
Journal of Computational Mathematics

Vol.29, No.2, 2011, 215–226.

http://www.global-sci.org/jcm

doi:10.4208/jcm.1009-m3246

A NOTE ON THE NONCONFORMING FINITE ELEMENTS FOR
ELLIPTIC PROBLEMS*

Boran Gao

School of Mathematical Sciences, Peking University, Beijing 100871, China

Email: ggggbr@163.com

Shuo Zhang

ICMSEC, AMSS, Chinese Academy of Science, Beijing 100190, PR China

Email: szhang@lsec.cc.ac.cn

Ming Wang

LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China

Email: mwang@math.pku.edu.cn

Abstract

In this paper, a class of rectangular finite elements for 2m-th-oder elliptic boundary

value problems in n-dimension (m,n ≥ 1) is proposed in a canonical fashion, which includes

the (2m−1)-th Hermite interpolation element (n = 1), the n-linear finite element (m = 1)

and the Adini element (m = 2). A nonconforming triangular finite element for the plate

bending problem, with convergent order O(h2), is also proposed.

Mathematics subject classification: 65N30.
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1. Introduction

When the conforming finite element is used for numerically discretizing the elliptic problem,

the convergence of the numerical solution to the exact solution depends on the approximation

of the finite element space only. But the strong continuity requirement makes it difficult to

construct such a conforming finite element. The idea of nonconforming finite element lies in

that such difficulty can be overcome by loosing the request on the continuity. However, the

loss of continuity will bring in the so-called consistent error, and some fundamental continuity

of the finite element space is still necessary for well-posedness and convergence. This is the

reason that most of the finite elements, conforming or nonconforming, were constructed case

by case, depending on the order of the problem and sometimes the dimensions (cf. [1–3, 5, 7,

8, 12, 14, 15, 17]). A unified approach of constructing finite elements for general problems is

still of theoretical and practical interest. Recently, a class of finite elements was discussed in a

canonical fashion in [16], for all n-dimensional 2m-th-order elliptic problem with n ≥ m ≥ 1.

The well-known nonconforming linear element for the second-order problem and the Morley

element for fourth-order problem are examples of this class. The class of finite elements is

established on simplices, and makes use of the piecewise polynomials of the lowest degree.

The nodal parameters are the natural ones to guarantee the fundamental continuity, and the

consistency error can be controlled simultaneously.
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In this paper, we will discuss the choice of nodal parameters that can be used to construct

nonconforming finite elements, with admissible consistency error. We will first propose a class

of rectangular finite elements for n-dimensional 2m-th-oder problems (m,n ≥ 1) in a canonical

fashion. The degrees of freedom are the values of function and all derivatives up to (m − 1)-

th-oder at all vertices of n-rectangle. The basic fundamental continuity is guaranteed and an

O(h) convergence rate is shown. The (2m − 1)-th Hermite interpolation element (n = 1), the

n-linear finite element (m = 1) and the Adini element (m = 2) all belong to this class.

As almost all of the nonconforming finite elements are convergent in energy norm with order

O(h), and the consistency error is the main limit, we will discuss the possibility of improving the

convergence rate by strengthening the continuity of the finite element space. We choose the plate

bending problem as an example. There have been successful attempts via other approaches,

like conforming finite element, quasi-conforming finite elements (cf. [4,6,11]) and the double set

parameter element (cf. [9]). But most nonconforming element for the plate bending problem,

such as the Morley element [8], two Veubake elements [12], the NZT element [14], the rectangle

Morley element (cf. [15]) and the Adini element (cf. [1]), are convergent with order O(h). In

this work, a new nonconforming plate element will be given, with a convergence rate of O(h2)

in energy norm.

Finally, based on the new plate element, a new Zienkiewicz-type element will be deduced

and reported for comparison. The new Zienkiewicz-type element is convergent for the plate

bending problem with order O(h). Its consistent error is of order O(h2) which is better than

the two dimensional Zienkiewicz-type element proposed in [14]. In fact, the phenomenon that

the consistency error can perform better than the approximation error has seldom been reported

in literatures.

