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Abstract

In an earlier paper, we proved the existence of solutions to the Skorohod problem with

oblique reflection in time-dependent domains and, subsequently, applied this result to the

problem of constructing solutions, in time-dependent domains, to stochastic differential

equations with oblique reflection. In this paper we use these results to construct weak

approximations of solutions to stochastic differential equations with oblique reflection, in

time-dependent domains in Rd, by means of a projected Euler scheme. We prove that the

constructed method has, as is the case for normal reflection and time-independent domains,

an order of convergence equal to 1/2 and we evaluate the method empirically by means of

two numerical examples. Furthermore, using a well-known extension of the Feynman-Kac

formula, to stochastic differential equations with reflection, our method gives, in addition,

a Monte Carlo method for solving second order parabolic partial differential equations with

Robin boundary conditions in time-dependent domains.

Mathematics subject classification: 65MXX, 35K20, 65CXX, 60J50, 60J60

Key words: Stochastic differential equations, Oblique reflection, Robin boundary condi-

tions, Skorohod problem, Time-dependent domain, Weak approximation, Monte Carlo

method, Parabolic partial differential equations, Projected Euler scheme.

1. Introduction

The use of projected Euler schemes, in the construction of weak approximations of solu-
tions to stochastic differential equations with reflection, originates in the work of Saisho [1],
who used this approach to prove existence and uniqueness of solutions to stochastic differential
equations with normal reflection in time-independent domains. The ideas in [1] were developed
further by Costantini, Pacchiarotti and Sartoretto [2], who presented a projected Euler scheme
based on the previous work by Costantini [3] concerning the existence of solutions to the Sko-
rohod problem with oblique reflection in time-independent domains. The algorithm proposed
in [2] provides, in particular, a Monte Carlo method for solving second order parabolic partial
differential equations with mixed Dirichlet and Robin boundary conditions in fairly general
time-independent domains. However, in [2] it is proved that the order of convergence of the
proposed algorithm is merely 1/2. In recent years several attempts have been made to find more
efficient algorithms for stochastic differential equations, with reflection, but the attempts have
only been successful for quite limited sets of boundary conditions. In this context we mention,
in particular, the projected Euler schemes suggested by Gobet [4] and by Bossy, Gobet and
Talay [5]. The order of convergence of the algorithm proposed in [4], which is based on the
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explicit solution to the Skorohod problem in half-spaces, is 1 in the special case of Neumann
boundary conditions with reflection in the conormal direction. On the other hand, the order
of convergence of the algorithm in [5] is 1 for all possible directions of reflection, but for this
algorithm only a very restricted set of boundary data is allowed. An alternative approach to the
problem of weak approximation of solutions to stochastic differential equations with oblique re-
flection, in time-independent domains with smooth boundary, was given by Mil’shtein [6], who
presented two numerical algorithms for second order parabolic partial differential equations
with Robin boundary conditions. Although the order of convergence of the fastest of these two
algorithms is 1, both algorithms have proved to be difficult to implement due to the fact that
a change of coordinate system is required at all time steps at which the approximate solution
to the stochastic differential equation is close to the boundary.

An important novelty of the article at hand is that we present an algorithm for weak ap-
proximation of stochastic differential equations with oblique reflection in the setting of time-
dependent domains and to our knowledge this is indeed an area which is less developed compared
to the corresponding problem in time-independent domains. Nevertheless, stochastic differen-
tial equations with reflection in time-dependent domains emerge in a variety of applications
such as singular stochastic control problems and particle dispersion in volumes with fluctuating
size and shape. From a purely theoretical point of view, the study of stochastic differential
equations with reflection in time-dependent domains was commenced by Costantini, Gobet
and El Karoui [7], who proved existence and uniqueness of solutions to the Skorohod problem
with normal reflection in smooth time-dependent domains. Concerning the Skorohod problem
we also note that existence and uniqueness for deterministic problems of Skorohod type, in
time-dependent intervals, have recently been established by Burdzy et al. (see [8, 9]). In [10]
we conducted a thorough study of the multi-dimensional Skorohod problem in time-dependent
domains and we proved, in particular, the existence of cádlág solutions to the Skorohod prob-
lem, with oblique reflection, in fairly general time-dependent domains. Furthermore, in [10]
we, subsequently, used our results on the Skorohod problem to construct solutions to stochastic
differential equations with oblique reflection in time-dependent domains. Moreover, in the pro-
cess of proving these results, we established a number of estimates for solutions, with bounded
jumps, to the Skorohod problem. In this article we build on the study in [10] and we use the
results in [10] regarding the Skorohod problem to develop an algorithm for weak approxima-
tion of stochastic differential equations with oblique reflection in the setting of time-dependent
domains. Our approximation procedure is, from a numerical point of view, similar to the pro-
jected Euler scheme described in [2], but our setting is different and more general compared
to [2] as we, in particular, allow for time-dependent domains, more general functionals as well
as reflection in oblique directions. By proceeding along the lines of [2] we also prove that the
proposed algorithm has an order of convergence equal to 1/2 and we emphasize that while this
convergence may seem slow, the main advantage of the approach is, and this makes it different
from the algorithms and results in [4–6], that the method outlined is applicable in very general
situations.

