = (s− a)(b− s)
(

x1(s) + 1 + ix2(s)
)

. (4.11)

Divide the arc Γ by M to solve the density function (µ1∗(s), µ2(s)) using the boundary

values f1, f2 simulated above.

The numerics for some special points in W with different M is listed in Table 4.1. The

results are very satisfactory, where (E) stands for the exact value, while (N) is the numerically

computed values. The exact scattered wave is computed from (4.9) and (4.11), while the

numerical results are generated by our scheme. It can be seen that the computation of the

scattered wave at the points not near to Γ is very good.

Now let us check the convergence order of our numerical scheme. Since the exact wave

can be computed from (4.9), the convergence order r satisfying ‖uMnum − uexa‖ = O(τr) with

h = (b− a)/M can be computed roughly by

r ≈ 1

ln 2
ln

‖uMnum − uexa‖
‖u2Mnum − uexa‖

,

where the norm is defined by

err(M) := ‖uMnum − uexa‖L2 =





π

LL

2×LL−1
∑

j=0

|u[µM
1 , µ

M
2 ](w(tj))− u(w(tj))|2|ẇ(tj)|





1/2

to check the convergence order. Here we fixed LL = 64. When we compute the density functions

for different M , this index r represents the convergence order of the numerical scheme for
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computing the scattered wave. The results are shown in Table 4.2. Combining Table 4.1 and

Table 4.2 together, we can conclude that the numerical scheme is of 2-order convergence with

a satisfactory performance. On the other hand, we also observed that, if we use the pointwise

errors to replace the average errors in Table 4.2, then the errors decrease at most of the points

as M increases.

Table 4.1: Numerics for scattered wave at some points w(t) with different M .

t M = 32 M = 128 M = 256

0(E) (3.8747E-2,2.7374E-2) (3.8771E-2,2.7394E-2) (3.8772E-2,2.7395E-2)

0(N) (3.8785E-2,2.7406E-2) (3.8773E-2,2.7396E-2) (3.8773E-2,2.7396E-2)
π
2
(E) (1.1194E-2,4.5476E-2) (1.1200E-2,4.5513E-2) (1.1201E-2,4.5515E-2)

π
2
(N) (1.1204E-2,4.5536E-2) (1.1201E-2,4.5517E-2) (1.1201E-2,4.5516E-2)

π(E) (-3.9688E-2,-1.2951E-2) (-3.9725E-2,-1.2958E-2) (-3.9727E-2,-1.2958E-2)

π(N) (-3.9747E-2,-1.2962E-2) (-3.9729E-2,-1.2959E-2) (-3.9728E-2,-1.2958E-2)
3π
2
(E) (-3.8235E-2,8.6009E-3) (-3.8256E-2,8.6108E-3) (-3.8257E-2,8.6113E-3)

3π
2
(N) (-3.8268E-2,8.6168E-3) (-3.8258E-2,8.6118E-3) (-3.8257E-2,8.6116E-3)

Table 4.2: Convergence order for computed scattered wave in W .

M err(M) r

4 2.1334158E-02 –

8 5.2914051E-03 2.0114

16 1.3202773E-03 2.0028

32 3.2991258E-04 2.0007

64 8.2455888E-05 2.0004

128 2.0614320E-05 2.0000

256 5.1686525E-06 1.9958

The far-field can also be checked by comparing (4.8) with the exact value

u∞Exact(x̂) ≈
eiπ/4τ√
8πk

M
∑

l=1

F (sl)e
−ikx̂·y(sl)|ẏ(sl)|, (4.12)

noticing that F (σ) is smooth and µ2(σ) is given in σ = sj . For M = 64 and LL = 64, the

behavior of exact far-field pattern and the error distribution for the computation of the far-field

pattern is shown in Figs. 4.1 and 4.2, respectively.

Next, we will check the numerics of the scheme for computing the scattered wave near the

arc, especially near the tips of the arc.

Example 2. We compute the scattered wave in two parallel surfaces of Γ defined by

W± = {x : x = x0 ∓ n(x0)δ, x0 ∈ Γ}

with the distance δ > 0, where n(x0) is the normal direction of Γ defined previously, see Fig. 4.3.

Notice,M is the number for determining the density functions (µ1, µ2) in Γ, while LL determines

the number of points where we compute the scattered wave. So we fix LL = 64,M = 64 and

consider the numerics for different δ > 0.

The results for M = 64 with δ = 0.0001 in W± are shown in Figs. 4.4 and 4.5. It can be

seen that the approximation is satisfactory even if for points near to the tips of Γ. Also the

continuity of the scattered wave outside Γ is obvious.
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Fig. 4.1. Far-field distribution of real part and imaginary part.
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Fig. 4.2. Error distribution of real part and imaginary part.

To give a quantitative descriptions of the computing scheme near the arc tips, we list the

difference |unum(w+(t(j))) − uexa(w
+(t(j)))| at four points which are near to the two tips of

arc. It can be seen from Table 4.3 that the error indeed becomes large for points approaching

to the tips of arc.