The paper is organized as follows. The rest of this section gives some basic notations.

Section 2 gives the description of the class of rectangular finite elements. Section 3 gives the

description of the new plate elements. Section 4 shows their convergence. Section 5 gives some

numerical results for the new plate element.

Let n be a positive integer. Given a nonnegative integer k and a bounded domain G ⊂ Rn

with boundary ∂G, let Hk(G), Hk
0 (G), ‖ · ‖k,G and | · |k,G denote the usual Sobolev spaces,

norm and semi-norm respectively. Let (·, ·) denote the inner product of L2(Ω).

We will use α, β, γ to denote n dimensional multi-indexes. Define

∂α =
∂|α|

∂xα1

1 · · · ∂xαn
n
, |α| = α1 + · · ·+ αn.

A finite element can be represented by a triple (T, PT , DT ) with T the geometric shape,

PT the shape function space and DT the vector of degrees of freedom, provided that DT is

PT -unisolvent (see [5]).

Let Ω be a bounded polyhedron domain of Rn. For mesh size h with h → 0, let Th be

a partition of Ω corresponding to a finite element (T, PT , DT ), and let Vh, Vh0 be the finite

element spaces corresponding to the element and Th. Throughout this paper, we assume that

{Th} is shape regular.

For a subset B ⊂ Rn and a nonnegative integer r, let Pr(B) be the space of all polynomials

defined on B with degree not greater than r, and Qr(B) the space of all polynomials with

degree in each variable not greater than r.
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2. A Class of Rectangular Finite Elements

Let m be a positive integer. This section is devoted to the rectangular finite element for the

2m-th-oder elliptic boundary value problem in n-dimension.

Let T be an n-rectangle with each edge parallel to some coordinate axis respectively. Then

there exist n positive numbers h1, h2, · · · , hn, such that,

T =
{

x = (x1, x2, · · · , xn)
T
∣

∣

∣
xi = x0i + ξihi,−1 ≤ ξi ≤ 1, 1 ≤ i ≤ n

}

, (2.1)

where x0 is the center point of T . Define

ξi =
1

hi
(xi − x0i ), 1 ≤ i ≤ n, (2.2)

and set ξ = (ξ1, ξ2, · · · , ξn)
T. Denote 2n vertices of T by aj , 1 ≤ j ≤ 2n, and (ξ1, ξ2, · · · , ξn)

T

corresponding to aj by Ξj = (ξ1j , ξ2j , · · · , ξnj)
T.

For ξ = (ξ1, ξ2, · · · , ξn)
T and multi-index α = (α1, α2, · · · , αn), define

ξα =
n
∏

i=1

ξαi

i , α! =
n
∏

i=1

αi!.

Set

ϕj =
1

2n

n
∏

i=1

(1 + ξijξi), 1 ≤ j ≤ 2n, (2.3)

PT,m = span
{

ϕjξ
2α

∣

∣

∣
1 ≤ j ≤ 2n, |α| < m

}

. (2.4)

Then ϕj , 1 ≤ j ≤ 2n, form a basis of Q1(T ), and

PT,m = span
{

p ξ2α
∣

∣

∣
p ∈ Q1(T ), |α| < m

}

. (2.5)

The rectangular finite element of order m is defined by the triple (T, PT , DT ) as follows,

1. T is the n-rectangle described by (2.1);

2. PT = PT,m;

3. the components of DT (v) for any v ∈ Cm−1(T ) are

∂αv(aj), |α| < m, 1 ≤ j ≤ 2n.

Lemma 2.1. For the rectangular finite element of order m, DT is PT -unisolvent and P2m−1(T )

⊂ PT .