To briefly outline the general result, established in [10], concerning stochastic differential
equations with oblique reflection in time-dependent domains, and to formulate the results of this
article, we next introduce some notation. Given d ≥ 1, we let 〈·, ·〉 denote the standard inner
product on Rd and we let |z| = 〈z, z〉1/2 be the Euclidean norm of z. Whenever z ∈ Rd, r > 0,
we let

Br (z) =
{

y ∈ Rd : |z − y| < r

}
and Sr (z) =

{
y ∈ Rd : |z − y| = r

}
.
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Moreover, given D ⊂ Rd+1, E ⊂ Rd, we let D̄, Ē be the closure of D and E, respectively, and
we let d (y,E) denote the Euclidean distance from y ∈ Rd to E. Given d ≥ 1, T > 0 and an
open, connected set D′ ⊂ Rd+1 we will refer to

D = D′ ∩ ([0, T ]× Rd) (1.1)

as a time-dependent domain. Given D and s ∈ [0, T ], we define the time sections of D as
Ds = {z : (s, z) ∈ D}, and we assume that

Ds 6= ∅ and that Ds is bounded and connected for every s ∈ [0, T ] . (1.2)

We let ∂D and ∂Ds, for s ∈ [0, T ], denote the boundaries of D and Ds, respectively. A
convex cone of vectors in Rd is a subset Γ ⊂ Rd such that αu + βv ∈ Γ for all positive
scalars α, β and all u, v ∈ Γ. To give an example of a closed convex cone, we consider the set
C = CΩ = {λγ : λ > 0, γ ∈ Ω}, where Ω is a closed, connected subset of S1(0) satisfying
γ1 · γ2 > −1 for all γ1, γ2 ∈ Ω. Given C we define C∗ = {αu + βv : α, β ∈ R+, u, v ∈ C}.
Then C∗ is an example of a closed convex cone and we note that C∗ = C∗Ω∗ where Ω∗ can be
viewed as the ‘convex hull’ of Ω on S1(0). We let Γ = Γs(z) = Γ(s, z) be a function defined on
Rd+1 such that Γs (z) is a closed convex cone of vectors in Rd for every z ∈ ∂Ds, s ∈ [0, T ].
Given Γ = Γs(z) = Γ(s, z) we let Γ1

s(z) := Γs(z) ∩ S1(0). Following [3], we assume that

γ1 · γ2 > −1 holds whenever γ1, γ2 ∈ Γ1
s (z) and for all z ∈ ∂Ds, s ∈ [0, T ] . (1.3)

This assumption eliminates the possibility of Γ containing vectors in opposite directions. We
also assume that the set

GΓ =
{

(s, z, γ) : γ ∈ Γs (z) , z ∈ ∂Ds, s ∈ [0, T ]
}

is closed. (1.4)

The interpretation of the condition in (1.4) is discussed in [10]. Furthermore, we assume that
the cone of inward normal vectors at z ∈ ∂Ds, denoted Ns (z), is non-empty for all z ∈ ∂Ds,
s ∈ [0, T ]. Note that we allow for the possibility of several inward normal vectors at the same
boundary point. Given Ns (z) we let N1

s (z) := Ns(z) ∩ S1(0). Then the spatial domain Ds is
said to verify the uniform exterior sphere condition if there exists a radius r0 > 0 such that

