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Abstract

As an important model in quantum semiconductor devices, the Schrödinger-Poisson

equations have generated widespread interests in both analysis and numerical simulations

in recent years. In this paper, we present Gaussian beam methods for the numerical

simulation of the one-dimensional Schrodinger-Poisson equations. The Gaussian beam

methods for high frequency waves outperform the geometrical optics method in that the

former are accurate even around caustics. The purposes of the paper are first to develop

the Gaussian beam methods, based on our previous methods for the linear Schrödinger

equation, for the Schrödinger-Poisson equations, and then check their validity for this

weakly-nonlinear system.
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1. Introduction

The main purpose of this paper is to extend our Gaussian beam method [22], developed for
the linear Schrödinger equation, to the one-dimensional nonlinear Schrödinger-Poisson equa-
tions

iε∂tΨε = −ε2

2
∂xxΨε + V εΨε, x ∈ R, t ≥ 0, (1.1)

∂xxV ε = b(x)− c |Ψε(t, x)|2 , Eε = ∂xV ε, (1.2)

subject to the WKB initial condition

Ψε(0, x) = A0(x)eiS0(x)/ε. (1.3)

Here Ψε = Ψε(t, x) is the highly oscillatory wave function of wave length O(ε) (in the so-called
semiclassical regime where the re-scaled Plank constant ε is small). The electric potential V ε =
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V ε(t, x) interacts with the wave function Ψε in a self-consistent way through the Schrödinger
equation (1.1) and the Poisson equation (1.2). In the poisson equation (1.2), b(x) ≥ 0 denotes
the fixed positive charged background. The constant c could be ±1, corresponding to focusing
(‘+’) or defocusing (‘-’) potential respectively.

The Schrödinger-Poisson equations are a mean-field model for the linear N -particle Schrödinger
equation with Coulomb potential [6,7,13], which is based on the Pauli’s exclusion principle and
the molecular chaos assumption. It is widely used in quantum semiconductor devices model-
ing [36] and the quantum transport theory [1, 2].

The direct simulation of the Schrödinger-Poisson equations is expensive since the wave
length O(ε) is extremely small in the semiclassical regime. The standard time-splitting spectral
method [3,4,42] and its adaptive version [5] need the mesh size to be of O(ε) and the time step
to be of O(1) to capture the correct physical observables. The finite difference methods [34,35]
are even worse since the mesh size and the time step are restricted to be O(ε).

One efficient alternative approach is to study the semiclassical limit of the Schrödinger-
Poisson equations. When taking the rescaled Planck constant ε → 0 , one can derive the
Vlasov-Poisson equations [28,33,49] in the phase space

∂tf + ξ∂xf − ∂xV ∂ξf = 0 x, ξ ∈ R, t ≥ 0, (1.4)

∂xxV = b(x)− c

∫ ∞

−∞
f(t, x, ξ)dξ, E = ∂xV, (1.5)

or the Euler-Poisson equations in the physical space [30]

∂tρ + ∂x(ρu) = 0, x ∈ R, t ≥ 0, (1.6)

∂t(ρu) + ∂x(ρu2) = −ρ∂xV, (1.7)

∂xxV = b(x)− cρ. (1.8)

There are many papers discussing mathematical analysis and numerical methods for those
equations [8, 11, 12, 24, 37], such as the existence and uniqueness of suitable weak solution to
Vlasov-Poisson equations [9,19,29,32,50] and numerical methods for capturing the multi-valued
solutions to the Euler-Poisson equations [14,27,31].

A well-known drawback to the semiclassical approach is that it can not give accurate solu-
tions around caustics. The Gaussian beam methods, developed for the high frequency linear
waves [22, 23, 25, 26, 39, 40, 44, 46, 47] and also in the setting of quantum mechanics [15–17],
on the other hand, are efficient asymptotic methods that give accurate solutions even around
caustics ([45]). The key idea of the Gaussian beam methods is to complexify the phase function
S(t, x) off the beam center. Moreover, the imaginary part of S(t, x) should be chosen delicately
so that the solution decays exponentially. In this paper, we extend the Gaussian beam meth-
ods, proposed previously by the authors [22] for the linear Schrödinger equation, to the weakly
nonlinear Schrödinger-Poisson equation (1.1)-(1.2). The original Gaussian beam methods were
developed for linear high frequency waves, based on the linear superposition principle. It is of
great mathematical and numerical interests to see if the methods can be extended to (at least
weakly-) nonlinear problems. In this paper, we propose a class of Gaussian beam methods, in
both Lagrangian and Eulerian frameworks, for the Schrödinger-Poisson equations, and check
their validity for this weakly nonlinear system.