Proof. It is obvious that the dimensions of DT and PT are all 2nCm−1
n+m−1. For 1 ≤ j ≤ 2n,

set

ϕj,α =
Ξα
j

α!2|α|
(ξ21 − 1)α1(ξ22 − 1)α2 · · · (ξ2n − 1)αnϕj , |α| < m. (2.6)
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Write the partial derivative with respect to ξ as

∂αξ =
∂|α|

∂ξα1

1 · · · ∂ξαn
n
.

It can be verified that

∂
β
ξ ϕj,α(ak) =

{

1, β = α and j = k,

0, otherwise,
1 ≤ j, k ≤ 2n, |β| ≤ |α| < m. (2.7)

Define

ψj,α = ϕj,α (2.8)

when |α| = m− 1, and

ψj,α = ϕj,α −
2n
∑

k=1

m−1
∑

|β|=|α|+1

∂
β
ξ ϕj,α(ak)ψk,β (2.9)

when |α| < m− 1. Then

∂
β
ξ ψj,α(ak) =

{

1, β = α and j = k,

0, otherwise,
1 ≤ j, k ≤ 2n, |α|, |β| < m. (2.10)

Therefore, hα1

1 · · ·hαn
n ψj,α (1 ≤ j ≤ 2n, |α| < m) are the basis functions corresponding to the

degrees of freedom since ∂αξ = hα1

1 · · ·hαn
n ∂α. Thus, we obtain that DT is PT -unisolvent.

Now we show that P2m−1(T ) ⊂ PT,m. Let p ∈ P2m−1(T ), then p can be written as

p =
∑

|α|≤2m−1

Cαx
α,

with Cα constants. For term Cαx
α with |α| ≤ 2m− 1, define β and γ by

βi =











αi

2
, αi is even,

αi − 1

2
, αi is odd,

γi =

{

0, αi is even,

1, αi is odd,
1 ≤ i ≤ n.

Then α = 2β + γ, so that Cαx
α = Cαx

γx2β ∈ PT,m by (2.5) and the fact that xγ ∈ Q1(T ) and

|β| < m. Consequently, p ∈ PT,m. �

For the rectangular finite element of order m, the corresponding finite element spaces Vh
and Vh0 are defined as follows. Vh = {v ∈ L2(Ω) | v|T ∈ PT,m, ∀T ∈ Th, ∂

αv, |α| < m, are

continuous at all vertices of elements in Th}. Vh0 = {v ∈ Vh | ∂αv, |α| < m, vanish at all

vertices of elements in Th which are belonging to ∂Ω }.

Remark 2.1. The rectangular finite element of order m is just the (2m− 1)-th-oder Hermite

interpolation element when n = 1, the n-linear finite element when m = 1 and the Adini

element when m = 2. For the 2m-th-oder problems, the rectangular finite element of order

m is conforming when m = 1 or n = 1, otherwise it is nonconforming. The rectangular finite

element of order m can be viewed as the natural and reasonable generalizations of the one

dimensional (2m − 1)-th-oder Hermite interpolation element to higher dimensions or the n-

linear finite element to higher order problems. This generalization shows that the conforming

elements and the nonconforming elements are in same category.
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Now let ΠT,m be the corresponding interpolation operator to the rectangular finite element

of order m.

Lemma 2.2. For the rectangular finite element of order m,

∫

T

∂

∂xi

(

∂βp−ΠT,1∂
βp

)

dx = 0, 1 ≤ i ≤ n, |β| < m, ∀p ∈ PT,m. (2.11)

Proof. Let p ∈ PT,m, 1 ≤ i ≤ n and |β| < m. We know by (2.4) that ∂βp is a linear

combination of the following functions,

Fj,α = ∂β
(

(ξ21 − 1)α1(ξ22 − 1)α2 · · · (ξ2n − 1)αnϕj

)

, 1 ≤ j ≤ 2n, |α| < m.

For 1 ≤ j ≤ 2n and |α| < m, set

fi =
dβi

dξβi

i

(ξ2i − 1)αi , gi =
dβi

dξβi

i

(

ξi(ξ
2
i − 1)αi

)

.