Br0(z − r0n) ⊆ Rd \Ds (1.5)

whenever z ∈ ∂Ds, n ∈ N1
s (z). Note that Br0(z − r0n) is the open Euclidean ball with center

z − r0n and radius r0. We say that a time-dependent domain D satisfies a uniform exterior
sphere condition in time if the uniform exterior sphere condition in (1.5) holds, with the same
radius r0, for all spatial domains Ds, s ∈ [0, T ]. Furthermore, following [7], we let

l (r) = sup
s,u∈[0,T ]
|s−u|≤r

sup
z∈Du

d (z,Ds) (1.6)

be the modulus of continuity of the variation of D in time. In particular, in our work on the
Skorohod problem in [10] we assume that

lim
r→0+

l (r) = 0. (1.7)
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While the condition in (1.7) concerns the temporal changes of D, we also need an assumption
concerning the variation of the cone Γs(z). To formulate this assumption we let

h(E, F ) = max
(

sup{d(z, E) : z ∈ F}, sup{d(z, F ) : z ∈ E}
)

(1.8)

denote the Hausdorff distance between the sets E, F ⊂ Rd. Moreover, let {(sn, zn)} be a
sequence of points in Rd+1, sn ∈ [0, T ], zn ∈ ∂Dsn

, such that

lim
n→∞

sn = s ∈ [0, T ], lim
n→∞

zn = z ∈ ∂Ds.

We assume, for any such sequence of points {(sn, zn)}, that

lim
n→∞

h(Γsn
(zn) , Γs (z)) = 0. (1.9)

Given T > 0, t ∈ [0, T ], we let C (
[t, T ] ,Rd

)
denote the class of continuous functions from [t, T ]

to Rd. We let m be a positive integer and we let b : R+ × Rd → Rd and σ : R+ × Rd → Rd×m

be given functions which are bounded and continuous. Finally, we let BV (
[t, T ] ,Rd

)
denote

the set of functions λ = λs : [t, T ] → Rd with bounded variation and we let |λ| denote the total
variation of λ ∈ BV (

[t, T ] ,Rd
)
.

Definition 1.1. Let T > 0 and let D ⊂ Rd+1 be a time-dependent domain satisfying (1.2).
Let Γ = Γs (z) be a closed convex cone of vectors in Rd for every z ∈ ∂Ds, s ∈ [0, T ]. Let
t ∈ [0, T ] and assume that x ∈ Dt. A weak solution to the stochastic differential equation in
D with coefficients b and σ, reflection along Γs on ∂Ds, s ∈ [t, T ], and with initial condition x

at t, is a stochastic process (Xt,x,Λt,x), with paths in C (
[t, T ] ,Rd

) × BV (
[t, T ] ,Rd

)
and with

Λt,x
t = 0, which is defined on a filtered probability space (Ω,F , {Fs} , P ) and satisfies

Xt,x
s = x +

∫ s

t

b(r,Xt,x
r ) dr +

∫ s

t

σ(r,Xt,x
r ) dWr + Λt,x

s , (1.10)

Λt,x
s =

∫ s

t

γr d|Λt,x|r, γr ∈ Γr(Xt,x
r ) ∩ S1(0), d|Λt,x|-a.e., (1.11)

Xt,x
s ∈ Ds, d|Λt,x|({s ∈ [t, T ] : Xt,x

s ∈ Ds}) = 0, (1.12)

P -almost surely, whenever s ∈ [t, T ]. Here W is a m-dimensional Wiener process on (Ω,F , {Fs} ,

P ) and (Xt,x, Λt,x) is {Fs}-adapted.

In Theorem 1.5 in [10] we proved the following theorem which generalizes the corresponding
results in [1, 3, 7].

Theorem 1.1. Let T > 0, let t ∈ [0, T ], and let D ⊂ Rd+1 be a time-dependent domain which
satisfies (1.2), (1.7) and a uniform exterior sphere condition in time with radius r0 in the sense
of (1.5). Let Γ = Γs (z) be a closed convex cone of vectors in Rd for every z ∈ ∂Ds, s ∈ [t, T ],
and assume that Γ satisfies (1.3), (1.4) and (1.9). Assume that (2.9) and (2.10), stated in
Section 2.2, hold for some 0 < ρ0 < r0, η0 > 0, a and e. Finally, assume that ([0, T ]×Rd) \D

