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Abstract

The numerical approximation of the Spectral-Lagrangian scheme developed by the au-

thors in [30] for a wide range of homogeneous non-linear Boltzmann type equations is

extended to the space inhomogeneous case and several shock problems are benchmark.

Recognizing that the Boltzmann equation is an important tool in the analysis of formation

of shock and boundary layer structures, we present the computational algorithm in Section

3.3 and perform a numerical study case in shock tube geometries well modeled in for 1D

in x times 3D in v in Section 4. The classic Riemann problem is numerically analyzed for

Knudsen numbers close to continuum. The shock tube problem of Aoki et al [2], where

the wall temperature is suddenly increased or decreased, is also studied. We consider the

problem of heat transfer between two parallel plates with diffusive boundary conditions for

a range of Knudsen numbers from close to continuum to a highly rarefied state. Finally,

the classical infinite shock tube problem that generates a non-moving shock wave is stud-

ied. The point worth noting in this example is that the flow in the final case turns from a

supersonic flow to a subsonic flow across the shock.

Mathematics subject classification: 65T50, 76P05, 76M22, 80A20, 82B30, 82B40, 82B80

Key words: Spectral Numerical Methods, Lagrangian optimization, FFT, Boltzmann Trans-

port Equation, Conservative and non-conservative rarefied gas flows.

1. Introduction

A gas flow may be modeled on either a microscopic or a macroscopic level. The macroscopic
model regards the gas as a continuum and the description is in terms of variations of the
macroscopic velocity, density, pressure and temperature with space and time. On the other
hand, the microscopic or molecular model recognizes the particulate structure of a gas as a
myriad of discrete molecules and ideally provides information on the position and velocity of
every molecule at all times. However, a description in such detail is rarely, if ever, practical and a
gas flow is almost invariably described in terms of macroscopic quantities. The two models must
therefore be distinguished by the approach through which the description is obtained, rather
than by the nature of the description itself. This paper is concerned with the microscopic
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approach and the first question which must be answered is whether this approach can solve
problems that could not be solved through the conventional continuum approach.

A gas at standard conditions (1 bar, 25oC) contains ca. 2.43 × 1016 particles per cubic
millimeter. Despite this huge number of individual particles, a wide variety of flow and heat
transfer problems can be described by a rather low number of partial differential equations,
namely the well known equations of Navier-Stokes. Due to the many collisions between par-
ticles which effectively distribute disturbances between particles, the particles behave not as
individuals, but as a continuum. Under standard conditions, a particle collides with the others
very often, about 109 times per second, and travels only very short distances between collisions,
about 5×10−8m. Both numbers, known as collision frequency ν and mean free path l0, depend
on the number density of the gas.

The macroscopic quantities at any point in a flow may be identified with average values of
appropriate molecular quantities; the averages being taken over the molecules in the vicinity
of the point. The continuum description is valid as long as the smallest significant volume
in the flow contains a sufficient number of molecules to establish meaningful averages. The
existence of a formal link between the macroscopic and microscopic quantities means that the
equations which express the conservation of mass, momentum and energy in the flow may be
derived from either approach. While this might suggest that neither of the approaches can
provide information that is not also accessible to the other, it must be remembered that the
conservation equations do not form a determinate set unless the shear stresses and heat flux
can be expressed in terms of the other macroscopic quantities. It is the failure to meet this
requirement, rather than the breakdown of the continuum description, that places a limit on the
range of validity of the continuum equations. More specifically, the Navier-Stokes equations of
continuum gas dynamics fail when gradients of the macroscopic variables become so steep that
their scale length is of the same order as the average distance traveled by the molecules between
collisions, or mean free path, l0. A less precise but more convenient parameter is obtained if the
scale length of the gradients is replaced by the characteristic dimension of the flow, Lflow. Flow
problems in which typical length scales Lflow are much larger than the mean free path l0, or in
which the typical frequencies ω are much smaller than ν, are well described through the laws
of Navier-Stokes. The Knudsen number Kn = l0/Lflow is the relevant dimensionless measure
to describe these conditions, and the Navier-Stokes equations are valid as long as Kn ¿ 1.

This condition fails to hold when the relevant length scale Lflow becomes comparable to the
mean free path l0. This can happen either when the mean free path becomes large, or when
the length Lflow becomes small. A typical example of a gas with large mean free path is high
altitude flight in the outer atmosphere, where the mean free path must be measured in meters,
not nanometers, and the Knudsen number becomes large for, e.g., a spacecraft. Miniaturization,
on the other hand, produces smaller and smaller devices, e.g., micro-electro-mechanical systems
(MEMS), where the length Lflow approaches the mean free path.

Moreover, the Navier-Stokes equations will fail in the description of rapidly changing pro-
cesses, when the process frequency ω approaches, or exceeds, the collision frequency ν. The
Knudsen number (Kn = ω/ν) is used to classify flow regimes as follows:

• Kn ¿ 1, i.e., Kn - 0.01: The hydrodynamic regime, which is very well described by the
Navier-Stokes equations.

• 0.01 - Kn - 0.1: The slip flow regime, where the Navier-Stokes equations can describe
the flow well, but must be supplied with boundary conditions that describe velocity slip
and temperature jumps at gas-wall interfaces (rarefaction effects).
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• 0.1 - Kn - 10: The transition regime, where the Navier-Stokes equations fail, and the
gas must be described in greater detail, e.g., by the Boltzmann equation, or by extended
macroscopic models.

• Kn & 10: Free molecular flow, where collisions between particles do not play an important
role and the flow is dominated by particle-wall interactions.

Rarefied gases are gases which are outside the hydrodynamic regime, i.e., Kn & 0.01. For
Knudsen numbers 0.01 - Kn - 1, the gas still behaves as a continuum but Navier-Stokes
equations fail to describe the underlying physical processes and thus lose their validity and
must be replaced by more refined sets of continuum equations that describe the behavior of the
gas. There are certain approximation methods to derive equations that allow one to describe
these physical processes in rarefied gases and the evaluation of the resulting equations. Most of
these methods rely on expansions in the Knudsen number, Kn, and thus yield equations that
cannot cover the full transition regime, but are restricted to 0.01 - Kn - 1.

A rarefied gas is well described by the Boltzmann equation which describes the statistical
state of the gas on the microscopic level accounting for the translation and collisions of the
particles. The solution of the Boltzmann equation is the phase probability density distribution
f which is a measure for the likelihood to find molecules at a location x with molecular velocities
v at a given time t. The Boltzmann equation is the central equation in the kinetic theory of
gases.

Macroscopic quantities such as mass density ρ, mean velocity (bulk velocity) V, tempera-
ture T , pressure tensor p, and heat flux vector q are the weighted averages of the phase density,
obtained by integration over the molecular velocity. One way to compute the macroscopic quan-
tities is to use rational methods to deduce macroscopic transport equations from the Boltzmann
equation, that is to get transport equations for the macroscopic quantities ρ,V, T , etc. This
is suitable for processes at small and moderate Knudsen numbers, which as it turns out, can
be described by a small number of equations. Alternatively, the Boltzmann equation can be
solved and its solution f integrated over the molecular velocity, v, domain. Such an approach
is not restricted by the range of the Knudsen number values and can be used in analysis of
systems where Kn & 0.01 (rarefied gases). The work in this paper concentrates on solving the
Boltzmann equation for rarefied gases and subsequent analysis of 3D in v (space homogenous)
and 1D in x and 3D in v (space inhomogeneous) systems.

In addition to the description based on the Boltzmann equation, the study of rarefied flows
requires an additional piece of information concerning the interaction of gas molecules with the
solid (or, possibly liquid) surfaces that bound the gas expanse. It is to this interaction that one
can trace the origin of the drag and lift exerted by the gas on the body and the heat transfer
between the gas and the solid boundary.

The study of gas-surface interaction may be regarded as a bridge between the kinetic theory
of gases and solid state physics. The difficulties of a theoretical investigation are due mainly to
our lack of knowledge of the structure of surface layers of solid bodies and hence of the effective
interaction potential of the gas molecules with the wall. When a molecule impinges upon a
surface, it is absorbed and may form chemical bonds, dissociate, become ionized, or displace
surface molecules. Its interaction with the solid surface depends on the surface finish, the
cleanliness of the surface, its temperature, etc. It may also vary with time because of outgassing
from the surface. Preliminary heating of a surface also promotes purification of the surface
through emission of adsorbed molecules. In general, adsorbed layers may be present; in this
case, the interaction of a given molecule with the surface may also depend on the distribution of
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molecules impinging on a surface element. This physical aspect has a mathematical counterpart:
The Boltzmann equation must be accompanied by boundary conditions, which describe the
aforementioned interaction of the gas molecules with the solid walls.

