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Abstract

In this paper, we are concerned with uniform superconvergence of Galerkin methods

for singularly perturbed reaction-diffusion problems by using two Shishkin-type meshes.

Based on an estimate of the error between spline interpolation of the exact solution and

its numerical approximation, an interpolation post-processing technique is applied to the

original numerical solution. This results in approximation exhibit superconvergence which

is uniform in the weighted energy norm. Numerical examples are presented to demonstrate

the effectiveness of the interpolation post-processing technique and to verify the theoretical

results obtained in this paper.
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1. Introduction

In this paper, we consider the singularly perturbed two-point boundary value problem of
reaction-diffusion type. It is well-known that the solution of this problem exhibits singularities
at the boundary layers where singularities depend upon perturbation parameters. When the
problem is solved numerically, we must take this boundary layer behavior of the solution into
account in order to produce an approximate solution with high-order convergence. Shishkin
meshes are most commonly used meshes in numerical methods which include finite difference
methods and finite element methods (see, e.g., [9, 10, 12, 13] and references cited therein). In
[12,13], the finite element method on the standard Shishkin mesh (S-mesh) provided a numerical
solution with convergence rate which is almost optimal uniformly in the weighted energy norm.
Based on another Shishkin-type mesh, namely, the anisotropic mesh (A-mesh), Li [3] proved
an optimal order of uniform convergence for high-order reaction-diffusion problems. One of
the advantages of Shishkin-type meshes, broadly defined, is that they are piecewise equidistant
meshes. This structure of Shishkin-type meshes can be exploited and we show in this paper that,
when it is combined with the interpolation post-processing technique, uniform superconvergence
of numerical solution can be obtained.

Therefore, the main purpose of this paper is to obtain uniform superconvergence in the
weighted energy norm of the Galerkin method on S-mesh as well as on A-mesh for singularly
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perturbed reaction-diffusion problems. Previously, Zhang [14] investigated a superconvergence
phenomena of a finite element solution obtained on a modified Shiskin mesh for the second-order
singularly perturbed problems. The superconvergence estimate was given in a discrete weighted
energy norm in which the L2 norm of ∇(u− uh) is replaced by a p-point Gaussian quadrature
rule. In this paper, motivated by an estimate of the error between spline interpolation of
the exact solution and its numerical approximation, which is commonly known as superclose,
(see, e.g., [2, 4, 5]), we will apply the interpolation post-processing technique to the numerical
solution obtained by the Galerkin method. This generates a higher order approximation which
gives rise to uniform superconvergence in the weighted energy norm. It will be shown that
we may gain improvements in the order of convergence in the following way. For S-mesh,
the rate of convergence in the weighted energy norm is enhanced from the optimal order of
convergence up to a logarithmic factor and for A-mesh, the order of convergence improves
by one from the optimal. We point out that the superclose property mentioned above plays
a key role in establishing the superconvergence result presented in this paper. The idea of
superclose property was used to obtain numerical solution of different operator equations. For
one dimensional problem, we refer the reader to [3,8,12] and for two dimensional problems [6,7].
Also, we point out that fact that the idea of the interpolation post-processing technique has
been successfully used by several authors (see, [2,4,5]). Finally, we note that our current work
can be extended to two-dimensional reaction-diffusion problems as well as to other singularly
perturbed problems. These topics will be discussed in the forthcoming papers.

This paper is organized as follows. In section 2, we describe the Galerkin method on S-mesh
as well as on A-mesh for solving high-order reaction-diffusion problems. Section 3 is devoted
to a study of application of the interpolation post-processing technique. The post-processing
is applied to the original numerical solution of high-order reaction-diffusion problems. The
uniform superconvergence of the post-processed solution on S-mesh as well as on A-mesh is
subsequently obtained in the weighted energy norm. In section 4, we consider the second-order
reaction-diffusion problem. The superclose property of the approximate solution in the weighted
energy norm is derived by constructing a special interpolant. Based on this estimate, we use
the interpolation post-processing technique to achieve the uniform superconvergence property
of the numerical solution. Finally in section 5, two numerical examples are presented to confirm
the theoretical results obtained in the previous sections.

2. High-order Reaction-Diffusion Problems

We introduce in this section the Galerkin method on S-mesh as well as on A-mesh for
solving reaction-diffusion problems using Hermite splines. We begin with some notations. Set
N := {1, 2, ...}, N0 := {0, 1, ...} and Zn := {0, 1, ..., n− 1}. Let I := [0, 1] and T be a subinterval
of I. We denote by (·, ·)T the inner product in L2(T ) and by ‖ · ‖0,T for the associated norm
on L2(I). Let Hk(T ), k ∈ N, be the Sobolev spaces on T with the norm ‖ · ‖k,T defined by

‖v‖k,T =

{
k∑

i=0

∫

T

|v(i)(x)|2dx

}1/2

,

and the semi-norm | · |k,T defined by

|v|k,T =
{∫

T

|v(k)(x)|2dx

}1/2

.
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For notational convenience, we let | · |0,T := ‖ · ‖0,T and simply use (·, ·), ‖ · ‖k and | · |k for
(·, ·)I , ‖ · ‖k,I and | · |k,I , k ∈ N0, respectively. Also, we denote by ‖ · ‖∞ the essential maximum
norm on L∞(I) and by ‖ · ‖k,∞ the maximum norm on Ck(I) for k ∈ N0. Let Hk