Table 4.3 Error of scattered waves in W+ near to tips for different δ.

t(j) δ=1E-3 δ=1E-4 δ=1E-5

t(1)=4.9067E-2 8.2079E-4 1.8052E-3 2.7908E-3

t(2)=9.8175E-2 1.6014E-3 3.4709E-3 5.3479E-3

t(21)=1.0308 2.0591E-4 4.9947E-4 7.9552E-4

t(22)=1.0780 6.1567E-5 6.1473E-5 6.1569E-5

For the scattering problem of a crack with general shape, it is very difficult to construct the

exact solution with analytic expression. So the previous two examples check the performance of

the angular potential methods by constructing the exact solution numerically. It is worthwhile

to point out that the classical potential methods for computing the scattered wave of an obstacle

will generate the exponential convergence using Nyström scheme. However, we can not get such

a nice performance here, due to the angular potential and the tip effects of the arc. A possible

way to improve the convergence may be the computation of integrals with high accuracy and

acceleration technique, rather than the direct quadrature formulas.
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Now let us consider a straight line segment as the crack with an incident plane wave for

which the exact solution can be expressed by the Mathieu functions analytically. For general

incident wave, using the superposition principle, the solution for the straight line segment crack

can also be constructed theoretically, see [29].

Γ 

W+ 

W− 

n(x
0
) 

δ 

x
1
 

x
2
 

π/3 

O 

Fig. 4.3. Compute the scattered wave in W± for small δ > 0.
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Fig. 4.4. Compute the scattered wave in W− for δ = 0.0001.
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Fig. 4.5. Compute the scattered wave in W+ for δ = 0.0001.
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Example 3. Take Γ = {(x1, 0) : −h ≤ x1 ≤ h} ⊂ R
2. Consider the following boundary value

problem










∆u + k2u = 0, x = (x1, x2) ∈ R
2 \ Γ,

∂u
∂n = −ik sin θ exp(ikx1 cos θ), x = (x1, 0) ∈ Γ,
∂u
∂|x| − iku = O

(

1√
|x|

)

, |x| → +∞,
(4.13)

where n is directed into x2 > 0 and θ ∈ [0, 2π) is a given angle. This model can be considered to

compute the scattered wave for incident plane wave ui(x) = eik(x1 cos θ+x2 sin θ) with Neumann

boundary condition ∂(us+ui)
∂n |Γ = 0. Such a configuration is our standard problem (2.2) with

β1 ≡ β2 ≡ 0, f1(x) = f2(x) = −ik sin θ exp(ikx1 cos θ).

Using the standard separation of variable method, the exact solution can be given by

u(x, y) = −2k̃

∞
∑

n=0

(

iB
(2n+1)
1

Ne
(1)
2n+1(ξ)se2n+1(η)se2n+1(θ)

se2n+1(π/2)(Ne
(1)
2n+1)

′(0)
+

k̃B
(2n+2)
2

Ne
(1)
2n+2(ξ)se2n+2(η)se2n+2(θ)

se′2n+2(π/2)(Ne
(1)
2n+2)

′(0)

)

, (4.14)

where k̃ := kh
2 , (ξ, η) ∈ R

2 are the elliptic coordinates satisfying x1 + ix2 = hch(ξ+ iη), sem(z)

are the odd periodic Mathieu functions corresponding to q = k̃2 and B
(n)
m are the Fourier

coefficients for sen(z)

se2n+1(z) =

∞
∑

m=0

B
(2n+1)
2m+1 sin

(

(2m+ 1)z
)

, (4.15a)

se2n+2(z) =

∞
∑

m=0

B
(2n+2)
2m+2 sin

(

(2m+ 2)
)

, (4.15b)

with the coefficients given by

B
(2n+1)
2m+1 =

1

π

∫ 2π

0

sin
(

(2m+ 1)z
)

se2n+1(z)dz,

B
(2n+2)
2m+2 =

2

π

∫ π

0

sin
(

(2m+ 2)z
)

se2n+2(z)dz.

Ne
(1)
m (z) are the modified Mathieu functions given by the formulas

Ne
(1)
2n+1(z) =

s2n+1

B
(2n+1)
1

∞
∑

r=0

(−1)rB
(2n+1)
2r+1

(

Jr(k̃e
−z)H

(1)
r+1(k̃e

z)− Jr+1(k̃e
−z)H(1)

r (k̃ez)
)

,

Ne
(1)
2n+2(z) = − s2n+2

B
(2n+2)
2

∞
∑

r=0

(−1)rB
(2n+2)
2r+2

(

Jr(k̃e
−z)H

(1)
r+2(k̃e

z)− Jr+2(k̃e
−z)H(1)

r (k̃ez)
)

,

where Jr, H
(1)
r are the Bessel functions and Hankel the functions, respectively, and

s2n+1 =
se′2n+1(0)se2n+1(π/2)

k̃B
(2n+1)
1

, s2n+2 =
se′2n+2(0)se

′
2n+2(π/2)

qB
(2n+2)
2

.
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All the values se′r(0), se2n+1(π/2), se
′
2n+2(π/2), ser(θ), ser(π/2), (Ne