Rarefied gas analysis using the Boltzmann equation has a vast number of applicable areas.
In the area of environmental problems, understanding and controlling the formation, motion,
reactions, and evolution of particles of varying composition and shapes, as well as their space-
time distribution under gradients of concentration, pressure, temperature, and the action of
radiation, has grown in importance. This is because of the increasing awareness of the local and
global problems related to the emission of particles from electric power plants, chemical plants,
and vehicles as well as of the role of small particles in fog and cloud formation, radioactive
releases, etc. Another area of application of rarefied gas dynamics is in the design of micro
machines whose sizes range from a few microns to a few millimeters. Rarefied flows can form
the basis of design of important micromechanical systems. In this paper, the areas of formation,
propagation and analysis of shocks and some some classical hydrodynamic examples have been
studied.

From the computational point of view, one of the well-known and well-studied methods
developed in order to solve the Boltzmann equation is a stochastic based method called “Direct
Simulation Monte-Carlo” (DSMC) developed initially by Bird [4] and Nanbu [42] and more
recently by [47,48]. This method is usually employed as an alternative to hydrodynamic solvers
to model the evolution of moments or hydrodynamic quantities. In particular, this method
have been shown to converge to the solution of the classical Boltzmann equation in the case of
monatomic rarefied gases [52]. One of the main drawbacks of such methods is the inherent sta-
tistical fluctuations in the numerical results, which becomes very expensive or unreliable in the
presence of non-stationary flows or non equilibrium statistical states, where more information
is desired about the evolving probability distribution. Currently, there is extensive work from
Rjasanow and Wagner [48] and references therein, to determine accurately the high-velocity tail
behavior of the distribution functions from DSMC data. Implementations for micro irreversible
interactions such as inelastic collisions have been carefully studied in [29].

In contrast, a deterministic method computes approximations of the probability distribution
function using the Boltzmann equation, as well as approximations to the observables like density,
momentum, energy, etc. There are currently two deterministic approaches to the computations
of non-linear Boltzmann, one is the well known discrete velocity models and the second a spectral
based method, both implemented for simulations of elastic interactions, i.e., energy conservative
evolution. Discrete velocity models were developed by Broadwell [16] and mathematically
studied by Cabannes, Illner and Kawashima among many authors [17, 35, 36]. More recently
these models have been studied for many other applications on kinetic elastic theory in [7, 21,
33, 39, 54]. These models have not adapted to inelastic collisional problems up to this point
according to our best knowledge.

Spectral based models, which are the ones of our choice in the current work where already
implemented by the authors in the space homogeneous setting for conservative or dissipative in-
teractions [30]. These methods, which have been originally developed by Pareschi, Gabetta and
Toscani [26], and later by Bobylev and Rjasanow [13] and Pareschi and Russo [46], are supported
by the ground breaking work of Bobylev [5] using the Fourier Transformed Boltzmann Equation
to analyze its solutions in the case of Maxwell type of interactions. After the introduction of the
inelastic Boltzmann equation for Maxwell type interactions and the use of the Fourier trans-
form for its analysis by Bobylev, Carrillo and Gamba [6], and more general complex dissipative
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flow models [8, 9], the spectral based approach is becoming the most suitable tool to deal with
deterministic computations of kinetic models associated with the Boltzmann non-linear binary
collisional integral, both for elastic or inelastic interactions. More recent implementations of
spectral methods for the non-linear Boltzmann equation are due to Bobylev and Rjasanow [15],
who developed a method using the Fast Fourier Transform (FFT) for Maxwell type interactions,
and then for Hard-Sphere interactions [14] using generalized Radon and X-ray transforms via
FFT. Simultaneously, L. Pareschi and B. Perthame [45] developed a similar scheme using FFT
for Maxwell type interactions. Later, I. Ibragimov and S. Rjasanow [34] developed a numerical
method to solve the space homogeneous Boltzmann Equation on a uniform grid for variable
hard potential (VHP) interactions with elastic collisions. Our current spectral scheme [30] in-
corporates Lagrange multipliers to enforce conservation properties and it works both in the
for inelastic or elastic interactions for both Maxwell type or variable hard spheres interactions
as those analyzed in [1, 10, 11, 27, 28, 43] were rigorous arguments for the formation of non-
equilibrium statistical states are found. These analytical and qualitative results not only have
inspired us in the design of the computational algorithm and scheme, but also are serving us in
the analysis of the spectral accuracy and approximation properties of the space inhomogeneous
scheme [31].

We mention that, most recently, Filbet and Russo [23, 24] implemented a method to solve
the space inhomogeneous Boltzmann equation using the previously developed spectral methods
in [45,46]. The afore mentioned work in developing deterministic solvers for the non-linear BTE
have been restricted to elastic, conservative interactions. Finally, Mouhot and Pareschi [41]
have studied the approximation properties of the schemes. Part of the difficulties in their
strategy arises from the constraint that the numerical solution has to satisfy conservation of
the initial mass. To this end, the authors propose the use of a periodic representation of the
distribution function to avoid aliasing. There is no conservation of momentum and energy in
any of the solvers proposed in [23, 24, 41] and in all cases, which are developed in 2 and 3
velocity dimensions, do not guarantee the positivity of the solution due to the fact that the
truncation of the velocity domain combined with the Fourier method makes the distribution
function negative at times.

The lack of positivity is a shortcoming of the spectral approach remains in our proposed
technique, however we are able to handle conservation in a very natural way by means of
Lagrange multipliers [30]. Our proposed approach is different and it takes a smaller number of
operations to compute the collision integral.

In the case of the space inhomogeneous problems presented here, our interest lies in shock
tube test problems and in the the approximation of shock waves or shock layers. In the Euler
set of equations in classical fluid dynamics, the shock layer is treated as a discontinuity. Its
internal structure is discussed using the Navier-Stokes equations. However, the thickness of
such a shock layer is of the order of mean free path and thus the Navier-Stokes equations are
invalid for such an analysis. For this purpose, the Boltzmann equation is used.

Consider a time-independent unidirectional flow in an infinite expanse of a gas, where the
states at infinities are both uniform. The states at infinities being uniform, the velocity distribu-
tion functions are Maxwellian with corresponding densities, flow velocities and pressures. Such
a choice of averages cannot be made arbitrarily and are derived from the Rankine-Hugoniot
relations. Obviously, when the two states at infinities are equal, the uniform state is a solution.
The mathematical theory of the existence of a nontrivial solution is studied by Caflisch and
Nicolaenko [19] and Liu and Yu [38], and the existence and uniqueness of a weak shock wave
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solution, where the two uniform states at infinities are very close, is proved. Such a profile
has been described by Grad [32] and is given by a slowly varying local Maxwellian with the
parametric averages given from the fluid dynamic equations. Liu and Yu [38] also prove that
the distribution function is positive in the shock layer and that the solution is stable.

Other numerical analysis of shock structures include the pioneering work of Mott and Smith
in [40], Liepmann, Narasimha and Chahine [37], Salwen, Grosch and Ziering [49], Ohwada [44],
Cercignani, Frezzotti and Grosfils [22], Takata, Aoki and Cercignani [51]. Many of the above
are discussions of numerical approximations of the shock wave rather than their physical nature.
Takata, Aoki and Cercignani [51] carried out the analysis on the basis of Grad [32] and Caflisch
[18] for a hard-sphere gas, according to which the trace of the singular character at upstream
infinity remains at downstream infinity. Yu [53] used Hilbert expansions to study the behavior
of a gas when the length and time scales of variations are much larger than the mean free path
and mean free time respectively and extended the expansion to include a discontinuity caused
by the shock wave in the solution. The above analysis was done for a one space dimensional
case where it was also proven that the obtained solution approximates the Boltzmann solution
for weak shocks. It is expected that in a one dimensional problem, where the two equilibrium
states are in contact with each other initially, the Euler equations dictate the propagation of
the initial shock discontinuity where no expansion wave appears. Then, the time evolution of
the Boltzmann equation reveals the formation of a shock layer through the initial layer and its
propagation, which supplements the work of Yu [53].

2. The Space Inhomogeneous Boltzmann Transport Equation

The Boltzmann Transport Equation describes the statistical (kinetic) evolution of a single
point probability distribution function f(x,v, t) for x ∈ Ωx ⊂ Rd,v ∈ Rd (where d is the velocity
space dimension). The probability distribution function f(x,v, t) describes the probability of
finding a particle at x with velocity v at time t. For variable hard potential interactions, the
corresponding initial value-boundary value problem in the presence of a force field F with a
post-collisional specular reflection direction σ, is given by

∂

∂t
f(x,v, t) + v · 5xf(x,v, t) +5v · (Ff(x,v, t)) = Q(f, f) , (2.1)

with

f(x,v, 0) = f0(x,v) ,

f(x,v, t) = fB(x,v, t) ∀ x ∈ ∂Ωx ,

where the initial probability distribution f0(x,v) is assumed to be integrable and the boundary
condition fB(x,v, t) ∀ x ∈ ∂Ωx is given in Section 2.2.