0 := Hk
0 (I) be

the closure of the set {v ∈ Ck(I) : v(i)(0) = v(i)(1) = 0, i ∈ Zk} in the Sobolev norm ‖ · ‖k.
To describe the problem, we let m be a positive integer, let ε ∈ (0, 1] be a singular pertur-

bation parameter, and let aj , j ∈ Z2(m−1)+1 and f be sufficiently smooth functions defined on
I. We introduce the differential operator Lε by

Lεu :=(−1)mε2u(2m) + (−1)m−1
(
a2(m−1)u

(m−1)
)(m−1)

+
m∑

i=2

(−1)m−i
(
a2(m−i)+1u

(m−i+1) + a2(m−i)u
(m−i)

)(m−i)

and consider the singularly perturbed two-point boundary value problem of reaction-diffusion
type

(Lεu)(x) = f(x), x ∈ (0, 1),

u(j)(0) = u(j)(1) = 0, j ∈ Zm. (2.1)

We define the bilinear form Aε(·, ·) by

Aε(u, v) :=ε2
(
u(m), v(m)

)
+

(
a2(m−1)u

(m−1), v(m−1)
)

+
m∑

i=2

(
a2(m−i)+1u

(m−i+1) + a2(m−i)u
(m−i), v(m−i)

)
.

and the weighted energy norm ‖ · ‖ε by

‖v‖ε :=
(
ε2|v|2m + ‖v‖2m−1

)1/2
, for v ∈ Hm

0 .

By integration by parts, problem (2.1) may be written in a variational form in which we seek
u ∈ Hm

0 such that
Aε(u, v) = (f, v), for all v ∈ Hm

0 . (2.2)

The solution of Eq. (2.2) is a weak solution of problem (2.1). To guarantee the coercivity
of the bilinear form in the weighted energy norm, we need to make more assumptions on the
coefficient functions. Specifically, we let m constants αi, i ∈ Zm satisfy for all x ∈ I,

a2(m−1)(x) ≥ αm−1, a2(m−i)(x)− 1
2
a′2(m−i)+1 ≥ αm−i, i = 2, ..., m,

and define the index set

J+ := {j : αj ≥ 0, j ∈ Zm} and J− := Zm \ J+.

We suppose that for any αj , j ∈ J− there is a composition

αj =
∑

k∈J+∩{j+1,j+2,...,m−1}
αj,k (2.3)

satisfying ηm−1 > 0 and ηk ≥ 0, for k ∈ J+ \ {m− 1}, where

ηk := αk +
∑

j∈J−,j<k

αj,k2−(k−j), k ∈ J+.
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Condition (2.3) originally presented in [8] is weaker than a condition in [12] which is assumed
that

αm−1 > 0 and
j∑

i=1

αm−i > 0, j = 2, 3, ...,m.

Throughout the rest of this paper, condition (2.3) is always assumed. It is proved in [8] that
there exist positive constants c1 and c2 such that for all v, w ∈ Hm

0 ,

|Aε(v, w)| ≤ c1‖v‖ε‖w‖ε, (2.4)

and
Aε(v, v) ≥ c2‖v‖2ε . (2.5)

Hence, by the Lax-Milgram theorem, equation (2.2) has a unique solution. Moreover, the
solution is sufficiently smooth and has the following decomposition (see, [9])

u = E + F + G, (2.6)

where E, F and G satisfy for all i ∈ N0 and x ∈ I,

|G(i)(x)| ≤ c, |E(i)(x)| ≤ cεm−1−i exp (−αx/ε),

|F (i)(x)| ≤ cεm−1−i exp (−α(1− x)/ε),
(2.7)

with α := αm−1. Note that G,E, F describe, respectively, the solution of the reduced problem
and two boundary layers at endpoints 0, 1. Since the solution of equation (2.2) is sufficiently
smooth, it is identical to the classic solution of problem (2.1). For this reason, we will not
distinguish the weak solution from the classic solution.

When m = 1, we refer to (2.1) as being the second-order reaction-diffusion problem, which
will be discussed in section 4. When m ≥ 2, problem (2.1) is regarded as the high-order
reaction-diffusion problem. In the remainder of section 2 and throughout section 3, we always
assume m ≥ 2.

We now describe the ideas of S-mesh and A-mesh for problem (2.1). Let N ∈ N. We divide
the interval I into three subintervals

Ω0 := [0, σ], Ω1 := [σ, 1− σ], Ω2 := [1− σ, 1],

where
σ = min{1/4, (m + 1)α−1ερ}

and ρ = ln N in the case of S-mesh, and ρ = | ln ε| in the case of A-mesh. Then, two Shishkin-
type meshes 0 = x0 < x1 < · · · < x4N = 1 are obtained by setting xi+1 = xi + hi, i ∈ Z4N ,
with

hi =

{
(1/2− σ)/N, i = N,N + 1, . . . , 3N − 1,

σ/N, otherwise.