has the (δ0, h0)-property of good projections along Γ, for some 0 < δ0 < ρ0, h0 > 1, as defined
in (2.11) and (2.12) stated in Section 2.2. Let b : R+ × Rd → Rd and σ : R+ × Rd → Rd×m be
given bounded and continuous functions on D and let x ∈ Dt. Then there exists a weak solution,
in the sense of Definition 1.1, to the stochastic differential equation in D with coefficients b and
σ, reflection along Γs on ∂Ds, s ∈ [t, T ], and with initial condition x at t.
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Let T > 0, t ∈ [0, T ], D ⊂ Rd+1 and let Γ = Γs (z) be as in the statement of Theorem 1.1.
Let x ∈ Dt and let (Xt,x, Λt,x) be a weak solution as in the statement of Theorem 1.1. Let f ,
g, h, ϕ and θ be given functions which are bounded on their domains of definition. Given these
functions we define, for t ∈ [0, T ] and x ∈ Dt, the functional

Ft,T (Xt,x, Λt,x) =f(Xt,x
T ) exp(Y t,x

T + Zt,x
T )−

∫ T

t

g(s,Xt,x
s ) exp(Y t,x

s + Zt,x
s ) d

∣∣Λt,x
∣∣
s

−
∫ T

t

h(s,Xt,x
s ) exp(Y t,x

s + Zt,x
s ) ds, (1.13)

where the processes Y t,x
s and Zt,x

s are defined as

Y t,x
s = −

∫ s

t

ϕ(r,Xt,x
r ) dr, Zt,x

s = −
∫ s

t

θ(r,Xt,x
r ) d

∣∣Λt,x
∣∣
r
. (1.14)

In this article we develop a numerical algorithm for calculating the expectation

u (t, x) = E[Ft,T (Xt,x,Λt,x)]. (1.15)

In particular, let N be a large positive integer, let ∆∗ = (T − t) /N and let τk = t + k∆∗

for k ∈ {0, 1, ..., N}. Then t = τ0 < τ1 < .... < τN = T and {τk}N
k=0 defines a partition ∆

of the time interval [t, T ]. Based on ∆ we define an approximation of (Xt,x, Λt,x, Y t,x, Zt,x),
denoted

(
X∆,Λ∆, Y ∆, Z∆

)
, by means of a recursive algorithm for

(
X∆

τk
, Λ∆

τk
, Y ∆

τk
, Z∆

τk

)
, for

k ∈ {0, 1, ..., N}. In particular, we define

D∆
s = Dτk

, Γ∆
s = Γτk

, whenever s ∈ [τk, τk+1) , k ∈ {0, 1, ..., N − 1} , (1.16)

and D∆
τN

= DτN
, Γ∆

τN
= ΓτN

. Furthermore, we recursively define the three processes X∆ =
X∆

s , U∆ = U∆
s and Λ∆ = Λ∆

s , for s ∈ [t, T ] as follows. We let

X∆
τ0

= x, U∆
τ0

= x, Λ∆
τ0

= 0, (1.17)

and, for k ∈ {0, 1, ..., N − 1}, we let

U∆
τk+1

= U∆
τk

+ b(τk+1, X
∆
τk

)∆∗ + σ(τk+1, X
∆
τk

)
√

∆∗∆k+1η,

X∆
τk+1

= π
Γ∆

τk+1

∂D∆
τk+1

(
X∆

τk
+ U∆

τk+1
− U∆

τk

)
, (1.18)

where π
Γ∆

τk+1

∂D∆
τk+1

(z) is defined as π
Γ∆

τk+1

∂D∆
τk+1

(z) = z whenever z ∈ D∆
τk+1

and, whenever z /∈ D∆
τk+1

,

as a point on ∂D∆
τk+1

which we shall refer to as a projection of z onto ∂D∆
τk+1

along Γ∆
τk+1

. Fur-
thermore, ∆k+1η is a random variable chosen so that

√
∆∗∆k+1η mimics the Wiener increment

Wτk+1 −Wτk
. The actual definition of ∆k+1η is given in the bulk of the article. Note, however,

that as we are assuming that ([0, T ] × Rd) \ D has the (δ0, h0)-property of good projections
along Γ, for some 0 < δ0 < ρ0, h0 > 1, we can only ensure that