Then Fj,α can be written as the sum of such terms that each term has two factors, one is fi or

gi, and another is independent of component ξi. Define

Gi(T ) =
{

v ∈ C∞(T )
∣

∣

∣

∫

T

∂v

∂ξi
dx = 0, v(aj) = 0, 1 ≤ j ≤ 2n

}

.

a) βi < αi. In this case,
dfi
dξi

is just the Legendre polynomial of ξi or its integral. Hence

∫ 1

−1

dfi
dξi

dξi = 0.

On the other hand, fi vanishes when ξi = ±1. Then fi ∈ Gi(T ).

b) βi ≥ αi and αi ≤ 1. In this case, fi ∈ Q1(T ).

c) βi ≥ αi ≥ 2. In this case, we have

fi =
dβi−1

dξβi−1
i

(

2αiξi(ξ
2
i − 1)αi−1

)

=
dβi−2

dξβi−2
i

(

2αi(ξ
2
i − 1)αi−1 + 4αi(αi − 1)ξ2i (ξ

2
i − 1)αi−2

)

=C1

dβi−2

dξβi−2
i

(ξ2i − 1)αi−1 + C2

dβi−2

dξβi−2
i

(ξ2i − 1)αi−2,

where C1 and C2 are constants. Repeating the same argument, we can read fi as the linear

combination of terms satisfying case a) or case b). Then fi ∈ Gi(T ) +Q1(T ).

d) For gi, we have

gi =
1

2(αi + 1)

dβi+1

dξβi+1
i

(ξ2i − 1)αi+1.

Then gi ∈ Gi(T ) +Q1(T ) by the discussion from case a) to case c).

Finally, we conclude that ∂βp ∈ Gi(T )+Q1(T ). Therefore, ∂
βp−ΠT,1∂

βp ∈ Gi(T )+Q1(T ).

Since ∂βp − ΠT,1∂
βp vanishes at the vertices of T , we have that ∂βp− ΠT,1∂

βp ∈ Gi(T ), and

(2.11) is proved. �
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3. C0 Nonconforming Plate Elements

In this section, we will focus on the plate bending problem, and consider the nonconforming

finite element. Let n = 2.

Given a triangle T , its vertices are denoted by ai, 1 ≤ i ≤ 3. The side of T opposite to ai is

denoted by Fi, its unit outer normal by νFi
and its measure by |Fi|, 1 ≤ i ≤ 3. Let λ1, λ2, λ3

be the barycentric coordinates of T . Denote


























q̃1 = 2
(

5(λ1 − λ21 − 2λ2λ3)− 1
)

λ1λ2λ3,

q̃2 = 2
(

5(λ2 − λ22 − 2λ1λ3)− 1
)

λ1λ2λ3,

q̃3 = 2
(

5(λ3 − λ23 − 2λ1λ2)− 1
)

λ1λ2λ3.

(3.1)

Set

P+
3 (T ) = P3(T ) + span{q̃1, q̃2, q̃3}. (3.2)

It is obvious that

q̃1 + q̃2 + q̃3 = −6λ1λ2λ3,

so the dimension of P+
3 (T ) is at most twelve.

The new plate element is defined by (T, PT , DT ) with

1. T is a triangle;

2. PT = P+
3 (T );

3. the components of DT (v) for any C
1(T ) are:







v(aj),
1

|Fj |

∫

Fj

∂v

∂νFj

ds, 1 ≤ j ≤ 3,

(aj − ai)
T∇v(ai), 1 ≤ i 6= j ≤ 3,

(3.3)

where ∇ is the gradient operator.

Define, for 1 ≤ i 6= j 6= k ≤ 3,


























qi =
q̃i

‖∇λi‖
,

pi = 3λ2i − 2λ3i +
∑

1≤l≤3

l 6=i

∇λTi ∇λl
‖∇λl‖

ql,

pij = λ2iλj + 10λi(λj − λk)λ1λ2λ3.