Note that the Shishkin-type meshes are piecewise equidistant meshes with the transition points
xN = σ and x3N = 1− σ. In this paper, it is sufficient to assume that

σ = (m + 1)α−1ερ.

We next describe two finite-dimensional spaces of Hermite splines corresponding to the
Shishkin-type meshes. For a positive integer q and a subinterval T of I, we denote by Pq(T )
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the space of polynomials of degree q − 1 on T . Associated with the Shishkin-type meshes, the
spaces Vh and Vh,0 are defined, respectively, by

Vh :=
{

v ∈ Hm(I) : v|Ii
∈ P2m(Ii), i ∈ Z4N

}
(2.8)

and

Vh,0 :=
{

v ∈ Hm
0 : v|Ii ∈ P2m(Ii), i ∈ Z4N

}
, (2.9)

where Ii := [xi, xi+1], i ∈ Z4N . It is clear that Vh ⊂ Cm−1(I) and Vh,0 ⊂ Cm−1
0 (I) by the

Sobolev embedding theorem and the dimensions of Vh and Vh,0 are m(4N +1) and m(4N − 1),
respectively. We now define the interpolation operator Qh from Cm−1(I) to Vh by

(Qhv)(j)(xi) = v(j)(xi), j ∈ Zm, i ∈ Z4N+1. (2.10)

It is easily verified that the interpolation operator Qh is well defined. Notice also that the
interpolation operator Qh maps Hm

0 to Vh,0. Let m ≤ l ≤ 2m be an integer. We denote by
|v|k,∞,T the maximum semi-norm of v(k) on the interval T ⊆ I. It is known from [11] that there
exists a positive constant c such that for v ∈ Cl(Ii),

|v −Qhv|j,∞,Ii ≤ chl−j
i |v|l,∞,Ii,, j ∈ Zl+1, i ∈ Z4N . (2.11)

Here and in what follows, constant c is used to denote the generic positive constant independent
of ε and the mesh.

The Galerkin method on S-mesh or A-mesh for solving Eq. (2.2) is to seek uh ∈ Vh,0 such
that

Aε(uh, vh) = (f, vh), for all vh ∈ Vh,0. (2.12)

Again, by the Lax-Milgram theorem, Eq. (2.12) has a unique solution uh ∈ Vh,0. For notational
convenience, we let λ = ln N in the case of S-mesh, or λ = 1 in the case of A-mesh throughout
the rest of the paper. It is established in [3, 12] that there exist a positive integer N0 and a
positive constant c such that for all N > N0,

‖u− uh‖ε ≤ c(N−1λ)m (2.13)

and
‖Qhu− uh‖ε ≤ c(N−1λ)m+1, (2.14)

where u is the exact solution of Eq. (2.2). The estimate (2.13) shows that the Galerkin
method for Eq. (2.2) provides an almost optimal order of uniform convergence on S-mesh,
and an optimal order of uniform convergence on A-mesh, in terms of the singular perturbation
parameter ε.

3. Interpolation Post-Processing

In this section, we apply interpolation post-processing technique to the approximate solution
uh and subsequently obtain an approximation which exhibits superconvergence uniformly in the
weight energy norm. To prepare for the use of the technique, we first introduce an interpolation
operator and study the property of this interpolation operator.
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We first define the other two finite-dimensional spaces of Hermite splines corresponding to
the Shishkin-type meshes described in the last section. For convenience, we shall assume that
N > 0 is an even number, i.e., N = 2M with M being some positive integer. Let zi = x2i and
Ji := [zi, zi+1], i ∈ Z2N , so that

Ji = I2i ∪ I2i+1 = [x2i, x2i+2], i ∈ Z2N .

Thus, for each of two meshes, the points 0 = z0 < z1 < · · · < z2N = 1 form a new mesh of the
interval I with h̄i := zi+1 − zi which is still a Shishkin-type mesh. Based on the new meshes,
the space Uh̄ is defined by

Uh̄ :=
{

v ∈ Hm(I) : v|Ji
∈ P2m+1(Ji), i ∈ Z2N

}
. (3.1)

By the Sobolev embedding theorem, Uh̄ ⊂ Cm−1(I) and the dimension of Uh̄ is m(2N +1)+2N .
The interpolation operator Ph̄ from Cm−1(I) to Uh̄ is defined by

(Ph̄v)(x2i+1) = v(x2i+1), i ∈ Z2N and (3.2a)

(Ph̄v)(j)(zk) = v(j)(zk), j ∈ Zm, k ∈ Z2N+1. (3.2b)

It is easy to see that the interpolation operator Ph̄ is well defined.
The following lemma shows the boundedness of the operator Ph̄ on Vh in the weighted

energy norm.