π
Γ∆

τk+1

∂D∆
τk+1

(X∆
τk

+ U∆
τk+1

− U∆
τk

) is well-defined for X∆
τk

+ U∆
τk+1

− U∆
τk

/∈ D∆
τk+1

if
d(X∆

τk
+ U∆

τk+1
− U∆

τk
, D∆

τk+1
) < δ0. (1.19)
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Now since Wτk+1 − Wτk
can assume arbitrarily large values we must, in order to make sure

that (1.19) holds, somehow truncate Wτk+1 −Wτk
and this puts a restriction on the possible

choices for
√

∆∗∆k+1η. Having ensured that all terms in (1.18) are well-defined, we let, for
k ∈ {0, 1, ..., N − 1},

Λ∆
τk+1

= Λ∆
τk

+ X∆
τk+1

−X∆
τk
− U∆

τk+1
+ U∆

τk
. (1.20)

At intermediate times s ∈ [τk, τk+1), k ∈ {0, 1, ..., N − 1}, we define

X∆
s = X∆

τk
, U∆

s = U∆
τk

, Λ∆
s = Λ∆

τk
. (1.21)

Based on (X∆,Λ∆) we define (Y ∆, Z∆) as follows. Let Y ∆
τ0

= Z∆
τ0

= 0 and introduce, for
k ∈ {0, 1, ..., N − 1}, the notation

∆k+1

∣∣Λ∆
∣∣ =

∣∣Λ∆
∣∣
τk+1

−
∣∣Λ∆

∣∣
τk

=
∣∣∣Λ∆

τk+1
− Λ∆

τk

∣∣∣ .

Then we define

Y ∆
τk+1

= −
k∑

l=0

ϕ
(
τ l+1, X

∆
τ l

)
∆∗, Z∆

τk+1
= −

k∑

l=0

θ
(
τ l+1, X

∆
τ l

)
∆l+1

∣∣Λ∆
∣∣ . (1.22)

The choice to evaluate b, σ, ϕ and θ at the right end point of each time intervals allows us to
require as little regularity as possible, in the time variable, in the arguments outlined in the
bulk of the paper (see Lemma 3.1 in [2]). Finally we let

Y ∆
s = Y ∆

τk
, Z∆

s = Z∆
τk

, whenever s ∈ [τk, τk+1) , k ∈ {0, 1, ..., N − 1} . (1.23)

This completes the definition of
(
X∆,Λ∆, Y ∆, Z∆

)
and based on this approximation we intro-

duce the following approximations of Ft,T (Xt,x, Λt,x) and u (t, x), respectively,

F∆
t,T (X∆, Λ∆)

=f(X∆
τN

) exp(Y ∆
τN

+ Z∆
τN

)−
N−1∑

k=0

g(τk+1, X
∆
τk+1

) exp(Y ∆
τk

+ Z∆
τk

)∆k+1

∣∣Λ∆
∣∣

−
N−1∑

k=0

h(τk+1, X
∆
τk+1

) exp(Y ∆
τk

+ Z∆
τk

)∆∗, (1.24)

and
u∆ (t, x) = E[F∆

t,T

(
X∆, Λ∆

)
]. (1.25)

The main result established in this article, see Theorem 3.1 below, is valid under appropriate
regularity assumptions on the time-dependent domain D and on the cone of directions of reflec-
tion. In particular, we assume, given T > 0 and t ∈ [0, T ], that D ⊂ Rd+1 is a time-dependent
domain satisfying (1.2), Γ = Γs(z) is a closed convex cone of vectors in Rd for every z ∈ ∂Ds,
s ∈ [t, T ], and that

D and Γ satisfy (2.14), (2.15), (2.16) and (2.46) stated below. (1.26)

Then, see Lemma 2.1 below, all assumptions in Theorem 1.1 concerning D and Γ are fulfilled.
It turns out that in order to be able to actually prove that the suggested algorithm has order of
convergence equal to 1/2 we need to impose stronger regularity assumptions on the quantities
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involved compared what is needed in the proof of Theorem 1.1. However, we note that this is
often the case when theoretically verifying the order of convergence of numerical algorithms.
In particular, assuming (1.26) we are able to prove that