The collision or interaction operator Q(f, f) is a bi-linear integral form that can be defined in
weak or strong form. The classical Boltzmann formulation is given in strong form is classically
given in three space dimensions for hard spheres by

Q(f, f) =
∫

w∈Rd,η∈Sd−1

(
1
′e ′J

f(x, ′v, t)f(x, ′w, t)− f(x,v, t)f(x,w, t)
)
|u · η| dηdw, (2.2)

where the integration over the sphere is done with respect to η, the direction that contains the
two centers at the time of the interaction, also referred as the impact direction. We denote by
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′v and ′w the pre-collisional velocities corresponding to v and w. In the case of micro-reversible
(elastic) collisions one can replace ′v and ′w with v′ and w′ respectively in the integral part of
(2.2). The exchange of velocities law is given by

u = v−w relative velocity

v′ = v− 1 + e

2
(u · η)η, w′ = w +

1 + e

2
(u · η)η .

(2.3)

This collisional law is equivalent to u′ · η = −eu · η and u′ ∧ η = u ∧ η.
The parameter e = e(|u · η|) ∈ [0, 1] is the restitution coefficient covering the range from

sticky to elastic interactions, so ′e = e(|′u · η|), with ′u the pre-collisional relative velocity. The
Jacobian J = |∂(v′,w′)

∂(v,w) | of post-collisional velocities with respect to pre-collisional velocities

depends also on the local energy dissipation [20]. In particular, ′J = |∂(′v,′w)
∂(v,w) |. In addition, it

can be seen in general that it is a function of the quotient of relative velocities and the restitution
coefficient as well. For example and in the particular case of hard spheres interactions

J(e(z)) = e(z) + z e(z) = (z e(z))z with z = |u · η| .
When e = 1 then the collision law is equivalent to specular reflection with respect to the plane
containing η, orthogonal to the corresponding tangent plane to the sphere of influence. The
direction η is also called the impact direction. We note that J = 1 when e = 1, that is, for
elastic hard sphere interactions.

The corresponding weak formulation of the collisional form becomes more transparent and
crucial in order to write the inelastic equation in higher dimensions or for more general collision
kernels. Such formulation, originally due to Maxwell for the space homogeneous form is often
called the Maxwell form of the Boltzmann equation. The integration is parametrized in terms
of the center of mass and relative velocity. And on the d− 1 dimensional sphere, integration is
done with respect to the unit direction σ given by the elastic post collisional relative velocity,
that is ∫

v∈Rd

Q(f, f)φ(v) dv

=
∫

v, w ∈ R2d,

σ ∈ Sd−1

f(x,v, t)f(x,w, t)[φ(v′)− φ(v)] B(|u|, µ) dσdwdv, (2.4)

where the corresponding velocity interaction law is now given by

v′ = v +
β

2
(|u|σ − u), w′ = w− β

2
(|u|σ − u) ,

u′ = (1− β)u + β|u|σ (inelastic relative velocity) ,

µ = cos(θ) =
u · σ
|u| (cosine of the elastic scattering angle) ,

B(|u|, µ) = |u|λ b(cos θ) with 0 ≤ λ ≤ 1 ,

ωd−2

∫ π

0

b(cos θ) sind−2 θdθ < K (Grad cut-off assumption) ,

β =
1 + e

2
(energy dissipation parameter) .

(2.5)

We denote by ′v and ′w the pre-collision velocities corresponding to v and w. In the case of
micro-reversible (elastic) collisions one can replace ′v and ′w with v′ and w′ respectively in the
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integral part of (2.1). We assume the differential cross section function b(u ·σ/|u|) is integrable
with respect to the post-collisional specular reflection direction σ in the d − 1 dimensional
sphere, referred as the Grad cut-off assumption, and that b(cos θ) is renormalized such that

∫

Sd−1
b

(
u · σ
|u|

)
dσ = ωd−2

∫ π

0

b(cos θ) sind−2 θ dθ

=ωd−2

∫ 1

−1

b(µ)(1− µ2)(d−3)/2dµ = 1 , (2.6)

where the constant ωd−2 is the measure of the d− 2 dimensional sphere and the corresponding
scattering angle is θ is defined by cos θ = σ · u/|u|. The above equation 2.6 is written for a
general d.

The parameter λ regulates the collision frequency as a function of the relative speed |u|.
It accounts for inter particle potentials defining the collisional kernel and they are referred to
as Variable Hard Potentials (VHP) whenever 0 < λ < 1, Maxwell Molecules type interactions
(MM) for λ = 0 and Hard Spheres (HS) for λ = 1. The Variable Hard Potential collision kernel
then takes the following general form:

B(|u|, µ) = Cλ(σ)|u|λ , (2.7)

with Cλ(σ) = b(θ)/4π, λ = 0 for Maxwell type of interactions; Cλ(σ) = a2/4, λ = 1 for Hard
Spheres (with a = particle diameter). For 3-D in v, Cλ(σ) = 1/4π. In addition, if Cλ(σ) is
independent of the scattering angle we call the interactions isotropic. Otherwise we refer to
them as anisotropic Variable Hard Potential interactions.

Depending on their nature, collisions either conserve density, momentum and energy (elastic)
or density and momentum (inelastic) or density (elastic - linear Boltzmann operator), depending
on the number of collision invariants the operator Q(f, f) has. In the case of the classical
Boltzmann equation for rarefied (elastic) monatomic gases, the collision invariants are exactly
d+2, that is, according to the Boltzmann theorem, the number of polynomials in velocity space
v that generate φ(v) = A + B · v + C|v|2, with C ≤ 0. In particular, one obtains the following
classical conserved quantities written in d = 3 dimensions:

Density ρ(x, t) =
∫

v∈Rd

f(x,v, t)dv ,

Flow velocity vector V(x, t) =
1

ρ(x, t)

∫

v∈Rd

vf(x,v, t)dv ,

Temperature 3RT (x, t) =
1

ρ(x, t)

∫

v∈Rd

|v−V|2f(x,v, t)dv ,

Pressure p(x, t) =
1
3

∫

v∈Rd

|v−V|2f(x,v, t)dv = Rρ(x, t)T ,

Specific internal energy e(x, t) =
1

2ρ(x, t)

∫

v∈Rd

|v−V|2f(x,v, t)dv =
3
2
RT ,

Stress tensor, p(x, t) = {pij}(x, t) pij =
∫

v∈Rd

(vi − Vi)(vj − Vj)f(x,v, t)dv ,

Heat-flow vector q(x, t) =
1
2

∫

v∈Rd

(v−V)|v−V|2f(x,v, t)dv ,

(2.8)
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where R is the specific gas constant. Of significant interest from the statistical view point are
the evolution of moments or observables, at all orders. They are defined by the dynamics of
the corresponding time evolution equation for the velocity averages, given by

∂

∂t
Mj(x, t) =

∫

v∈Rd

f(x,v, t)v©∨ jdv =
∫

v∈Rd

Q(f, f)v©∨ jdv , (2.9)

where, v©∨ j = the standard symmetric tensor product of v with itself, j times. Thus, according
to (2.8), for the classical elastic Boltzmann equation, the first d + 2 moments are conserved,
meaning,

Mj(x, t) = M0,j =
∫

v∈Rd

f0(x,v)v©∨ jdv for j = 0, 1;

and
E(x, t) = tr(M2)(x, t) = E0 =

∫

v∈Rd

f0(x,v)|v|2dv.

Other higher order moments of interest and alternate moment forms are

MomentumFlow M2(x, t) =
∫

Rd

vvT f(x,v, t)dv (2.10a)

SpecificinternalEnergy E(x, t) =
1

2ρ(t)

(
tr(M2(x, t))− ρ(x, t)|V(x, t)|2

)
, (2.10b)

with k− Boltzmann constant.

2.1. Spectral method

Let v = (v1, v2, . . . , vd) be the velocity space variable and ζ = (ζ1, ζ2, . . . , ζd) be the Fourier
space variable. One of the pivotal points in the derivation of the spectral numerical method,
developed by the authors in [30] for the computation of the non-linear Boltzmann equation lies
in the representation of the collision integral in Fourier space by means of its weak form. For
ease of notation, the time and space dependence in f are ignored in the rest of this chapter.
Then for a suitably regular test function ψ(v), the weak form of the collision integral is given
by

∫

v∈Rd

Q(f, f)ψ(v)dv =
∫

(w, v) ∈ Rd × Rd,

σ ∈ Sd−1

f(v)f(w)B(|u|, µ)
(

ψ(v′)− ψ(v)
)

dσdwdv , (2.11)

where v′,w′,u, B(|u|, µ) are given by (2.5). In particular,

ψ(v) = e−iζ·v/(
√

2π)d,

where ζ is the Fourier variable, we get the Fourier Transform of the collision integral through
its weak form

Q̂(ζ) =
1

(
√

2π)d

∫

v∈Rd

Q(f, f)e−iζ·vdv

=
∫

(w,v)∈Rd×Rd, σ∈Sd−1

f(v)f(w)
B(|u|, µ)
(
√

2π)d

(
e−iζ·v′ − e−iζ·v

)
dσdwdv . (2.12)
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We will use [̂.] = F(.) to denote the Fourier transform and F−1 for the classical inverse Fourier
transform. Plugging in the definitions of collision kernel B(|u|, µ) = Cλ(σ)|u|λ (which in the
case of isotropic collisions would just be the Variable Hard Potential collision kernel) and the
post collisional velocity, v′ from (2.5), we get