Lemma 3.1. Let v ∈ Vh. Then we have

|Ph̄v‖ε ≤ c‖v‖ε. (3.3)

Proof. By Theorem 4.4.4 and the estimate (4.4.23) of [1], we obtain that for any w ∈ Hk(I)
with m ≤ k ≤ 2m + 1,

|w − Ph̄w|j,Ji ≤ ch̄k−j
i |w|k,Ji , j ∈ Zk+1, i ∈ Z2N . (3.4)

Recall that the Shishkin-type meshes are piecewise equidistant. It follows from (3.4) that for
v ∈ Vh,

ε|v −Ph̄v|m ≤ cε|v|m
and for i ∈ Z3,

‖v − Ph̄v‖m−1,Ωi ≤ cH̄i‖v‖m,Ωi ,

where H̄0 = H̄2 := h̄0 and H̄1 := h̄M . Employing the inverse estimate (see, e.g., Theorem
4.5.11 of [1]), we obtain that for i ∈ Z3,

H̄i‖v‖m,Ωi ≤ c‖v‖m−1,Ωi . (3.5)

This implies
‖v −Ph̄v‖m−1 ≤ c‖v‖m−1.

Combining the results above, we conclude that

‖Ph̄v‖ε ≤ ‖v‖ε + ‖v − Ph̄v‖ε ≤ c‖v‖ε,

which yields the desired result. ¤
In the next lemma, we establish an uniform convergence result for the interpolation projec-

tion Ph̄ in the weighted energy norm.
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Lemma 3.2. Let u be the exact solution of problem (2.1), and let Ph̄ be the interpolation
operator defined by (3.2). Then there exists a positive constant c independent of ε and N such
that

‖u−Ph̄u‖ε ≤ c(N−1λ)m+1, (3.6)

Proof. Recall that the solution u of problem (2.1) can be written as

u = E + F + G

where E, F and G satisfy the condition (2.7). Hence, we obtain

‖u− Ph̄u‖ε ≤ ‖E − Ph̄E‖ε + ‖F − Ph̄F‖ε + ‖G− Ph̄G‖ε. (3.7)

It is known from [12] that for v ∈ Ck(Ji) with m− 1 ≤ k ≤ 2m + 1,

|v −Ph̄v|j,∞,Ji
≤ ch̄k−j

i |v|k,∞,Ji
, j ∈ Zk+1, i ∈ Z2N . (3.8)

Using (2.7) and following a standard argument yields that (see, [1, 12])

‖G− Ph̄G‖ε ≤ cN−m−1. (3.9)

Next, we estimate ‖E − Ph̄E‖ε. By (2.7), a direct computation shows that for j ∈ N0,

|E|j,Ω0 ≤ c

(∫ σ

0

ε2(m−j−1) exp(−2αx/ε)dx

)1/2

≤ cεm−j−1/2. (3.10)

Combining this and (3.4), we conclude that for m ≤ k ≤ 2m + 1,

|E − Ph̄E|j,Ω0 ≤ ch̄k−j
0 |E|k,Ω0 ≤ c(N−1σ)k−jεm−k−1/2, j ∈ Zk+1. (3.11)

Since h̄i ≤ 1/N for all i ∈ Z2N , it follows from (2.7) and (3.8) that for m− 1 ≤ k ≤ 2m + 1,

|E − Ph̄E|j,∞,Ω1∪Ω2 ≤ cN j−k|E|k,∞,Ω1∪Ω2

≤ cN j−kεm−k−1 exp(−ασ/ε), j ∈ Zk+1. (3.12)

Consequently, we have that for j ∈ Zk+1,

|E −Ph̄E|j,Ω1∪Ω2 ≤
(

4M−1∑

i=M

|E − Ph̄E|2j,∞,Ji
|Ji|

)1/2

≤ cN j−kεm−k−1 exp(−ασ/ε). (3.13)

For S-mesh, we have σ = (m + 1)α−1ε ln N . It follows from (3.11) and (3.13) that

ε|(E − Ph̄E)|m ≤ cε
(|E − Ph̄E|m,Ω0 + |E − Ph̄E|m,Ω1∪Ω2

)

≤ cε

(
(N−1σ)m+1ε−m−3/2 + ε−1 exp(−ασ/ε)

)

≤ c

(
ε1/2(lnN)m+1 + 1

)
N−m−1 ≤ c(N−1 ln N)m+1 (3.14)
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and for j ∈ Zm,

|(E − Ph̄E)|j ≤ c
(|E − Ph̄E|j,Ω0 + |E − Ph̄E|j,Ω1∪Ω2

)

≤ c

(
(N−1σ)2m+1−jε−m−3/2 + N j−m+1 exp(−ασ/ε)

)

≤ c

(
εm−j−1/2(N−1 ln N)2m+1−j + N j−2m

)
. (3.15)

Similarly, for A-mesh, we have σ = (m + 1)α−1ε| ln ε| and thus obtain

ε|(E − Ph̄E)|m ≤ cε
(|E −Ph̄E|m,Ω0 + |E − Ph̄E|m,Ω1∪Ω2

)

≤ cε

(
(N−1σ)m+1ε−m−3/2 + N−m−1ε−m−2 exp(−ασ/ε)

)

≤ c

(
ε1/2| ln ε|m+1 + 1

)
N−m−1 ≤ cN−m−1 (3.16)

and for j ∈ Zm,

|(E − Ph̄E)|j ≤ c
(|E −Ph̄E|j,Ω0 + |E − Ph̄E|j,Ω1∪Ω2

)

≤ c

(
(N−1σ)2m+1−jε−m−3/2 + N j−2mε−m−1 exp(−ασ/ε)

)

≤ c

(
εm−j−1/2| ln ε|2m+1−jN−1 + 1

)
N−2m+j . (3.17)