∣∣u (t, x)− u∆ (t, x)
∣∣ ≤ C (∆∗)1/2

, (1.27)

for some positive constant C, which is independent of (t, x) and ∆∗, whenever ∆∗ is sufficiently
small. In particular, u∆ (t, x) → u (t, x) as ∆∗ → 0 and the order of convergence equals 1/2. To
prove (1.27) a key observation is that (X∆, Λ∆) solves the Skorohod problem for (D∆, Γ∆, U∆)
in the sense studied in [10]. Hence, using our results in [10] concerning the Skorohod problem,
we are able to proceed similarly to the corresponding proofs in [2]. In particular, at the heart
of the matter we prove that

sup
(t,x)∈D

E
[(∣∣Λ∆

∣∣
T

)q
]
≤ Cq < ∞, uniformly in ∆∗ whenever ∆∗ is small enough, (1.28)

for all q ∈ N and with Cq independent of ∆. In fact, to establish the order of convergence for the
numerical algorithm we will only need (1.28) with q = 1. However, as the inequality in (1.28),
for arbitrary exponent q, requires no further regularity and is of independent interest, we have
included the result as stated in the article. The proof of (1.28) is the particular instance where
some of our estimates in [10] concerning the Skorohod problem are used.

Finally, to connect the discussion above to the solvability of second order parabolic equation,
we let

L =
d∑

i=1

bi (t, x) ∂xi +
1
2

d∑

i,j=1

aij (t, x) ∂xixj , (1.29)

where

aij (t, x) =
m∑

k=1

σik (t, x) σjk (t, x) . (1.30)

The following theorem connects stochastic differential equations, with oblique reflection, to
second order parabolic partial differential equations with Robin boundary conditions.

Theorem 1.2. Let u (t, x) be given by (1.15) and let Ft,T be given by (1.13). Let the processes
Xt,x, Λt,x, Y t,x and Zt,x be defined as above. Then, under suitable regularity assumptions on
the domain D, the operator L and the functions f , g, h, ϕ and θ, see Theorem 2.5 below, u (t, x)
is a classical solution to the problem





ut (t, x) + Lu (t, x)− ϕ (t, x) u (t, x) = h (t, x) in Dt, t ∈ [0, T ),
〈∇xu (t, x) , γ (t, x)〉 − θ (t, x)u (t, x) = g (t, x) on ∂Dt, t ∈ [0, T ),
u (T, x) = f (x) on DT .

(1.31)

It is clear from Theorem 1.2 that the algorithm developed in this article also yields a numeri-
cal method for solving second order parabolic partial differential equations with Robin boundary
conditions, in time-dependent domain, with a rate of convergence which is independent of the
dimension of the underlying space.

The rest of this article is organized as follows. In Section 2, which is of preliminary nature, we
introduce notation, collect a number of results concerning the geometry of time-dependent do-
mains, recall a few crucial results from [10] concerning the Skorohod problem in time-dependent
domain and state a number of results from [11] concerning the problem in (1.31). In Section 3
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we outline the details of the numerical algorithm and derive its order of convergence. Finally,
in Section 4, we numerically demonstrate the effectiveness of the algorithm by applying it in
two specific settings.

2. Preliminaries

In this section we introduce notation, collect a number of results concerning the geometry of
time-dependent domains, recall a few crucial results from [10] concerning the Skorohod problem
in time-dependent domain and state a number of results from [11] concerning the problem in
(1.31).

2.1. Notation

To start with, points in Euclidean (d + 1)-space Rd+1 are denoted by (s, z) = (s, z1, . . . , zd).
Given a differentiable function f = f (s, z) defined on R × Rd, we let ∂zif (s, z) denote the
partial derivative of f at (s, z) with respect to zi. Higher order derivatives of f with respect to
the space variables will often be denoted by ∂zizj

f (s, z), ∂zizjzk
f (s, z) and so on. Furthermore,

given a multi-index β = (β1, ..., βd), βi ∈ Z+, we define |β| = β1 + ... + βd and we let ∂β
z f (s, z)

denote the associated partial derivative of f (s, z) with respect to the space variables. Time
derivatives of f will be denoted by ∂j

sf (s, z) where j ∈ Z+. As in the introduction, we let 〈·, ·〉
denote the standard inner product on Rd and we let |z| = 〈z, z〉1/2 be the Euclidean norm of z.
Whenever z ∈ Rd, r > 0, we let

Br (z) =
{

y ∈ Rd : |z − y| < r

}
and Sr (z) =

{
y ∈ Rd : |z − y| = r

}
.