(3.4)

Let δij be the Kronecker delta. It can be verified that qi, pi, pij ∈ P+
3 (T ), and







































qi(ak) = 0, (al − ak)
T∇qi(ak) = 0,

1

|Fk|

∫

Fk

∂qi

∂νFk

ds = δik,

pi(ak) = δik, (al − ak)
T∇pi(ak) = 0,

1

|Fk|

∫

Fk

∂pi

∂νFk

ds = 0,

pij(ak) = 0, (al − ak)
T∇pij(ak) = δikδjl,

1

|Fk|

∫

Fk

∂pij

∂νFk

ds = 0,

(3.5)



Nonconforming Finite Elements for Elliptic Problems 221

when 1 ≤ i 6= j ≤ 3 and 1 ≤ k 6= l ≤ 3. Hence qi, pi and pij are the nodal basis functions

with respect to the degrees of freedom. Therefore, the dimension of P+
3 (T ) is 12 and DT is

PT -unisolvent.

One can verify that

∫

Fk

λl
∂qi

∂νFk

ds =
|Fk|

2
δik,

∫

Fk

λl
∂pi

∂νFk

ds = 0. (3.6)

when 1 ≤ i ≤ 3 and 1 ≤ k 6= l ≤ 3, and that

∇pij |Fi
≡ 0,

∫

Fk

λi
∂pij

∂νFk

ds = −

∫

Fk

λl
∂pij

∂νFk

ds =
|Fk|

12
νTFk

∇λj , (3.7)

when 1 ≤ i 6= j ≤ 3, 1 ≤ k 6= i ≤ 3 and 1 ≤ l 6= k, i ≤ 3.

Given p ∈ P+
3 (T ), it can be written as

p =
∑

1≤i≤3

p(ai)pi +
∑

1≤i≤3

1

|Fi|

∫

Fi

∂p

∂νFi

dFi qi +
∑

1≤i6=j≤3

(aj − ai)
T∇p(ai)pij .

Then for 1 ≤ i 6= j 6= k ≤ 3, it can be computed by (3.6), (3.7) and the above equality that

1

|Fi|

∫

Fi

λj
∂p

∂νFi

ds =
1

12

( ∂p

∂νFi

(aj)−
∂p

∂νFi

(ak)
)

+
1

2|Fi|

∫

Fi

∂p

∂νFi

ds. (3.8)

Given any edge F of T ∈ Th, denote its unit outer normal by νF . For any v ∈ L2(Ω) with

v|T̃ ∈ H1(T̃ ), ∀T̃ ∈ Th, we define the jump of v across F as follows:

[v]F = v|T − v|T ′ ,

if F = T ∩ T ′ for some other T ′ ∈ Th, and

[v]F = v|T ,

if F = T ∩ ∂Ω.

For the new element, define the corresponding finite element spaces Vh and Vh0 as follows.

Vh = {v ∈ L2(Ω) | v|T ∈ P+
3 (T ), ∀T ∈ Th, v and ∇v are continuous at all vertices of elements

in Th, and for any edge F of T with F 6⊂ ∂Ω the integral average of νTF [∇v]F over F is zero};

and Vh0 = {v ∈ Vh | v and ∇v vanish at all vertices belonging to ∂Ω, and for any edge F of T

with F ⊂ ∂Ω the integral average of ∂
∂νF

v over F is zero}.

We claim that Vh ⊂ C0(Ω̄) and Vh0 ⊂ C0
0 (Ω). Let vh ∈ Vh, F be a common edge of

T, T ′ ∈ Th. By the definition, [vh]F is in P3(F ), and it and its directive derivative along F are

zero at two endpoints of F . Hence [vh]F ≡ 0, that is, vh ∈ C0(Ω̄). Similarly, we can show that

vh ∈ C0
0 (Ω) when vh ∈ Vh0.

By (3.8), the definitions of Vh and Vh0 and the fact that Vh ⊂ C0(Ω̄) and Vh0 ⊂ C0
0 (Ω), we

obtain the following lemma.