The last inequality in (3.16) holds because ε1/2| ln ε|m+1 is bounded on (0, 1]. Noting that
εm−j−1/2| ln ε|2m+1−j in (3.17) is also bounded on (0, 1] for each j ∈ Zm, we conclude from
(3.14)-(3.17) that

‖E −Ph̄E‖ε ≤ c(N−1λ)m+1. (3.18)

Following a similar argument, we obtain

‖F −Ph̄F‖ε ≤ c(N−1λ)m+1. (3.19)

Combining this with (3.7), (3.11) and (3.18) proves the lemma. ¤

Using the two lemmas above, we are now ready to prove the main result of this section,
which gives the uniform superconvergence of the Galerkin method using Hermite splines for
problem (2.1) in the weighted energy norm.

Theorem 3.1. Let u be the exact solution of problem (2.1), and let uh be the corresponding
approximate solution determined by Eq. (2.12). Assume that Ph̄ is the interpolation operator
defined by (3.2). Then, for sufficiently large N , there exists a positive constant c independent
of ε and N such that

‖u−Ph̄uh‖ε ≤ c(N−1λ)m+1. (3.20)

Proof. Suppose that Qh is the interpolation operator defined in (2.10). We first show that
for any v ∈ Cm−1(I),

Ph̄v = Ph̄Qhv. (3.21)

By the definition of the interpolation operator Qh, we have

(Qhv)(j)(xi) = v(j)(xi), j ∈ Zm, i ∈ Z4N+1.
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Recalling that zi = x2i for i ∈ Z2N+1, we obtain

(Qhv)(x2i+1) = v(x2i+1), i ∈ Z2N and (3.22a)

(Qhv)(j)(zk) = v(j)(zk), j ∈ Zm, k ∈ Z2N+1. (3.22b)

Using this with the definition of the interpolation operator Ph̄ confirms (3.21). It follows from
(3.21) that

u− Ph̄uh = u−Ph̄u + Ph̄Qhu−Ph̄uh. (3.23)

Combining this with (2.14), (3.3) and (3.6), we conclude that

‖u− Ph̄uh‖ε ≤ ‖u− Ph̄u‖ε + ‖Ph̄(Qhu− uh)‖ε

≤ ‖u− Ph̄u‖ε + c‖Qhu− uh‖ε ≤ c(N−1λ)m+1,

which completes the proof. ¤

4. Second-order Reaction-Diffusion Problems

The superclose property (2.14) plays a key role in obtaining uniform superconvergence of
the numerical solution in Theorem 3.1. This property is valid only for the Hermite spline
interpolation of degree 2m−1 applied to higher-order problem (2.1) with m > 1 (see, [3,8,12]).
We may not obtain the superclose property of the numerical solution for the spline interpolation
of higher degree (see, [8]). There is, however, an exception for the second-order problem. For this
reason, in this section we investigate the superclose property of numerical solution of problem
(2.1) with m = 1, i.e., the second-order reaction-diffusion problem, based on the Galerkin
method using piecewise polynomials of degree no less than one. It will be seen that we may
choose particular interpolation points, namely Gauss-Lobatto points, to construct the spline
interpolation of higher degree which satisfies the superclose property. This, together with the
application of the interpolation post-processing technique, leads to an approximation of the
second-order problem which superconverges uniformly in the weighted energy norm.

Let r be a positive integer. In constructing S-mesh and A-mesh in this section, we take
σ = (r +1)α−1ερ. Associated with the Shishkin-type meshes, we define the spaces Sh and Sh,0,
respectively, by

Sh :=
{

v ∈ H1(I) : v|Ii ∈ Pr+1(Ii), i ∈ Z4N

}
(4.1)

and

Sh,0 :=
{

v ∈ H1
0 : v|Ii ∈ Pr+1(Ii), i ∈ Z4N

}
, (4.2)

It is clear that Sh ⊂ C(I) and Sh,0 ⊂ C0(I) by the Sobolev embedding theorem and the
dimensions of Sh and Sh,0 are 4rN + 1 and 4rN − 1, respectively. We now define a special
interpolation operator Rh from C(I) to Sh by appropriately choosing the interpolation points.
Specifically, we let xk = xk0 < xk1 < · · · < xkr = xk+1 be the r + 1 Gauss-Lobatto points in
Ik, k ∈ Z4N , that is, xkj , j − 1 ∈ Zr−1 are the r− 1 zeros of the first derivative of the Legendre
polynomial of degree r on Ik. Let

φkr(x) = (x− xk0)(x− xk1) · · · (x− xkr), k ∈ Z4N .
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It is known that φ′kr can be written as the Legendre polynomial of degree r multiplied by a
constant on Ik. This implies for k ∈ Z4N ,

(φ′kr, w
′)Ik

= 0, for all w ∈ Pr+1(Ik). (4.3)

Associated with the Gauss-Lobatto points, the interpolation operatorRh : C(I) → Sh is defined
by

(Rhv)(xi) = v(xi), i ∈ Z4N+1, and (4.4a)

(Rhv)(xkj) = v(xkj), j − 1 ∈ Zr−1, k ∈ Z4N . (4.4b)