In addition dz denotes Lebesgue d-measure on Rd. Moreover, given E ⊂ Rd we let Ē and ∂E be
the closure and boundary of E, respectively, and we let d (z, E) denote the Euclidean distance
from z ∈ Rd to E. Given (s, z) , (s̃, y) ∈ Rd+1, we let

dp ((s, z) , (s̃, y)) = max
{
|z − y| , |s− s̃|1/2

}

denote the parabolic distance between (s, z) and (s̃, y) and for F ⊂ Rd+1, we let dp ((s, z) , F )
denote the parabolic distance from (s, z) ∈ Rd+1 to F . Moreover, for (s, z) ∈ Rd+1 and r > 0,
we introduce the parabolic cylinder

Cr (s, z) =
{

(s̃, y) ∈ Rd+1 : |y − z| < r, |s̃− s| < r2

}
.

Given two real numbers a and b, we let a∨ b = max {a, b} and a∧ b = min {a, b}. Finally, given
a Borel set E ⊂ Rd+1, we let χE denote the characteristic function associated to E.

Given a time-dependent domain D′ ⊂ Rd+1, a function f defined on D′, a constant α ∈ (0, 1]
and k ∈ Z+, we adopt the definition on page 46 in [11] and introduce

[f ]k+α,D′ =
∑

|β|+2j=k

sup
(s,z)∈D′

sup
(s̃,y)∈D′\{(s,z)}

∣∣∂β
z ∂j

sf (s̃, z)− ∂β
z ∂j

sf (s̃, y)
∣∣

[dp ((s, z) , (s̃, y))]α
. (2.1)

Furthermore, we let, for k ≥ 1,

〈f〉k+α,D′ =
∑

|β|+2j=k−1

sup
(s,z)∈D′

sup
(s̃,z)∈D′\{(s,z)}

∣∣∂β
z ∂j

sf (s, z)− ∂β
z ∂j

sf (s̃, z)
∣∣

|s− s̃|(α+1)/2
, (2.2)
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with the convention that 〈f〉α,D′ = 0. Finally we let

|f |k+α,D′ =
∑

|β|+2j≤k

sup
D′

∣∣∂β
z ∂j

sf
∣∣ + [f ]k+α,D′ + 〈f〉k+α,D′ . (2.3)

Moreover, using the norm |·|k+α,D′ , we introduce appropriate function spaces as on page 46
in [11]. In particular, given the index of regularity k + α, where k ∈ Z+ and α ∈ (0, 1], we let
Hk+α (D′) represent the Banach space of functions f such that |f |k+α,D′ < ∞. Furthermore,
we let Cbk/2c,k (D′) denote the space of functions with continuous derivatives in time up to
order bk/2c in D′ and with continuous derivatives in space up to order k in D′.

2.2. Geometry and regularity of time-dependent domains

We here briefly define and discuss the geometric restrictions imposed in Theorem 1.1. How-
ever, for a full account of this theory we refer to [10]. Given T > 0, we let, as defined in the
introduction, D ⊂ Rd+1 be a time-dependent domain satisfying (1.2) and Γ = Γs(z) = Γ(s, z)
be a function defined on Rd+1 such that Γs (z) is a closed convex cone of vectors in Rd for
every z ∈ ∂Ds, s ∈ [0, T ]. The spatial domain Ds is said to verify the uniform exterior sphere
condition if there exists a radius r0 > 0 such that (1.5) holds. We note that (1.5) is equivalent
to the statement that

〈n, y − z〉+
1

2r0
|y − z|2 ≥ 0, (2.4)

for all y ∈ Ds, n ∈ N1
s (z) and z ∈ ∂Ds. For z ∈ ∂Ds, s ∈ [0, T ], and ρ, η > 0 we define

as,z (ρ, η) = max
u∈S1(0)

min
s≤s̃≤s+η

min
y∈∂Ds̃∩Bρ(z)

min
γ∈Γ1

s̃(y)
〈γ, u〉 . (2.5)