Q̂(ζ) =
1

(
√

2π)d

∫
(w, v) ∈ Rd × Rd,

σ ∈ Sd−1

f(v)f(w)Cλ(σ)|u|λe−iζ·v
(

e−i β
2 ζ·(|u|σ−u)−1

)
dσdwdv . (2.13)

From u = v −w, we have w = v − u ⇒ dw = du [Jacobian of this change of variable matrix
is 1]. This gives

Q̂(ζ) =
∫

(w, v) ∈ Rd × Rd,

σ ∈ Sd−1

f(v)f(v− u)Cλ(σ)|u|λe−iζ·v[e−i β
2 ζ·(|u|σ−u)) − 1]dσdudv. (2.14)

Upon further simplification, (2.14) can be rewritten as

Q̂(ζ) =
1

(
√

2π)d

∫

u∈Rd

Gλ,β(u, ζ)
∫

v∈Rd

f(v)f(v− u)e−iζ·vdvdu

=
∫

u∈Rd

Gλ,β(u, ζ)F [f(v)f(v− u)]du , (2.15)

where

Gλ,β(u, ζ) =
∫

σ∈Sd−1

Cλ(σ)|u|λ[e−i β
2 ζ·(|u|σ−u)) − 1]dσ

=|u|λ
[
ei β

2 ζ·u
∫

σ∈Sd−1

(Cλ(σ)e−i β
2 |u|ζ·σ − 1)dσ

]
. (2.16)

Note that (2.16) is valid for both isotropic and anisotropic interactions. For the former type, a
simplification ensues due to the fact the Cλ(σ) is independent of σ ∈ Sd−1:

Gλ,β(u, ζ) = Cλωd−1 |u|λ
[
ei β

2 ζ.usinc(
β|u||ζ|

2
)− 1

]
. (2.17)

Thus, it is seen that the integration over σ on the unit sphere Sd−1 is completely independent,
and there is actually a closed form expression for this integration, given by (2.17) in the case
of isotropic collisions. In the case of anisotropic collisions, the dependence of Cλ on σ is
again isolated into a separate integral over the unit sphere Sdi− as given in (2.16). The above
expression can be transformed for elastic collisions β = 1 into a form suggested by Rjasanow
and Ibragimov in d = 3 [34].

Further simplification of (2.15) is possible by observing that the Fourier transform inside
the integral can be written in terms of the Fourier transform of f(v) since it can also be written
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as a convolution of the Fourier transforms. Let fu(v) = f(v− u)

Q̂(ζ) =
∫

u∈Rd

Gλ,β(u, ζ)F(f fu)(ζ)du

=
∫

u∈Rd

Gλ,β(u, ζ)
1

(
√

2π)d
(f̂ ∗ f̂u)(ζ)du

=
∫

u∈Rd

Gλ,β(u, ζ)
1

(
√

2π)d

∫

ξ∈Rd

f̂(ζ − ξ)f̂u(ξ)dξdu

=
∫

u∈Rd

Gλ,β(u, ζ)
1

(
√

2π)d

∫

ξ∈Rd

f̂(ζ − ξ)f̂(ξ)e−iξ·udξdu

=
1

(
√

2π)d

∫

ξ∈Rd

f̂(ζ − ξ)f̂(ξ)Ĝλ,β(ξ, ζ)dξ, (2.18)

where
Ĝλ,β(ξ, ζ) =

∫

u∈Rd

Gλ,β(u, ζ)e−iξ·udu.

In particular, Q̂(ζ) is a weighted convolution in Fourier space.
Let u = re, e ∈ Sd−1, r ∈ R. For example in d = 3, follows the convolution weight in Fourier

space can be written as

Ĝλ,β(ξ, ζ) =
∫

r

∫

e

r2G(re, ζ)e−irξ·ededr (2.19)

=16π2Cλ

∫

r

rλ+2

[
sinc

(
rβ|ζ|

2

)
sinc

(
r|ξ − β

2
ζ|

)
− sinc(r|ξ|)

]
dr .

Since the domain of computation is restricted to Ωv = [−L,L)3, u ∈ [−2L, 2L)3 then r ∈
[0, 2

√
3L], and the right hand side of (2.19) is the finite integral

16π2Cλ

∫ 2
√

3L

0

rλ+2

[
sinc

(
rβ|ζ|

2

)
sinc

(
r|ξ − β

2
ζ|

)
− sinc(r|ξ|)

]
dr. (2.20)

A point worth noting here is that the above formulation (2.18) results in O(N2d) number of
operations, where N is the number of discretizations in each velocity direction. Also, exploiting
the symmetric nature in particular cases of the collision kernel one can reduce the number of
operations to O(Nd log N) in velocity space (or N log N if N counts the total number of Fourier
nodes in d dimensional velocity space).

2.2. Kinetic Boundary Conditions: Simple Boundary

On a boundary or a wall where there is no mass flux across it, which will be called a simple
boundary, the following condition called the Maxwell-type condition is widely used (for d = 3):

f(x,v, t) =(1− α)f(x,v− 2[(v−Vw) · n]n, t)

+
ασw

(2πRTw)3/2
exp

(
−|v−Vw|2

2RTw

)
[(v−Vw) · n > 0] ,

σw =−
(

2π

RTw

)1/2 ∫

[(v−Vw)·n<0]

[(v−Vw) · n]f(x,v, t)dv , (2.21)
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where Tw and Vw are, respectively, the temperature and velocity of the boundary; n is the unit
normal vector to the boundary, pointed to the gas, and α (0 ≤ α ≤ 1) is the accommodation
coefficient. These quantities depend on the position of the boundary. In (2.21), the case α = 1
is called the diffuse-reflection condition, and α = 0 the specular-reflection condition.

More generally, the boundary condition is expressed in terms of a scattering kernel of the
form KB(v,v∗,x, t) as

f(x,v, t) =
∫

(v∗−Vw)·n<0

KB(v,v∗,x, t)f(x,v∗, t)dv∗ [(v−Vw) · n > 0] . (2.22)

The kernel KB(v,v∗,x, t) is required to satisfy the following conditions:

• KB(v,v∗) ≥ 0 [(v−Vw) · n > 0, (v∗ −Vw) · n < 0],

• −
∫

[(v−Vw)·n>0]

(v−Vw) · n
(v∗ −Vw) · nKB(v,v∗)dv = 1 [(v−Vw) · n > 0, (v∗ −Vw) · n < 0],

which corresponds to the condition of a simple boundary.

• When the kernel KB is determined by the local condition of the boundary,

fB(v) =
∫

[(v∗−Vw)·n<0]

KB(v,v∗)fB(v∗)dv∗ [(v−Vw) · n > 0] , (2.23)

where

fB(v) =
ρ

2πRTw
exp

(
−|v−Vw|2

2RTw

)
,

with ρ being arbitrary, and the other Maxwellians do not satisfy the relation (2.23). This
uniqueness condition excludes the specular reflection. The condition (2.23) is the result of
the local property of the kernel KB and the natural requirement that the equilibrium state at
temperature T̄w and the velocity V̄w is established in a box with a uniform temperature T̄w and
moving with a uniform velocity v̄w.

For the Maxwell-type condition (2.21), the scattering kernel KB is given by

KB(v,v∗) =KBM (v,v∗)

=
−α

2π(RTw)2
[(v∗ −Vw) · n] exp

(
−|v−Vw|2

2RTw

)

+ (1− α)δ(v∗ − [v− 2[(v−Vw) · n]n]) ,

where δ(v) is the Dirac delta function.
When dealing with special boundary conditions like an interface of a gas with its condensed

phase, a mixed-type condition is often used [50].

2.3. Non-dimensional Formulation

Throughout the rest of the paper, nondimensional variables and equations will be used. Such
a representation is essential as it captures the flow scales of the physical system. In order to
nondimensionalize the Boltzmann equation and related variables, we introduce reference quan-
tities. Let xr, pr, Tr and tr be reference length, pressure, temperature and time, respectively,
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and let ρr = pr/RTr, vr =
√

2RTr = reference velocity. Then the nondimensional variables are
defined as follows:

x̂ =
x
xr

, t̂ =
t

tr
, v̂ =

v
vr

,

f̂ =
f

ρrv
−d
r

, F̂ =
F

v2
r/xr

, ρ̂ =
ρ

ρr
,

V̂ =
V
vr

, T̂ =
T

Tr
, p̂ =

p

pr
,

p̂ =
p
pr

, q̂ =
q

prvr
, V̂w =

Vw

vr
,

T̂w =
Tw

Tr
, p̂w =

pw

pr
= ρ̂wT̂w . (2.24)

Then, the nondimensional form of the Boltzmann equation for f̂ is

Sh
∂f̂

∂t̂
+ v̂ · 5x̂(f̂) +5v̂ · (f̂ F̂) =

1
k
Q̂(f̂ , f̂) , (2.25a)

Q̂(f̂ , ĝ) =
1
2

∫

v̂∗×α

(
f̂ ′ĝ′∗ + f̂ ′∗ĝ

′ − f̂ ĝ′∗ − f̂ ′∗ĝ
′
)