Our numerical studies show that the Gaussian beam methods can indeed be extended to
this one-dimensional, weakly nonlinear system. Indeed, convergent results can be observed,
even around caustics, for both the focusing and defocusing cases, when ε → 0.
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A main feature of our Eulerian Gaussian beam method is that only a few (complex-valued)
Liouville equations like (1.4) are solved. Thus the computational methods are similar to that
of geometrical optics [10, 20, 21]. As a result, the local level-set techniques [38, 41, 43] can also
be applied to further reduce the computational cost.

The paper is organized as follows. In Section 2 we systematically present the Gaussian Beam
methods, in both Lagrangian and Eulerian frameworks, for solving (1.1)-(1.2). We conduct
numerical experiments in Section 3 to verify the validity and convergence of the numerical
methods, and give some conclusive remarks in Section 4.

2. The Gaussian Beam Method

In this section, we introduce the Gaussian beam method in details for solving the Schrödinger-
Poisson system (1.1)-(1.2). The main procedure is to solve the Poisson equation (1.2) and the
Schrödinger equation (1.1) iteratively. Suppose the solution Ψε(tn, x) at time tn are given, then
the solution Ψε(tn+1, x) at time tn+1 = tn + ∆t is computed as follows:

• Step 1. We solve the Poisson equation (1.2) first to get the potential V ε,n(x) by some
Poisson solvers.

• Step 2. With V ,ε,n(x) given in step 1, Ψε(tn+1, x) is computed by solving the Schrödinger
equation (1.1) using the Gaussian beam method on a fixed time interval ∆t.

The Poisson solvers and the Gaussian beam method are given in the following Section 2.1 and
2.2 respectively.

2.1. Poisson solvers

We use the finite difference method to solve the Poisson equation (1.2) equipped with general
boundary conditions (Dirichlet, Neumann etc). Suppose the domain of x is [xl, xr] and the mesh
point is xj = xl + j∆x, j = 1, · · · , N where ∆x is the mesh size and xr = xl + (N + 1)∆x,
then the potential V ε,n(x) and the electric field En,ε(x) are solved by the linear system:

V ε,n
j+1 − 2V ε,n

j + V ε,n
j−1

∆x2
= bj − c

∣∣Ψn,ε
j

∣∣2 , En,ε
j =

V ε,n
j+1 − V ε,n

j−1

2∆x
,

where V ε,n
j , En,ε

j , bj , Ψn,ε
j are the approximation of V ε(tn, xj), Eε(tn, xj), b(xj), Ψε(tn, xj)

respectively.
If the periodic boundary condition is considered for (1.2), the pseudo spectral method will

be applied for faster performance. By using the fourier transform F , we can get

F(V ε,n)k = (
xr − xl

2πk
)2

(
F(b− c |Ψn,ε|2)k

)
,

and we set F(V ε,n)0 = 0 for each n. Inverse fourier transform follows after updating F(b −
c |Ψn,ε|2)k and F(V ε,n)k. Remark that the periodic boundary condition forces the following
compatibility constraint: ∫ xr

xl

b(x)− c |Ψε(t, x)|2 dx = 0,

which explains why we could set F(V ε,n)0 = 0 for each n.
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2.2. Gaussian beam method

In this subsection we describe how to solve (1.1) on a fixed time interval ∆t by the Gaussian
beam methods [22] and discuss the issue of constructing the potential V ε,n+1(x) from the sum-
mation of the Gaussian beams. Since the potential V ε,n(x) is given for computing Ψε(tn+1, x),
we denote it as V for simplicity.

2.2.1. Lagrangian formulation

The Lagrangian Gaussian beam ansatz is

ϕε
la(t, x, y0) = A(t, y)eiT (t,x,y)/ε,

where y = y(t, y0) and T (t, x, y) is given by

T (t, x, y) = S(t, y) + p(t, y)(x− y) +
1
2
M(t, y)(x− y)2,

here S, p ∈ R, A,M ∈ C. The time evolution equations of these quantities can be written as a
set of ODEs ([22])

dy

dt
= p, (2.1a)

dp

dt
= −∂yV, (2.1b)

dM

dt
= −M2 − ∂yyV, (2.1c)

dS

dt
=

1
2
|p|2 − V, (2.1d)

dA

dt
= −1

2
(
Tr(M)

)
A. (2.1e)

The Lagrangian Gaussian beam summation solution to the Schrödinger equation (1.1) at time
tn+1 is constructed as