It is easy to verify that the interpolation operator Rh is well defined. For v ∈ Cr+2(Ik) and
w ∈ Pr+1(Ik), it follows from (4.3) that (see, [14])

∣∣∣
(
(v −Rhv)′, w′

)
Ik

∣∣∣ ≤ chr+1
k |v|r+2,Ik

|w|1,Ik
, k ∈ Z4N . (4.5)

Also, it is known from [1,12] that for v ∈ Ck(Ii) with 0 ≤ k ≤ r + 1,

|v −Rhv|j,∞,Ii
≤ chk−j

i |v|k,∞,Ii
, j ∈ Zk+1, i ∈ Z4N , (4.6)

and for for v ∈ Ck(Ii) with 1 ≤ k ≤ r + 1,

|v −Rhv|j,Ii ≤ chk−j
i |v|k,Ii , j ∈ Zk+1, i ∈ Z4N . (4.7)

The Galerkin method on S-mesh or A-mesh for solving Eq. (2.2) with m = 1 is to seek uh ∈ Sh,0

such that
Aε(uh, vh) = (f, vh), for all vh ∈ Sh,0. (4.8)

By the Lax-Milgram theorem, Eq. (4.8) has a unique solution uh ∈ Sh,0.
In the next theorem, an almost optimal (or optimal) order of uniform convergence is provided

for the Galerkin method on S-mesh (or A-mesh) for solving equation (4.8). In addition, the
superclose property of the numerical solution is presented.

Theorem 4.1. Let u be the exact solution of problem (2.1) with m = 1, and let uh be the
solution of Eq. (4.8). Assume that Rh is the interpolation operator defined by (4.4). Then, for
sufficiently large N, there exists a positive constant c independent of N such that

‖u− uh‖ε ≤ c(N−1λ)r (4.9)

and
‖Rhu− uh‖ε ≤ c(N−1λ)r+1. (4.10)

Proof. Using (4.6) and following similar arguments on the high-order problem as those given
in [3, 12], the estimate (4.9) is obtained. Recall that u has a decomposition (2.6). To prove
(4.10), we first give an estimate on Aε(E −RhE, vh). By a similar argument as that in (3.14)
and (3.15), it follows from (2.7), (3.10), (4.6) and (4.7) that for S-mesh,

ε2
∣∣((E −RhE)′, v′h

)∣∣ ≤ cε2
(
(N−1σ)r+1|E|r+2,Ω0 + |E|1,∞,Ω1∪Ω2

) |vh|1
≤ cε2

(
(N−1ε ln N)r+1ε−r−3/2 + ε−1 exp (−ασ/ε)

)
|vh|1

≤ cε
(
ε1/2(N−1 ln N)r+1 + N−r−1

)
|vh|1

≤ cε(N−1 ln N)r+1|vh|1 (4.11)
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and

∣∣(a0(E −RhE), vh

)∣∣ ≤ c
[
(N−1σ)r+1|E|r+1,Ω0 + |E|0,∞,Ω1∪Ω2

] |vh|0
≤ c

(
(N−1ε ln N)r+1ε−r−1/2 + exp (−ασ/ε)

)
|vh|0

≤ c
(
ε1/2(N−1 ln N)r+1 + N−r−1

)
|vh|0

≤ c(N−1 ln N)r+1|vh|0. (4.12)

Likewise, we obtain that for A-mesh,

ε2
∣∣((E −RhE)′, v′h

)∣∣ ≤ cε2
(
(N−1σ)r+1|E|r+2,Ω0 + N−r−1|E|r+2,∞,Ω1∪Ω2

) |vh|1
≤ cε2

(
(N−1ε| ln ε|)r+1ε−r−3/2 + N−r−1ε−r−2 exp (−ασ/ε)

)
|vh|1

≤ cεN−r−1
(
ε1/2| ln ε|r+1 + 1

)
|vh|1

≤ cεN−r−1|vh|1 (4.13)

and

∣∣(a0(E −RhE), vh

)∣∣ ≤ c
[
(N−1σ)r+1|E|r+1,Ω0 + N−r−1|E|r+1,∞,Ω1∪Ω2

] |vh|0
≤ c

[
(N−1ε| ln ε|)r+1ε−r−1/2 + N−r−1ε−r−1 exp (−ασ/ε)

]
|vh|0

≤ cN−r−1
(
ε1/2| ln ε|r+1 + 1

)
|vh|0

≤ cN−r−1|vh|0. (4.14)

From (4.11)-(4.14) we conclude that

|Aε(E −RhE, vh)| ≤ c(N−1λ)r+1‖vh‖ε. (4.15)

Noting that the same argument applies to F and G, we thereby obtain

|Aε(u−Rhu, vh)| ≤ c(N−1λ)r+1‖vh‖ε. (4.16)

It follows from (2.2) and (4.8) that

Aε(u−Rhu, uh −Rhu) = Aε(uh −Rhu, uh −Rhu).