B̂dΩ(α)dv̂∗ , (2.25b)

where

Sh =
xr

tr
√

2RTr

, k =
√

π

2
Kn,

B̂ = B(|α · (v̂∗ − v̂)|/|v̂∗ − v̂|, |v̂∗ − v̂|),
dv̂ = dv̂1 . . . dv̂d, dv̂ = dv̂∗1 . . . dv̂∗d,

f̂ = f̂(v̂), f̂∗ = f̂(v̂∗), f̂ ′ = f̂(v̂′), f̂ ′∗ = f̂(v̂′∗) ,

v̂′ = v̂ + α(α · (v̂∗ − v̂)), v̂′∗ = v̂∗ − α(α · (v̂∗ − v̂)), (2.26)

where Sh is called the Strahal number and Kn is the Knudsen number. The nondimensional
generalized collision integral satisfies the following symmetry relation for φ(v̂), f̂(v̂), ĝ(v̂),

∫
φ(v̂)Q̂(f̂ , ĝ)dv̂ =

1
8

∫ (
φ + φ∗ − φ′ − φ′∗

)(
f̂ ′ĝ′∗ + f̂ ′∗ĝ

′ − f̂ ĝ′∗ − f̂ ′∗ĝ
′
)

B̂dΩdv̂∗dv̂ . (2.27)

From (2.27) and (2.3), the relations between the nondimensional macroscopic variables ρ̂, V̂, T̂ ,

etc. and the nondimensional velocity distribution function f̂ , all written in 3-dimensions can
be derived to give

ρ̂ =
∫

f̂dv̂, ρ̂V̂ =
∫

v̂f̂dv̂,

3
2
ρ̂T̂ =

∫
|v̂− V̂|2f̂dv̂, p̂ = ρ̂T̂ ,

p̂ = 2
∫

(v̂− V̂)(v̂− V̂)T f̂dv̂,

q̂ = 2
∫

(v̂− V̂)|v̂− V̂|2f̂dv̂. (2.28)
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The nondimensional Maxwellian distribution function is given by

M̂ρ̂,V̂,T̂ =
ρ̂

(πT̂ )3/2
exp

(
−|v̂− V̂|2

T̂

)
. (2.29)

Correspondingly, for d = 3, the nondimensional forms of the conservation equations are then

Sh
∂ρ̂

∂t̂
+5x̂ · (ρ̂V̂) = 0, (2.30a)

Sh
∂

∂t̂
(ρ̂V̂i) +

3∑

j=1

∂

∂x̂j
(ρ̂V̂iV̂j +

1
2
p̂ij) = ρ̂F̂i ∀i = 1, 2, 3, (2.30b)

Sh
∂

∂t̂

[
ρ̂

(
1
2
T̂ + |V̂|2

)]
+

3∑

j=1

∂

∂x̂j

[
ρ̂V̂j

(
1
2
T̂ + |V̂|2

)
+ V̂ · p̂j + q̂j

]
= 2ρ̂V̂ · F̂, (2.30c)

where F̂ is assumed to be independent of v̂.
The Maxwell-type nondimensional boundary conditions on a simple boundary can be ex-

pressed as:

f̂(x̂, v̂, t̂) = (1− α)f̂(x̂, v̂ − 2[(v̂ − V̂w) · n]n, t̂)

+
ασ̂w

(πT̂w)3/2
exp

(
−|v̂ − V̂w|2

T̂w

)
[(v̂ − V̂w) · n > 0],

σ̂w = −2
(

π

T̂w

)1/2 ∫

(v̂−V̂w)·n<0

[(v̂ − V̂w) · n]̂f(x̂, v̂, t̂)dv̂ . (2.31)

Similarily, the nondimensional form of the boundary kernel can also be derived [50]. Depending
on the underlying physics and the rarefied gas system being considered, other nondimensional
forms of the Boltzmann equation can be derived using the corresponding flow scales as reference
variables.

In the rest of the paper, nondimensional equations and variables are used, but to simplify
notation, the “hats” in the nondimensional notation are dropped.

2.4. Discrete in Time Conservation Method: Lagrange Multiplier Method

In this subsection, we consider the discrete version of the conservation scheme. For such a
discrete formulation, the conservation routine is implemented as a Lagrange multiplier method
where the conservation properties of the discrete distribution are set as constraints. Let M =
Nd, the total number of Fourier modes. For elastic collisions, ρ = 0,m = (m1,m2, . . . , md) =
(0, 0 . . . , 0) and e = 0 are conserved, and for inelastic collisions, only ρ = 0 and m = (m1, m2,

. . . , md) = (0, 0 . . . , 0) are conserved. Let ωj > 0 be the integration weights for j = 1, 2, ..., M .
Let

Q̃ =
(

Q̃1 Q̃2 . . Q̃M

)T

be the distribution vector at the computed time step and

Q =
(

Q1 Q2 . . QM

)T
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be the corrected distribution vector with the required moments conserved. For the elastic case,
let

Ce
d+2×M

=




ωj

viωj

|v|2ωj




and correspondingly, let

ae
d+2×1

=
(

ρ m1 . . . md e
)T

be the vector of conserved quantities. Using the above vectors, the conservation method can
be written as a constrained optimization problem: Find Q s.t.

(∗)
{

min‖Q̃−Q‖22 : CeQ = ae;Ce ∈ Rd+2×M , Q̃ ∈ RM ,ae ∈ Rd
}

To solve (*), one can employ the Lagrange multiplier method. Let γ ∈ Rd be the Lagrange
multiplier vector. Then the scalar objective function to be optimized is given by

L(Q, λ) =
M∑

j=1

|Q̃j −Qj |2 + γT (CeQ− ae) . (2.32)

Eq. (2.32) can be solved explicitly for the corrected distribution value and the resulting equation
of correction be implemented numerically in the code. Taking the derivative of L(Q, λ) with
respect to fj , j = 1, ...,M , and γi, i = 1, ..., d + 2, i.e., gradients of L,

∂L

∂Qj
= 0, j = 1, ..., M ,

⇒ Q = Q̃ +
1
2
(Ce)T γ . (2.33)

Moreover,

∂L

∂γ1
= 0; i = 1, ..., d + 2 ,

⇒ CeQ = ae , (2.34)

retrieves the constraints. Solving for γ,

Ce(Ce)T γ = 2(ae −CeQ̃) . (2.35)

Now Ce(Ce)T is symmetric and, because Ce is the integration matrix, Ce(Ce)T is positive
definite. By linear algebra, the inverse of Ce(Ce)T exists. In particular, one can compute the
value of λ by

γ = 2(Ce(Ce)T )−1(ae −CeQ̃) .

Substituting γ into (2.33), since ae = 0,

Q =Q̃ + (Ce)T (Ce(Ce)T )−1(ae −CeQ̃)

=
[
I− (Ce)T (Ce(Ce)T )−1Ce

]
Q̃

=ΛN (Ce)Q̃ , (2.36)
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where I = N ×N identity matrix and we define ΛN (Ce) : I − (Ce)T (Ce(Ce)T )−1Ce. For the
future sections, define this conservation routine as Conserve. So,

Conserve(Q̃) = Q = ΛN (Ce)Q̃ . (2.37)

Define Dtf to be any order time discretization of ∂f
∂t . Then we have:

Dtf = ΛN (Ce)Q̃ , (2.38)

where we expect the required observables are conserved and the solution approaches a stationary
state for the elastic space homogeneous Boltzmann equation, since

lim
n→∞

‖ΛN (C)Q(fn
j , fn

j )‖∞ = 0

see [30]. Identity (2.38) summarizes the whole conservation process. As described previously,
setting the conservation properties as constraints to a Lagrange multiplier optimization problem
ensures that the required observables are conserved.

3. Properties of the Boltzmann Transport Equation and Spectral

Method

3.1. Velocity and Fourier Space Discretization

Due to the nature of the presented numerical application, we restrict the notation to the
d = 3-dimensional case. The distribution function is generally not compactly supported in v
but is usually negligible outside of a small ball

BLx(V) =
{
v ∈ R3 : |v−Vx| ≤ Lx

}
,

where VX is the flow velocity and depends on the space variable x. As mentioned in the
description of the spectral method, we restrict to distribution functions that are compactly
supported, i.e.,

suppf(x, ., t) = BLx(Vx), ∀x ∈ Ωx, t ≥ 0 .

Consider the cube

CLx(Vx) =
{
v ∈ R3 : |vj − Vx,j | ≤ Lx, j = 1, 2, 3

}
.

It is easy to see that BLx(Vx) ⊂ CLx(Vx), and such a discretization is used for all velocity
variables v,v∗. For the rest of the paper, the cube is considered as the domain of computation
instead of a ball as it is numerically easier to implement. This yields the following discretization
space for the relative velocity u = v− v∗

u ∈ C2Lx(0) .

Let N ∈ N be a natural number. Then we denote by CN the following three-dimensional indices

CN = {k = (k1, k2, k3) ∈ Z3 : 0 ≤ km < N, m = 1, 2, 3} .