Φε
la(tn+1, x) =

∫

R

(
1

2πε

) 1
2

rθ(x− y(tn+1, yn))ϕε
la(tn+1, x, yn)dyn. (2.2)

where yn = y(tn) and rθ ∈ C∞0 (R), rθ ≥ 0 is a truncation function with rθ ≡ 1 in a ball of
radius θ > 0 about the origin. The initial conditions at t = 0 come from the approximation of
the initial condition (1.3) ([18]):

y(tn, y0) = y0, (2.3a)

p(tn, y0) = ∂xS0(y0), (2.3b)

M(tn, y0) = ∂xxS0(y0) + iI, (2.3c)

S(tn, y0) = S0(y0), (2.3d)

A(tn, y0) = A0(y0). (2.3e)

The discrete form of (2.2) is given as

Φε
la(tn+1, x) =

Nyn∑

j=1

(
1

2πε

) 1
2

rθ(x− y(tn+1, yj
n))ϕε

la(tn+1, x, yj
n)∆yn, (2.4)

where yj
n’s are the Lagrangian mesh points, and Nyn is the number of the beams at time tn.
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For the evolution from tn+1 to tn+2, we need to construct V ε,n+1, ∂yV ε,n+1 and ∂2
yV ε,n+1

from the beam summation solution (2.2) which is done by the following procedure:

• Step 1, we compute (2.2) on a fixed gird of x, then solve V ε,n+1(x) and En+1,ε(x) =
∂xV ε,n+1 from (1.2) by some Poisson solver given in Section 2.1. Interpolate V ε,n+1(x)
and ∂xV ε,n+1 to get their values on the Lagrangian mesh points yj

n. Note that
V ε,n+1(x) and ∂xV ε,n+1 are the integration functions of the density |Ψε|2 which im-
plies that they are oscillatory but with very small oscillatory magnitudes ( see, e.g.,
Fig. 6 of [19]). This feature implies that if one implements the interpolation on a
coarse mesh gird, although the numerical result could not capture the small scale os-
cillations, it provides good approximation for the envelope of the solution, which in
fact is very close to the true solution due to the oscillation amplitude is very small.

• Step 2, we compute ∂yyV ε,n+1 directly for each yj
n using the Poisson equation (1.2),

i.e.
∂yyV ε,n+1 = b(y)− c |Φε

la|2 .

The reason we have to compute ∂yyV ε,n+1 directly instead of using interpolation is
that, the oscillatory magnitude of ∂yyV ε,n+1 is comparable to that of the density |Ψε|2.

Note that we have two sets of meshes here: one is the Eulerian mesh for x, and the other is
the Lagrangian mesh for y. The values exchanged between these two meshes are through high
order interpolation. This inevitably complicates the algorithms and the notations which could
be avoided by the Eulerian formulation below.

2.2.2. Eulerian formulation

For the Eulerian formulation of the Gaussian beam approximation, we have

ϕε
eu(t, x, y, ξ) = A(t, y, ξ)eiT (t,x,y,ξ)/ε,

with
T (t, x, y, ξ) = S(t, y, ξ) + ξ(x− y) +

1
2
M(t, y, ξ)(x− y)2.

Define the linear Liouville operator as

L = ∂t + ξ∂y − ∂yV ∂ξ,

then the Eulerian Gaussian beam method is constructed by solving the following Liouville
equations:

Lφ = 0, (2.5a)

LS =
1
2
|ξ|2 − V, (2.5b)

Lf = 0. (2.5c)

where φ ∈ C, and S, f ∈ R. M and amplitude A are computed by

M(t, y, ξ) = −∂yφ(∂ξφ)−1,

A(t, y, ξ) = (det(∂ξφ)−1f)1/2.
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The Eulerian Gaussian beam summation solution to the Schrödinger equation (1.1) is con-
structed via

Φε
eu(tn+1, x) =

∫

R

∫

R

(
1

2πε

) 1
2

rθ(x− y)ϕε
eu(tn, x, y, ξ)δ(Re[φ])dξdy, (2.6)

in which δ is the Dirac delta function.
According to [22], the initial data for (2.5) are given by

φ(0, y, ξ) = −iy + (ξ − ∂yS0(y)), (2.7a)

S(0, y, ξ) = S0(y), (2.7b)

f(0, y, ξ) = A2
0(y). (2.7c)

The construction of V ε,n+1, ∂yV ε,n+1 and ∂yyV ε,n+1 from (2.6) is simple in the Eulerian frame-
work since every quantity is computed in a fixed grid. All we need to do is to take the same
mesh for x as that for y and solve (1.2) by some Poisson solver given in Section 2.1. For
the numerical computation of (2.6), the discretized delta function integration method [48] is
recommended since it avoids the difficulty of computing singular integrals [22].