Lemma 3.1. If F is a common edge of distinct T, T ′ ∈ Th, then

∫

F

p [∇vh]F ds = 0, ∀p ∈ P1(F ), ∀vh ∈ Vh. (3.9)
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If an edge F of T ∈ Th is on ∂Ω then

∫

F

p [∇vh]F ds = 0, ∀p ∈ P1(F ), ∀vh ∈ Vh0. (3.10)

From the new plate element given above, we can deduce a new Zienkiewicz-type element.

For 1 ≤ i ≤ 3, define

φi(v) =
1

|Fi|

∫

Fi

∂v

∂νFi

ds−
1

2

∑

1≤j≤3,j 6=i

∂v

∂νFi

(aj), ∀v ∈ C1(T ). (3.11)

Set

P z
T =

{

p ∈ P+
3 (T )

∣

∣

∣
φ1(p) = φ2(p) = φ3(p) = 0

}

. (3.12)

Observing the fact that P2(T ) ⊂ P+
3 (T ) and φ1(p) = φ2(p) = φ3(p) = 0, ∀p ∈ P2(T ), we have

P2(T ) ⊂ P z
T .

The new Zienkiewicz-type element is defined by (T, PT , DT ) with

1. T is a triangle;

2. PT = P z
T ;

3. the components of DT (v) for any v ∈ C1(T ) are:

{

v(aj), 1 ≤ j ≤ 3,

(aj − ai)
T∇v(ai), 1 ≤ i 6= j ≤ 3.

(3.13)

It is easy to verify that DT is PT -unisolvent.

For the new Zienkiewicz-type element, the corresponding finite element spaces V z
h and V z

h0

are defined as follows. V z
h = {v ∈ L2(Ω) | v|T ∈ P z

T , ∀T ∈ Th, v and ∇v are continuous at all

vertices of elements in Th}, V
z
h0 = {v ∈ V z

h | v and ∇v vanish at all vertices belonging to ∂Ω}.

The difference between the new Zienkiewicz-type element here and the two dimensional one

proposed in [14] is their shape function spaces. The consistent term of the element here is of

order O(h2), while the consistent term of the element given in [14] is of order O(h).

4. Convergence Analysis

Let f ∈ L2(Ω). We take the following boundary value problem as example to show the

convergent result:










(−1)m∆mu = f, in Ω,

u|∂Ω =
∂u

∂ν

∣

∣

∣

∂Ω
= · · · =

∂m−1u

∂νm−1

∣

∣

∣

∂Ω
= 0,

(4.1)

where ν = (ν1, ν2, · · · , νn)
T is the unit outer normal to ∂Ω and ∆ is the standard Laplacian

operator. Define

a(u, v) =
∑

1≤j1,··· ,jm≤n

∫

Ω

∂mu

∂xj1 · · · ∂xjm

∂mv

∂xj1 · · ·∂xjm
dx. (4.2)



Nonconforming Finite Elements for Elliptic Problems 223

Then the weak form of problem (4.1) is: find u ∈ Hm
0 (Ω) such that

a(u, v) = (f, v), ∀v ∈ Hm
0 (Ω). (4.3)

For nonnegative integer s and Th, define

Hs(T h) =
{

v ∈ L2(Ω)
∣

∣

∣
v|T ∈ Hs(T ), ∀T ∈ T h

}

.

For v, w ∈ Hm(Th), define

ah(v, w) =
∑

T∈Th

∑

1≤j1,··· ,jm≤n

∫

T

∂mv

∂xj1 · · ·∂xjm

∂mw

∂xj1 · · · ∂xjm
dx. (4.4)

The finite element method for problem (4.3) is: find uh ∈ Vh0 such that

ah(uh, vh) = (f, vh), ∀vh ∈ Vh0. (4.5)

We introduce the following mesh dependent norm ‖ · ‖s,h and semi-norm | · |s,h:























‖v‖s,h =
(

∑

T∈Th

‖v‖2s,T

)1/2

,

|v|s,h =
(

∑

T∈Th

|v|2s,T

)1/2

,

∀v ∈ Hs(T h).