Introducing the velocity mesh size hv = 2Lx/N , we get the following discrete velocities

Cv =
{
vj = Vx + (hv − N

2
)j, j ∈ CN

}
⊂ CLx(VX) .
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Similarly, the appropriate set for the relative velocity u is

Cu =
{
vj = (hv − N

2
)j, j ∈ CN

}
⊂ C2Lx(0) .

Because, an FFT package is used [25], the discrete velocity space then requires the Fourier
space mesh size hζ = 2Lζ/N to be given from hv as

hvhζ =
2π

N
, i.e., hζ =

π

Lx
,

and the discrete Fourier variable set is given by

Cζ = {ζ = hζj, j ∈ CN} .

3.2. Balance Equations

In the elastic collision case, multiplying the Boltzmann equation (2.1) by 1,v, |v|2 and
integrating the result over the whole space of v, we obtain the following balance (conservation)
hydrodynamic equations:

∂ρ

∂t
+5x · (ρV) = 0, (3.1a)

∂

∂t
(ρVi) +

d∑

j=1

∂

∂xj
(ρViVj + pij) = ρFi ∀i = 1, 2, 3, (3.1b)

∂

∂t

[
ρ

(
e +

1
2
|V|2

)]
+

d∑

j=1

∂

∂xj

[
ρVj

(
e +

1
2
|V|2

)
+ V · pj + qj

]
= ρV · F , (3.1c)

where F is assumed to be independent of molecular velocities v. The collision term vanishes
on integration in the velocity domain. Eqs. (3.1) are referred to as the balance (conservation)
equations of mass, momentum and energy respectively. In classical fluid dynamics in statistical
equilibrium, pij and qi are assumed to be in appropriate forms to close the system (3.1c). For
example,

pij = pδij , qi = 0 , (3.2)

or

pij = pδij − µ

(
∂Vi

∂xj
+

∂Vj

∂xi
− 2

3

d∑

k=1

∂Vk

∂xk
δij

)
− µB

d∑

k=1

∂Vk

∂xk
δij , (3.3a)

qi = −λ
∂T

∂xi
, (3.3b)

where δij is Kronecker’s delta and µ, µB and λ, called the viscosity, bulk viscosity, and thermal
conductivity of the gas respectively, are functions of temperature. The set of equations with
the former stress and heat flow is called the Euler equations (3.2), and the set with the latter
the Navier-Stokes equations (3.3b). The relations for pij and qi given in (3.3b) are called the
Newton’s law and Fourier’s law, respectively.
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3.3. Collision Integral Algorithm

The collision integral is given by (2.18) and (2.20). Ḡλ,β(ξ, ζ) from (2.20) can be computed
either in advance and stored or at run time. Depending on the computing strategy employed,
a operation efficient (former) or a memory efficient (latter) approach can be implemented.
Define Ḡl,m := Ḡλ,β(ξl, ζm) for a particular choice of λ and β. Then the process of computing
the collision integral can be summarized into the following algorithm, wherein ω[l] are the
integration weights. For the purpose of numerical analysis in the rest of the chapter, trapezoidal
rule weights are used.

Algorithm

[1] (O(N3log(N)))f̂(ζm) = FFTvk→ζm [f(vk)]

[2] (O(N3)) For ζm ∈ Cu, Do

[2.1] Q̂(ζm) = 0

[2.2] (O(N3)) For ξl ∈ Cu, Do

[2.2.1] g(ξl) = f̂(ξl)× f̂(ζm − ξl)

[2.2.2] Q̂(ζm) = Q̂(ζm) + Ḡl,m × ω[l]× g(ξl)

[2.2]* End Do

[2]* End Do

[3] (O(N3log(N)))Q(vk) = IFFTζm→vk
[Q̂(ζm)]

3.4. Temporal and Advection Approximation

After the discretization of the collision integral, the problem of numerically solving the
Boltzmann equation reduces to approximating the time derivative ∂

∂t and the advection term
v · 5xf(x,v, t) +5v · (Ff(x,v, t)) in (2.1). The current section describes a standard way of
dealing with the advection term in the space inhomogeneous Boltzmann equation. A description
of the time and space discretizations which are employed is also given.

3.4.1. Time Splitting

When computing the space inhomogeneous Boltzmann transport equation with zero force field,
i.e., F = (0, 0, 0), a reliable way of devising a numerical approximation is to employ an efficient
time-splitting method. The problem of solving equation (2.1) with F = (0, 0, 0) is divided into
two smaller subproblems. We discretize time into discrete values tn = t0 + n ∗ dt, where dt > 0
is the time step size. Denote f(x,v, tn) by fn(x,v). Using a first order time-splitting scheme,
in a small time interval [tn, tn+1], the two subproblems are given by

• The Advection (Collisionless) Problem

∂

∂t
g(x,v, t) + v · 5xg(x,v, t) = 0, (3.4a)

g(x,v, 0) = fn(x,v). (3.4b)
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• The Homogenous (Collision) Problem

∂

∂t
f̃(x,v, t) = Q(f̃ , f̃), (3.5a)

f̃(x,v, 0) = g(x,v, dt). (3.5b)

Let A(dt) and H(dt) be solution operators corresponding to (3.4b) and (3.5b), respectively.
Then the solutions for (3.4b) and (3.5b) can be rewritten as

g(x,v, dt) = A(dt)fn(x,v), (3.6a)

f̃(x,v, dt) = H(dt)g(x,v, dt), (3.6b)

and the computed solution at time step tn+1 is given by

fn+1(x,v) = f(x,v, tn+1) = H(dt)A(dt)fn(x,v) . (3.7)

This is a time-splitting method that is first order in time. Eq. (3.7) is usually good enough
for kinetic problems. Nevertheless, for non-stiff problems a second order time-splitting method
(Strang splitting) can be employed:

fn+1(x,v) = f(x,v, tn+1) = A(dt/2)H(dt)A(dt/2)fn(x,v) . (3.8)

Using Strang splitting to separate the advection and homogenous calculations, the overall finite
difference scheme is second order in time provided that a second order in time scheme is used
in each of the subproblems. When lower order schemes are used for 3.4b and 3.5b a lower order
time splitting scheme suffices. Whenever a higher order schemes are used for 3.4b and 3.5b, the
use of a higher order time splitting scheme (e.g., Strang splitting scheme) becomes imperative.

3.4.2. Space Discretization

We now turn to finite differences schemes for the advection operator. This is the first step in
time splitting procedure mentioned above, i.e., collisionless step. For simplicity, only 1D flows
in x direction are considered. So (3.4b) reduces to

∂

∂t
g(x,v, t) + v1

∂

∂x
g(x,v, t) = 0 ,

where v = (v1, v2, v3) is used. A first order scheme that is used is the standard upwind scheme.
Let xj = x0 + jdx and gj

n(v) = g(xj ,v, tn). Then

gj
n+1(v)− gj

n(v)
dt

+ v1
gj

n(v)− gj−1
n (v)

dx
= 0, v1 ≥ 0 (3.9a)

gj
n+1(v)− gj

n(v)
dt

+ v1
gj+1

n (v)− gj
n(v)

dx
= 0, v1 < 0, (3.9b)

gives the upwind scheme for appropriate signs of v1. As is the case with explicit finite difference
schemes, (3.9b) is restricted by the CFL condition which guarantees that the numerical domain
of dependence includes the analytical domain of dependence. For (3.9b), the CFL condition is
given by |max(v1) dt

dx | ≤ 1. When necessary, the following second order upwind scheme is used:

gj
n+1(v)− gj

n(v)
dt

+ v1
gj−2

n (v)− 4gj−1
n (v) + 3gj

n(v)
2dx

= 0, v1 ≥ 0 (3.10a)

gj
n+1(v)− gj

n(v)
dt

+ v1
−gj+2

n (v) + 4gj+1
n (v)− 3gj

n(v)
2dx

= 0, v1 < 0 . (3.10b)
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Again, (3.10b) is restricted by the CFL condition |max(v1) dt
dx | ≤ 1.

When using finite differences, it is desirable to use an implicit scheme which is uncondi-
tionally stable. But there are some difficulties when using the splitting process with implicit
schemes. We expect that convergence properties and numerical accuracy and stability of the
complete scheme are guaranteed for the implicit scheme as well as for the explicit one; however
the influence of the implicit scheme can result in smoothing profiles. Indeed, the solutions at a
given time level of an implicit scheme at any point of the computational domain, depend on the
boundary values at the previous time level. So, the adoption of an implicit scheme is connected
with the type of problem under consideration. In some problems the fact that particles from
the boundary would influence an interior point without undergoing collisions during the single
time step in the splitting process can lead to large errors of approximation. For the physical
processes considered in this paper, an explicit scheme does a good job in terms of convergence
and order of error.