Combining this with (2.5) and (4.16) gives the estimate (4.10). ¤

We now turn to an investigation of uniform superconvergence of the numerical solution by
employing the interpolation post-processing technique, as shown in section 3. We can take
the same procedure as that in section 3 but make a slight modification on the interpolation
operator. To this end, we first define the finite-dimensional space Wh̄ by

Wh̄ :=
{

v ∈ H1(I) : v|Ji ∈ Pr+2(Ji), i ∈ Z2N

}
. (4.17)

It is easily seen that Wh̄ ⊂ C(I) by the Sobolev embedding theorem. We denote by Gi the
set of r + 1 Gauss-Lobatto points in Ii, i ∈ Z4N , i.e., Gi = {xik, k ∈ Zr+1}. We choose the r
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distinct points yik, k ∈ Zr in every subinterval Ji, i ∈ Z2N such that {yik, k ∈ Zr} is a subset of
the set (G2i ∪G2i+1) \ {zi, zi+1}. The interpolation operator Th̄ from C(I) to Wh̄ is defined by

(Th̄v)(zi) = v(zi), i ∈ Z2N+1 and (Th̄v)(yik) = v(yik), k ∈ Zr, i ∈ Z2N . (4.18)

It is easy to verify that the interpolation operator Th̄ is well defined. Following similar arguments
as those in Lemmas 3.1 and 3.2, we have that for v ∈ Sh,

‖Th̄v‖ε ≤ c‖v‖ε (4.19)

and

‖u− Th̄u‖ε ≤ c(N−1λ)r+1, (4.20)

where u is the exact solution of problem (2.1) with m = 1.
Using (4.19) and (4.20), we establish in the next theorem the main result of this section,

concerning uniform superconvergence of the Galerkin method on S-mesh or A-mesh for solving
the second-order problem.

Theorem 4.2. Let u be the exact solution of problem (2.1) with m = 1, and let uh be the
solution of Eq. (4.8). Assume that Th̄ is the interpolation operator defined by (4.18). Then, for
sufficiently large N , there exists a positive constant c independent of ε and N such that

‖u− Th̄uh‖ε ≤ c(N−1λ)r+1. (4.21)

Proof. The result follows from the same argument used in Theorem 3.3. ¤

5. Numerical Examples

In this section, we present two numerical examples to confirm the theoretical estimates
obtained in the previous sections.

Example 1. Consider the following fourth-order reaction-diffusion problem

ε2u(4)(x)− [(1 + x(1− x))u′]′ = f(x), x ∈ (0, 1),

u(0) = u′(0) = u(1) = u′(1) = 0,
(5.1)

where f is chosen such that

u(x) = ε

[
exp(−x/ε) + exp(−(1− x)/ε)

1 + exp(−1/ε)
− 1

]
+

1− exp(−1/ε)
1 + exp(−1/ε)

x(1− x) + x2(1− x)2

is the exact solution of (5.1). In this case, m = 2. To obtain the superclose property of
the numerical solution and the superconvergence property of the post-processed solution, we
employ the cubic Hermit spline to solve the problem, as described in the sections 2 and 3. The
theoretical orders of uniform convergence (or superconvergence) for the Galerkin method on S-
mesh and that using the post-processing technique are 2 and 3, respectively, up to logarithmic
factors. It can be seen from Table 5.1 that the numerical results confirm the theoretical estimates
for three different values of ε. Plotted in Figure 5.1 are the convergent curves of errors u− uh

and u − Ph̄uh in the weighted energy norm for ε = 4.605 × 10−7, indicating the rates of
(N−1 ln N)2 and (N−1 ln N)3, respectively. Numerical results demonstrate in Table 5.2 that
the computed orders of convergence (or superconvergence) for the Galerkin method on A-mesh
and that using the post-processing technique are consistent with the theoretical orders, which
are 2 and 3, respectively.
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Table 5.1 Numerical performance of Galkerin methods on S-mesh for the 4th-order problem

ε N ‖u− uh‖ε Order of conv. ‖u− Ph̄uh‖ε Order of conv.

16 4.0053e-4 - 1.3340e-4 -

32 1.5767e-4 1.3450 3.3882e-5 1.9772

1.623e-3 64 5.6952e-5 1.4691 7.4558e-6 2.1841

128 1.9404e-5 1.5534 1.4920e-6 2.3211

256 6.3386e-6 1.6141 2.7973e-7 2.4151

512 2.0059e-6 1.6599 5.0099e-8 2.4812

16 4.9407e-5 - 1.6420e-5 -

32 1.9384e-5 1.3498 4.1639e-6 1.9794

2.451e-5 64 6.9991e-6 1.4696 9.1506e-7 2.1860

128 2.3845e-6 1.5535 1.8284e-7 2.3233

256 7.7895e-7 1.6141 3.4194e-8 2.4188

512 2.4650e-7 1.6599 6.2037e-9 2.4625

16 7.9204e-6 - 2.3904e-6 -

32 2.7069e-6 1.5489 5.7510e-7 2.0554

4.605e-7 64 9.6156e-7 1.4932 1.2258e-7 2.1952

128 3.2695e-7 1.5563 2.5067e-8 2.3247

256 1.0678e-7 1.6144 4.6872e-9 2.4190

512 3.3788e-8 1.6601 8.5294e-10 2.4582

Table 5.2 Numerical performance of Galerkin methods on A-mesh for the 4th-order problem

ε N ‖u− uh‖ε Order of conv. ‖u− Ph̄uh‖ε Order of conv.