For the nonconforming elements, the basic mathematical theory has been established (see [5,

7, 10, 13, 18]). We can use them to give the convergence analysis of our new elements.

For the finite elements given in previous two sections, one can verify the following statements

by their constructions, Lemmas 2.1, 2.2 and 3.1:

• They all have the approximability.

• They all have the superapproximation.

• They all have the weak continuity.

• They all pass the patch test.

• They all pass the generalized patch test.

Then by the result in [10] or by the one in [13] we can obtain the following theorems.

Theorem 4.1. Assume that m,n ≥ 1. Let Vh0 be the finite element space corresponding to the

rectangular finite element of order m, and let u and uh be the solutions of problems (4.3) and

(4.5) respectively. Then

lim
h→0

‖u− uh‖m,h = 0. (4.6)

Theorem 4.2. Assume that m = n = 2. Let Vh0 be the finite element space corresponding to

the new plate element or new Zienkiewicz-type element, and let u and uh be the solutions of

problems (4.3) and (4.5) respectively. Then

lim
h→0

‖u− uh‖2,h = 0. (4.7)
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By the result in [13], we know that the error of the rectangular finite element of order m

and the new Zienkiewicz-type are all order O(h). For the new plate element, we can obtain the

following theorem by Lemma 3.1 and the usual technique dealing with the consistent term.

Theorem 4.3. Assume that m = n = 2. Let Vh0 be the finite element space corresponding to

the new plate element, and let u and uh be the solutions of problems (4.3) and (4.5) respectively.

Then there exists a constant C independent of h such that

‖u− uh‖2,h ≤ Ch2|u|4,Ω, (4.8)

when u ∈ H4(Ω). In addition,

‖u− uh‖1,Ω ≤ Ch3|u|4,Ω, (4.9)

when Ω is convex.

Remark 4.1. Let k ≥ 1. The finite element space Vh corresponding to the rectangular element

of order k is a subspace of H1(Ω). Hence the element is convergent with order O(h2k−1) by

Lemma 2.1 when it is applied to solving the second-oder problems. In general, the rectangular

element of order k is a convergent nonconforming element for the 2m-th-oder problem when

k ≥ m, which can be shown by Lemmas 2.1 and 2.2. In this situation, the finite element space

Vh0 should be defined accordingly.

5. Numerical Examples

In this section, we give some numerical results of the new plate element. Now let m = n = 2,

Ω = (0, 1)× (0, 1) and define

u1(x) = x21(x1 − 1)2x22(x2 − 1)2,

u2(x) =
(

sin(πx1) sin(πx2)
)2
,

u3(x) = ex1+x2 .
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Fig. 5.1. The error: |Πhu− uh|2,h
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For 1 ≤ i ≤ 3, set fi = ∆2ui. Then ui is the solution of problem:







∆2u = fi, in Ω,

u = ui,
∂u

∂ν
=
∂ui

∂ν
, on ∂Ω.

(5.1)

Problem (5.1) is a homogeneous Dirichlet boundary value problem when i = 1, 2, and a non-

homogeneous one when i = 3.

For mesh size h = 2−1, 2−2, · · · , Ω is divided into h× h squares, and each square is further

divided into two triangles by the diagonal with a negative slash.

Let Πh be the interpolation operator corresponding to new plate element and Th, and let uh
be the finite element solution corresponding to new plate element and triangulation Th. The

numerical results of error term |Πhu − uh|2,h are shown in Fig. 5.1 with respect to mesh size

h. It is seen that the error terms |Πhu − uh|2,h are of O(h2) as h approaches 0. On the other

hand, the interpolation error |u − Πhu|2,h is of order O(h2) at least. So that |u − uh|2,h is at

least two order of h as well.
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