(1)
r )′(0) can be computed

by the series expression and the limit process. Especially,

(Ne
(1)
2n+1)

′(0) =
s2n+1

B
(2n+1)
1

∞
∑

r=0

(−1)rB
(2n+1)
2r+1

(

H
(1)
r+1(k̃)(2k̃Jr+1(k̃)− (2r + 1)Jr(k̃))

+H(1)
r (k̃)[2k̃Jr(k̃)− (2r + 1)Jr+1(k̃)]

)

,

(Ne
(1)
2n+2)

′(0) =− s2n+2

B
(2n+2)
2

∞
∑

r=0

(−1)rB
(2n+2)
2r+2

(

H
(1)
r+2(k̃)(k̃Jr+1(k̃)− 2(r + 1)Jr(k̃))

+ k̃H
(1)
r+1(k̃)(Jr(k̃) + Jr+2(k̃)) +H(1)

r (k̃)(k̃Jr+1(k̃)− 2(r + 1)Jr+2(k̃))
)

.

Using the above formulas, we can compute the exact solution of (4.13) from the ana-

lytic expression (4.14) and then compare the values of u at specified points w(tj) with those

obtained by our angular potential formulas (4.5)-(4.7), where the crack is represented by

Γ = {(x1(s), x2(s)) := (−s, 0), s ∈ [−h, h]} in terms of our parametrization rule. In this

way, the proposed numerical scheme by angular potential method can be checked.

In our model configuration, we compute the scattered wave in two circles Wi := {wi(t) :=

Ri × (cos t, sin t), t ∈ [0, 2π]} for R1 = 6 and R2 = 1.5. We choose h = 1 for the crack and the

wave number k = 2. The incident wave is specified for θ = π
3 .

In numerical computations, we take M = 128 in dividing the crack and truncate the series

(4.14) by taking finite summation
∑24

n=0. The circle Wi := {(x1, x2) := Ri × (cos t, sin t), t ∈
[0, 2π]} for i = 1, 2 is divided as 128 small intervals by taking tj = jπ

64 with j = 0, 1, · · · , 127.
The numerical results at some fixed points for the two circles are shown in Table 4.4 and Table

4.5 respectively, while the numerical performance at all points ofW1 is given in Fig. 4.6. Notice,

Table 4.3: Numerics for scattered wave at some points of w1(t).

t LL = 64 t LL = 64

0(E) (0.0000,0.0000) π(E) (0.0000,0.0000)

0(N) (-4.6059E-4,5.2675E-4) π(N) (-1.9588E-5,-7.4426E-4)
π
4
(E) (7.4315E-2,2.9595E-1) 5π

4
(E) (8.1101E-2,-1.9170E-1)

π
4
(N) (7.4742E-2,2.9649E-1) 5π

4
(N) (8.2712E-2,-1.9199E-1)

π
2
(E) (-4.2074E-2,4.2547E-1) 3π

2
(E) (4.2074E-2,-4.2547E-1)

π
2
(N) (-4.2105E-2,4.2509E-1) 3π

2
(N) (4.3439E-2,-4.2465E-1)

3π
4
(E) (-8.1101E-2,1.9170E-1) 7π

4
(E) (-7.4315E-2,-2.9595E-1)

3π
4
(N) (-8.1836E-2,1.9071E-1) 7π

4
(N) (-7.4994E-2,-2.9523E-1)

Table 4.4: Numerics for scattered wave at some points of w2(t).

t LL = 64 t LL = 64

0(E) (0.0000,0.0000) π(E) (0.0000,0.0000)

0(N) (1.1073E-3,-4.5770E-4) π(N) (-6.0305E-4,2.1115E-3)
π
4
(E) (2.2133E-1,-6.9980E-1) 5π

4
(E) (-2.5228E-1,2.9074E-1)

π
4
(N) (2.2177E-1,-7.0146E-1) 5π

4
(N) (-2.5553E-1,2.8865E-3)

π
2
(E) (5.2267E-1,-6.1922E-1) 3π

2
(E) (-5.2267E-1,6.1922E-1)

π
2
(N) (5.2236E-1,-6.1873E-1) 3π

2
(N) (-5.2344E-1,6.1639E-1)

3π
4
(E) (2.5228E-1,-2.9074E-1) 7π

4
(E) (-2.2133E-1,6.9980E-1)

3π
4
(N) (2.5213E-1,-2.8792E-1) 7π

4
(N) (-2.2027E-1,6.9991E-1)
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Fig. 4.6. Exact and computed scattered wave in W1 for straight line segment crack.

the reconstructions for both real part and imaginary part are so well that we cannot distinguish

the numerical solution from the exact one in Fig. 4.6.

From the above three numerical models, we can conclude that the potential method for

computing the scattered wave by an open arc is efficient and almost accurate.
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