3.4.3. Time Discretization

The simplest time discretization that is employed for (3.5b) is the Euler scheme. The collision
integral computation in (3.5b) is not conservative as noted in the introduction. So, the correc-
tion mentioned in Section 2.4 is done at this step to the computed collision integral Q(fnfn).
This gives in the time interval [tn, tn+1]

Qn = Conserve(Q(fn, fn)), (3.11a)

f̃(x,v, dt) = fn(x,v) + dtQn. (3.11b)

The Euler scheme is formally first order in time. For higher order accuracy, a second order
Runge Kutta scheme is used whenever necessary:

Q̃n = Conserve(Q(fn, fn)) , (3.12a)

fn+1/2(x,v) = fn(x,v) +
dt

2
Q̃n (3.12b)

Qn = Conserve(Q(fn+1/2, fn+1/2)) , (3.12c)

fn+1(x,v) = fn(x,v) + dtQn . (3.12d)

The Conserve routine used in (3.11b) and (3.12d) is described in (2.37). In the rest of this chap-
ter, appropriate reference quantities are chosen and the non-dimensional Boltzmann equation
(2.3) with (2.26) is used. The “hats” are intentionally dropped in the sequel for simplicity.

4. The 1D Space Inhomogeneous Boltzmann Equation

In this section, several physical examples of 1D in x are modeled using (2.1). When solving
the inhomogeneous Boltzmann equation, the choice of reference quantities plays an important
role. These reference quantities are dictated by the underlying physics and scales of the problem.
In the sequel, depending on the problem being modeled, the reference quantities will be specified
and (2.3) will be used with the scaled variables in (2.24).

The splitting approach as mentioned in Section 3.4 is used to numerically compute the
inhomogeneous Boltzmann equation. A scheme that is first order in time and space is used for
the advection part and also the homogeneous part of the split problem. When a higher order



450 IRENE M. GAMBA AND S.H. THARKABHUSHANAM

splitting scheme is used then, higher order approximations are employed for the time and space
derivatives.

In shock structure problems, it is convenient to look at the conservation equations (3.1c) in
a divergence form. A typical scenario of a 1−D flow in an infinite expanse of a gas is when we
have a monatomic gas at two uniform states at infinity. The states at infinity are uniform and
they are described by Maxwellian distribution functions with parameters ρl, Tl,Vl = (Vl, 0, 0)
for x1 → −∞, and ρr, Tr, and Vr = (Vr, 0, 0) for x1 → ∞. The two states at infinity cannot
be chosen arbitrarily, but their macroscopic quantities have to satisfy the Rankine-Hugoniot
relations. For a steady state, the Rankine-Hugoniot relations can be derived from (3.1c):

ρlVl = ρrVr, (4.1a)

ρlV
2
l + ρlTl = ρrV

2
r + ρrTr, (4.1b)

ρlVl(Tl + 5V 2
l ) = ρrVr(Tr + 5V 2

r ). (4.1c)

Our interest is in understanding the solution that connects these two states at infinities, i.e.,
shock wave analysis.

4.1. The Riemann Problem

The Riemann problem is a fundamental tool for studying the interaction between waves.
It has played a central role both in the theoretical analysis of systems of hyperbolic conserva-
tion laws and in the development and implementation of practical numerical solutions of such
systems. The Riemann problem describes the micro structure of the shock wave.

This test deals with the numerical solution of the inhomogeneous 1D × 3D Boltzmann
equation for hard sphere molecules (λ = 1). In this section, we present some results for the one
dimensional Riemann problem. Numerical solutions are obtained for a Knudsen number closed
the fluid limit (Kn ≤ 0.01). As in [24], we consider the following macroscopic initial conditions

(ρl, Vl, Tl) = (1, 0, 1) if 0 ≤ x ≤ 0.5,

(ρr, Vr, Tr) = (0.125, 0, 0.25) if 0.5 < x ≤ 1.0 . (4.2)

Let t0 the mean free time, and Tl, ρl, and Vth =
√

2RTl be the reference quantities. Recall that
L is the domain size parameter of v i.e. v ∈ Ωv = [−L,L)3. Then the CFL condition gives
dt/t0 ≤ dx/L mean free times. The density, flow pressure and temperature profiles are shown
in Figure 4.1, showing a qualitatively good agreement with Figure 3 in [24]. It can be seen that
for Kn = 0.01, the profiles approach the shapes typical of continuum flows.

It can be seen that the flow becomes stationary by a final time larger than 0.2 mean free
times. In this case, a choice of dx = 0.5l0 is made. For smaller values of Kn ≤ 0.01, i.e., close to
continuum flow, the numerical method is noticeably slow. In order to maintain good accuracy
and to reduce the effect of the splitting error for close to stiff problems, a smaller value of dt

is taken than required by the CFL condition. This results in a slow march in time, and thus it
typically takes longer to reach the stationary state.

4.2. Shock Due to a Sudden Change in Wall Temperature

As an example showing the formation of a shock wave and its propagation, we consider a
semi-infinite expanse (x1 > 0) of a gas bounded by a plane wall at rest with temperature T0 at
x1 = 0. Initially, the gas is at equilibrium with the wall at pressure p0 and temperature T0. At
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Fig. 4.1. Riemann problem: tempera-

ture, pressure and density profiles for

Kn = 0.01 at t = 0.15.

time t = 0, the temperature of the wall is suddenly changed to another value T1 and is kept at
T1 for subsequent time. The time evolution of the behavior of the gas is studied numerically
on the basis of the fully nonlinear Boltzmann equation with Maxwell type boundary conditions
(2.21), for the case of diffuse-reflection condition on the wall with full accommodation coefficient
α = 1 (Figure 4.2).

As the reference length Xr, we take l0 the mean free path of the gas in the equilibrium state
at rest with density ρ0 = p0/RT0 and temperature T0. We take l0/

√
2RT0 as the reference time

tr and use Eq. (2.3). Typically, when considering a flow that is uniform in a particular velocity
direction, the Boltzmann equation can be reduced to a system of equations by integrating the
distribution function in respective velocity direction(s) to get a set of marginal distributions.
The proposed algorithm in this paper relies on the weak form for its derivation. But, such
a weak form is not available for the marginal distribution. Moreover, it is a difficult task to
eliminate a velocity component in the nonlinear collision integral. It is for these reasons that
the conservative spectral method cannot be reduced in velocity components and the full 3-D
computation in v has to be performed. For the purpose of analysis, the marginal distribution
function (g(x1, v1, t) =

∫
v2,v3

f(x1,v, t)dv2dv3) is calculated from the three dimensional velocity
distribution.

The marginal velocity distribution function g has a discontinuity at the corner (x1, t) = (0, 0)
of the domain (x1 > 0, t > 0) for v1 > 0. This discontinuity in g propagates in the direction of
characteristic x1− v1t = 0, and subsequently decays owing to the collision integral on the right
hand side. The direction of propagation depends on v1. For v1 < 0, the characteristic starts
from infinity where g is continuous and thus for all x1, t remains continuous. For numerical
calculations, typically a modified scheme is devised to account for this. But, it has been observed
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Fig. 4.2. Schematic of Maxwell reflective boundary conditions as defined in (2.21). Left side diffusive-

reflection. Right side specular-reflection.

that for the fully nonlinear Boltzmann equation, the standard finite-difference scheme with time
splitting does an extremely good job of capturing this discontinuity.

There are two cases of interest in the numerical experiment, T1 = 0.5T0 and T1 = 2T0. For
the first case where T1 = 0.5T0, in the numerical computation of the time-evolution problem the
temperature, pressure and density profiles have been shown in Figure 4.3. By sudden cooling of
the wall temperature, the gas near the wall is suddenly cooled resulting in a pressure decrease
there and an expansion wave propagates into the gas. The expansion wave accelerates gas
towards the wall initially. As time goes on, with the decrease of temperature of gas near the
wall, the suction of heat from the gas by the wall decreases and pressure becomes weaker. Thus,
the gas begins to accumulate near the wall, because there is no suction on the wall. The pressure
drop by cooling of the gas is not enough to compensate the gas flow. As the gas equilibrates
with the wall, in the absence of condensation (no sink of mass), a compression wave develops
that propagates outward and attenuates the initial expansion wave. Then, a compression wave
chases the expansion wave to attenuate. This phenomenon occurs in long time. The main
temperature drop of the gas occurs gradually, well after the expansion wave is passed.

Next, we consider the case where T1 = 2T0. With the sudden rise of wall temperature, the
gas close to the wall is heated and accordingly the pressure rises sharply near the wall, which
pushes the gas away from the wall and a shock wave (or compression wave) propagates into
the gas. As times goes on, the gas moves away from the wall but there is no gas supply from
the wall and the heat transferred from the wall to the gas decreases owing to the rise of gas
temperature near the wall.

Accordingly, the pressure decrease due to escape of the gas is not compensated by the heating
and the pressure gradually decreases. As a result, an expansion wave propagates toward the
shock wave from behind and attenuates the shock wave together with another dissipation effect.
The main temperature rise of the gas occurs gradually well after the shock wave passed. This
process is due to the conduction of heat. In the numerical computation of the time-evolution
problem, the temperature, pressure and density profiles have been shown in Figure 4.4 for the
region of a few mean free paths close to the wall.