3. The Numerical Examples

In this section, we will present both focusing and defocusing numerical results of the
Schrödinger-Poisson equations (1.1)-(1.2) by using the Gaussian beam method proposed in
section 2. In our computations, the initial condition is always chosen in the WKB form (1.3).
We compute the reference solution Ψε using the Strang splitting spectral method [3–5] with
mesh size ∆x and time step ∆t small enough. We always take a large computational domain
such that the periodic boundary condition does not introduce a significant error to the whole
problem. To diminish the cut-off error, the truncation parameter θ appears in (2.6) is picked
fairly large as we discussed in [22]. We will denote solutions obtained by (2.6) as Φε

GB .

Example 1. Consider the 1D Schrödinger-Poisson equation on computational domain [−0.5, 0.5]
with a focusing potential

Vxx =
√

2π

10
− |ψ(x)|2 .

The initial conditions are given by

A0(x) = e−25x2
, S0(x) =

1
π

cos(x).

At time t = 0.4, we output the l1, l2 and l∞ error of the wave amplitude in Table 3.1. We can
see the convergence rate in ε is of order 0.9006 in the l1 norm. Here the number of Gaussian
beams Ny is optimized with ε, see discussion in [22]. In Figure 3.1, we plot the wave amplitude
and absolute error for different ε.

Example 2. Consider the 1D defocusing Schrödinger-Poisson equation

Vxx = −
√

2π

10
+ |ψ(x)|2 .
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Table 3.1: the l1, l2 and l∞ errors of the wave amplitude for ε = 1
256

, 1
1024

, 1
4096

for Example 1.

(ε, Ny) ( 1
256

, 128) ( 1
1024

, 256) ( 1
4096

, 512)

l1 error 1.12× 10−2 3.93× 10−3 9.22× 10−4

l2 error 4.09× 10−2 1.47× 10−2 3.80× 10−3

l∞ error 3.09× 10−1 1.09× 10−1 3.09× 10−2
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Fig. 3.1. Example 1, the Schrödinger-Poisson solution |Ψε| versus the Gaussian beams solution |Φε

eu|
for different values of ε. The left figures are the comparisons of the wave amplitude at t = 0.4; the

right figures plot the errors ||Φε
GB | − |Ψε||.
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Table 3.2: the l1, l2 and l∞ errors of the wave amplitude for ε = 1
256

, 1
1024

, 1
4096

for Example 2.

(ε, Ny) ( 1
256

, 128) ( 1
1024

, 256) ( 1
4096

, 512)

l1 error 8.16× 10−3 2.60× 10−3 8.35× 10−4

l2 error 3.20× 10−2 9.24× 10−3 2.94× 10−3

l∞ error 1.74× 10−1 5.30× 10−2 1.95× 10−2

with same boundary condition and initial data as in Example 1. At time t = 0.4, the l1, l2 and
l∞ error of the wave amplitude are also given in Table 3.2. We can see the convergence rate in
ε is of order 0.8221 in the l1 norm. The wave amplitude and absolute error for different ε are
plotted in Figure 3.2.
Example 3. Consider the same defocusing potential as in Example 2. The initial conditions
are changed to be

A0(x) = e−25x2
, S0(x) = 0.

In this example, we examine the convergence when there is no caustics. This, along with the
above two caustic examples, will show that the Gaussian beam method we propose here gives
satisfactory results from the numerical point of view. We evolve the solution to time t = 0.5,
and the l1, l2 and l∞ errors of the wave amplitude are given in Table 3.3. The convergence rate
in ε is of order 0.9389 in the l1 norm. In Figure 3.3, the wave amplitude and absolute error are
plotted for different ε. We remark that since the solution is not as oscillatory as in the last two
examples, only a very small number of beams are needed to get the accurate solution.

Table 3.3: the l1, l2 and l∞ errors of the wave amplitude for ε = 1
256

, 1
1024

, 1
4096

for Example 3.

(ε, Ny) ( 1
256

, 16) ( 1
1024

, 32) ( 1
4096

, 64)

l1 error 3.31× 10−2 9.40× 10−3 2.45× 10−3

l2 error 4.26× 10−2 1.25× 10−2 3.30× 10−3

l∞ error 1.05× 10−1 3.28× 10−2 8.92× 10−3

4. Conclusion

In this paper, we extended the Gaussian beam methods, in both Lagrangian and Eulerian
framework, to the one dimensional Schrödinger-Poisson equations. Using the method intro-
duced in [22], the Schödinger equation (1.1) can be directly simulated in each time step. For
the poisson equation (1.2), the potential function and its derivatives only need to be constructed
at mesh points. Such a setup makes the Gaussian beam method valid and efficient for solv-
ing the one-dimensional Schrödinger-Poisson equations. Several examples have been given to
confirm the convergence and accuracy.

It will be of interest to study the method in higher space dimension, which will be the
subject of our future study.
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