16 2.0342e-3 - 1.2751e-3 -

32 5.3484e-4 1.9273 2.0179e-4 2.6597

1.623e-3 64 1.3551e-4 1.9807 2.7065e-5 2.8984

128 3.9991e-5 1.9952 3.4500e-6 2.9718

256 8.5050e-6 1.9988 4.3432e-7 2.9898

512 2.1267e-6 1.9997 5.4734e-8 2.9882

16 6.1682e-4 - 4.7794e-4 -

32 1.7430e-4 1.8233 9.6966e-5 2.3013

2.451e-5 64 4.5136e-5 1.9492 1.4397e-5 2.7517

128 1.1388e-5 1.9868 1.8896e-6 2.9296

256 2.8536e-6 1.9967 2.3920e-7 2.9818

512 7.1381e-7 1.9992 2.9997e-8 2.9953

16 1.4193e-4 - 1.1675e-4 -

32 4.3401e-4 1.7094 2.9115e-5 2.0036

4.605e-7 64 1.1563e-5 1.9082 4.8154e-6 2.5853

128 2.9405e-6 1.9754 6.6256e-7 2.8723

256 7.3832e-7 1.9937 8.4799e-8 2.9659

512 1.8478e-7 1.9984 1.0664e-8 2.9913

Example 2. In this example, we consider the second-order reaction-diffusion problem

−ε2u′′(x) + [2 + cos(x)] u(x) = f(x), x ∈ (0, 1),

u(0)) = u(1) = 0.
(5.2)

We choose f so that problem (5.2) has the exact solution

u(x) = exp(−x/ε) + exp(−(1− x)/ε) + x(1− x)− (1 + exp(−1/ε)).
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Fig. 5.1. The original numerical solution and the post-processed solution based on the Shishkin mesh;

ε = 4.605× 10−7

In this case, m = 1. For both of the meshes we use the piecewise polynomials of degree
2, that is, r = 2. Numerical results presented in Tables 5.1 and 5.2 are about errors and
orders of convergence in the weighted energy norm for the original numerical solution and the
post-processed solution, corresponding to S-mesh and A-mesh respectively. It is clear that the
numerical results confirm the theoretical estimates established in section 4 in terms of both of
the meshes.

Table 5.3 Numerical performance of Galerkin methods on S-mesh for the 2nd-order problem

ε N ‖u− uh‖ε Order of conv. ‖u− Th̄uh‖ε Order of conv.

16 1.2626e-4 - 5.6610e-5 -

32 4.9693e-5 1.3453 1.4270e-5 1.9881

1.612e-4 64 1.7949e-5 1.4691 3.1262e-6 2.1905

128 6.1151e-6 1.5535 6.2388e-7 2.3251

256 1.9976e-6 1.6141 1.1663e-7 2.4193

512 6.3216e-7 1.6599 2.0769e-8 2.4894

16 1.4808e-5 - 6.6383e-6 -

32 5.8277e-6 1.3454 1.6734e-6 1.9880

2.217e-6 64 2.1049e-6 1.4692 3.6661e-7 2.1905

128 7.1714e-7 1.5534 7.3163e-8 2.3251

256 2.3427e-7 1.6141 1.3677e-8 2.4194

512 7.4135e-8 1.6599 2.4357e-9 2.4893

16 2.5204e-6 - 1.1299e-6 -

32 9.9194e-7 1.3453 2.8483e-7 1.9880

6.423e-8 64 3.5828e-7 1.4692 6.2401e-8 2.1905

128 1.2207e-7 1.5534 1.2453e-8 2.3251

256 3.9875e-8 1.6142 2.3281e-9 2.4193

512 1.2619e-8 1.6599 4.1480e-10 2.4887
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Table 5.4 Numerical performance of Galkerin methods on A-mesh for the 2nd-order problem

ε N ‖u− uh‖ε Order of conv. ‖u− Th̄uh‖ε Order of conv.

16 1.1254e-3 - 1.2175e-3 -

32 3.0701e-4 1.8741 2.0397e-4 2.5775

1.612e-4 64 7.8632e-5 1.9651 2.8138e-5 2.8578

128 1.9781e-5 1.9910 3.6138e-6 2.9609

256 4.9530e-6 1.9977 4.5487e-7 2.9900

512 1.2387e-7 1.9995 5.6959e-8 2.9975

16 2.6054e-4 - 3.4630e-4 -

32 7.7098e-5 1.7567 6.9262e-5 2.3219

2.217e-6 64 2.0292e-5 1.9258 1.0485e-5 2.7237

128 5.1429e-6 1.9803 1.3887e-6 2.9165

256 1.2902e-6 1.9950 1.7626e-7 2.9780

512 3.2283e-7 1.9987 2.2118e-8 2.9944

16 6.4261e-5 - 9.4864e-5 -

32 2.0420e-5 1.6540 2.1409e-5 2.1476

6.423e-8 64 5.5273e-6 1.8853 3.5143e-6 2.6069

128 1.4123e-6 1.9685 4.8052e-7 2.8706

256 3.5507e-7 1.9919 6.1551e-8 2.9647

512 8.8892e-8 1.9980 7.7424e-9 2.9909
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