In Figure 4.5, the marginal velocity distribution function g is plotted for various times t/tr.
We let Kn = 1, dx = 0.01l0, dt = 0.75dx/L, and N = 16. We see that g has a discontinuity at
(x1, t). As time goes on, the position of discontinuity shifts to x1 = v1t/tr, and the size of this
discontinuity decreases due to molecular collisions (collision integral).

All of the above numerical results agree extremely well with the ones obtained by Aoki,
Sone, Nishino and Sugimoto [2] done for BGK models by discrete velocity algorithms. In both
cases of wall temperature change, the second wave (compression wave for Twall = 0.5T0 and
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expansion wave for Twall = 2T0) attenuates the first wave (expansion wave for Twall = 0.5T0

and compression wave for Twall = 2T0) only because the wall temperature is suddenly changed.
If the wall temperature is changed gradually in proportion to the collision parameters i.e.,
the mean free path and mean free time then, we speculate that only the first wave would be
propagating into the gas and there would be no ensuing second wave.

We also point out that the d = 3-velocity space simulation is done with N = 16, which
yields numerical marginal distribution with somehow sharp edges. For a smoother numerical
output, one needs to increase N the number of Fourier modes. We also point out that the
Lagrangian optimization problem results in conservation but not in smoothness. Smoothness
will be recover in the spectrally accurate limit for N large. These issues on approximation
theory and spectral accuracy are addressed by the authors in [31]. We finally stress that the
calculation of moments is very smooth and accurate when compared with the simulations in [2].

4.3. Heat transfer Between Two Parallel Plates

We consider the case of a rarefied gas between two parallel plane walls at rest: one at
temperature T0 at x1 = 0 and the other at a temperature T1 = 1.5T0 at x1 = 1. Note that,
in this case the distance between the two plates is taken as the reference length (l0). The gas
molecules make diffuse reflection on the walls (Figure 4.6). The state of the gas or the velocity
distribution function can be considered to be uniform with respect to x2 and x3. The problem
conditions are given below:

f(x, v, 0) = M1,0,T0 (4.3)

with T0 = 1. The discretization is give as

0.05 < dx̂/l0 = dx < 1 (4.4)

and dt is chosen according to the CFL condition.
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Fig. 4.6. Heat Transfer Problem

Note that when considering a highly rarefied gas (Kn →∞), such a flow becomes uniform
even in the x1 direction i.e. the state of the gas is independent of x1. We consider here the
stationary flows for range of Kn between 0.1 to 4.

The stationary temperature profiles for Kn = 0.1, 0.5, 1, 2, 4 have been plotted in Figure 4.7.
With larger values of Kn, we find that the temperature profiles get flatter and flatter approach-
ing

√
1.5. The lack of the perfect convergence is due to the fact that a low number of Fourier

modes are taken in the simulation (N = 16). The temperature profiles in Figure 4.7, left side,
approach the curves shown in chapter 10 of [3]. An increase in the Knudsen number value
implies that the gas is becoming more and more rarefied and that the only interactions the gas
molecules have are with the walls where they exchange their temperatures. The corresponding
stationary density profiles have been plotted in the right side of Figure 4.7.

4.4. Classic Shock in an Infinite Tube: Supersonic → Subsonic Flow

Consider a time-independent unidirectional flow in x1 direction in an infinite expanse of a
gas, where the states at infinity are both uniform and their velocity distributions are Maxwellians
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with corresponding parameters as explained in the preamble for this section. That is,

f → ρl√
2πRTl

exp(−|v− δ1Vl|2
2RTl

), as x1 → −∞ ,

f → ρr√
2πRTr

exp(−|v− δ1Vr|2
2RTr

), as x1 →∞ .

The Maxwellian parameters satisfy the Rankine-Hugoniot relations. Also as in [24], we take
ρl, Tl, and l0 as the reference density, temperature and lengths respectively. The shock profile
is best considered in the frame of reference moving with the shock in steady state. The relevant
parameter for the shock is the inflow Mach number M , defined as the ratio of the inflow velocity
relative to the shock and the speed of sound,

M =
Vl

c
=

Vl√
γTl

=
Vl√
γ

,

where c is the speed of sound and γ = 5
3 for monatomic gases. For simple notation, the “hats”

in the nondimensional notation are dropped.
For the numerical computations, the inflow temperature Tl is chosen as the free parameter

and ρl = 0.5. Then the rest of the parameters take the following values in terms of Tl:

Vl =

√
5Tl

3
M, ρr =

4M2

M2 + 3
ρl ,

Tr =
(M3 + 3)(5M2 − 1)

16M2
Tl, Vr =

M2 + 3
4M

√
5Tl

3
.

These are derived from the Rankine-Hugoniot relations, which give the boundary conditions
under which the steady shock wave can be observed.
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When discussing shock structure, one often looks at the entropy production in the shock.
Such an analysis shows that the entropy must grow across the shock. This requirement combined
with Rankine-Hugoniot relations (4.1c) produces a requirement on the inflow Mach number:

(
5M2 − 1

4

)3(
M2 + 3
4M2

)5

≥ 1 ⇒ M ≥ 1 .

Thus, a shock can only be observed for Mach numbers M ≥ 1, i.e., when the inflow velocity is
supersonic. The Mach number behind the shock has to satisfy

Mr =
Vr

c
=

Vr√
5Tr/3

=

√
M2 + 3
5M2 − 1

≤ 1 .

These conditions imply that the flow velocity changes from being supersonic to subsonic in
a shock, while density and temperature grow. We plot in Figure 4.8 density, temperature and
pressure profiles for M = 1.5, and Kn = 1 for Maxwell type interactions.

5. Conclusion

In this paper, an accurate deterministic spectral method is presented which conserves all
relevant moments of the Boltzmann collision integral. The proposed method works for both
the conservative (locally elastic collisions) and non-conservative (linear Boltzmann, inelastic
collisions) regimes. In the existing literature on spectral deterministic methods, the proposed
method for the numerical approximation of the space inhomogeneous, time dependent Boltz-
mann equation is the first scheme that is conservative. Typical to any spectral method, the
spectral accuracy is indeed controlled by the number of Fourier modes N .

This is the first spectral method of its kind that requires no modification to compute both
elastic and inelastic collisions. In comparison with the known analytical results such as mo-
ment equations for the space homogeneous elastic or inelastic Boltzmann equation of Maxwell
type, or Bobylev and Krook and Wu explicit solution (BKW solution), or attracting Bobylev-
Cercignani-Gamba self-similar solutions for elastic collisions in a slow down process [8, 9]), the
computed numerical solutions are found to be remarkably accurate as shown in our work on the
development of Spectral-Lagrangian methods for for space homogeneous models [30], section 5.

The method employs a Fast Fourier Transform for faster evaluation of the collision integral.
Even though the method is implemented for a uniform grid in velocity space, it can be imple-
mented for a non-uniform velocity grid. The only challenge in this case is computing the Fast
Fourier Transform on such a non-uniform grid. There are available packages for this purpose,
but such a non-uniform FFT can also be implemented using certain high degree polynomial in-
terpolation, and this possibility is currently being explored. The integration over the unit sphere
is avoided completely and only a simple integration over a regular velocity grid is needed. Even
though a trapezoidal rule is used as an integration rule, other integration rules like a Gaussian
quadrature can be used to get better accuracy. For time discretization, a simple Euler scheme
is used. The proposed method has a big advantage over other non-deterministic methods, as
the exact distribution function can actually be computed instead of just the averages.

The numerical results presented here for space inhomogeneous problems show the effective-
ness of the presented method in solving a wide class of problems. Especially, shock structure
analysis is performed for the classic stationary shock and Riemann problems. The supersonic to
subsonic flow is shown for the stationary shock problem wherein the initial conditions and the
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states at infinity satisfies the Rankine-Hugoniot relations. Other shock structure properties are
also analyzed. For the Riemann problem, it is observed that for smaller Knudsen numbers, the
computed macroscopic profiles approach the ones expected for a fluid type flow. In addition,
the effect of sudden change of wall temperature, that reflects gas diffusively as done in [2], is
also analyzed. The results in this case are found to be in strong agreement with the results
obtained with a BGK model by the means of discrete velocity (Lattice Boltzmann) methods.
Our scheme is the first one that can capture the phenomena described in [2] for a simulation
for the Boltzmann equation for binary interactions.

We are currently analyzing the importance of N , the velocity discretizations for space inho-
mogeneous Boltzmann calculations, were it is possible to show spectral accuracy is compatible
the Lagrange multiplier method in the approximation of the distribution density associated to
the space homogeneous non-linear interaction model [31].

In the case of a space inhomogeneous spherical Boltzmann shock analysis calculation, we
observe that we require ND > NS , where ND is the number of Fourier modes near discontinuity
in v and NS is the number of Fourier modes near a smooth region in v. The reason is not
only to make sure that we have a good spectral accuracy and convergence but also to eliminate
oscillation phenomena possible due to Gibbs type phenomenon.

Finally, we add that using the present computational scheme we can also simulate rapid
granular flows modeled by deterministic Boltzmann solvers for inelastic hard spheres interac-
tions. In addition, Rayleigh-Benard convective flows and Taylor-Couette flows are also being
numerically studied and are part of future projects.
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