The vector u in (2.5) that maximizes the minimum of 〈γ, u〉 over all vectors γ ∈ Γ1
s̃ (y) in a

time-space neighbourhood of a point (s, z), z ∈ ∂Ds, s ∈ [0, T ], can be regarded as the best
approximation of the Γ1

s̃ (y)-vectors in that neighbourhood. With this interpretation as,z (ρ, η)
represents the cosine of the largest angle between the best approximation and a Γ1

s̃ (y)-vector
in the neighbourhood. Hence, in a sense, as,z (ρ, η) quantifies the variation of Γ in a space-time
neighbourhood of (s, z). For z ∈ ∂Ds, s ∈ [0, T ] and ρ, η > 0 we define

cs,z (ρ, η) = max
s≤s̃≤s+η

max
y∈∂Ds̃∩Bρ(z)

max
x∈Ds̃∩Bρ(z), x 6=y

max
γ∈Γ1

s̃(y)

( 〈γ, y − x〉
|y − x| ∨ 0

)
. (2.6)

This quantity is close to one if the vectors γ ∈ Γ1
s̃ (y), in a time-space neighbourhood, deviate

much from the normal vectors and/or the domain is very concave. Hence, in a sense, cs,z (ρ, η)
quantifies the skewness of Γ and the concavity of D. Note that (2.6) implies

〈γ, x− y〉+ cs,z (ρ, η) |y − x| ≥ 0, (2.7)

for all y ∈ ∂Ds̃ ∩ Bρ (z), x ∈ Ds̃ ∩ Bρ (z), x 6= y and γ ∈ Γ1
s̃ (y) with z ∈ ∂Ds̃, s̃ ∈ [s, s + η] ⊂

[0, T ]. This condition exhibits some similarity with the uniform exterior sphere property (2.4).
For technical reasons we shall also need the quantity

es,z (ρ, η) =
cs,z (ρ, η)

(as,z (ρ, η))2 ∨ as,z (ρ, η) /2
. (2.8)
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In the statement of Theorem 1.1 we assume that D satisfies the uniform exterior sphere condition
in time with radius r0, and that there exist 0 < ρ0 < r0 and η0 > 0 such that,

inf
s∈[0,T ]

inf
z∈∂Ds

as,z (ρ0, η0) = a > 0, (2.9)

sup
s∈[0,T ]

sup
z∈∂Ds

es,z (ρ0, η0) = e < 1. (2.10)

Finally, we say that ([0, T ] × Rd) \ D has the (δ0, h0)-property of good projections along Γ if
there exists, for any z ∈ Rd \Ds, s ∈ [0, T ], such that

d (z, Ds) < δ0, (2.11)

at least one projection of z onto ∂Ds along Γs, denoted πΓs

∂Ds
(z), which satisfies

∣∣∣z − πΓs

∂Ds
(z)

∣∣∣ ≤ h0d (z, Ds) . (2.12)

Note that the assumptions imposed on D and Γ above do not imply any explicit regularity
assumptions on D and Γ. However, as stated in the introduction, to actually prove that the
order of convergence of the algorithm proposed in this article equals 1/2 we have to impose
more rigorous and explicit regularity assumptions on D, Γ and their interaction. The purpose
of the rest of this subsection is to formulate such conditions. To start with, given T > 0 and D

as above, we say that D is a Hk+α-domain if we can find a ρ > 0 such that there exists, for all
z0 ∈ ∂Ds0 , s0 ∈ [0, T ], a function ψ (s, z), ψ ∈ Hk+α (Cρ (s0, z0)), such that

D ∩ Cρ (s0, z0) = {ψ (s, z) > 0} ∩ Cρ (s0, z0) , (2.13a)(
(0, T )× Rd

) ∩ ∂D ∩ Cρ (s0, z0) =
(
(0, T )× Rd

) ∩ {ψ (s, z) = 0} ∩ Cρ (s0, z0) , (2.13b)

inf
(s,z)∈((0,T )×Rd)∩∂D∩Cρ(s0,z0)

|∇zψ (s, z)| > 0. (2.13c)

To prove (1.27) we will assume, given T > 0 and D as above, that

D is a Hk+α-domain with k + α ≥ 2. (2.14)

If (2.14) holds, then there exists a unique unit spatial inward normal, denoted ns (x), at x ∈
∂Ds, s ∈ [0, T ]. Moreover, assuming (2.14), l is Lipschitz continuous and there exists r0 > 0
such that D satisfies the uniform exterior sphere condition in time, with radius r0. Let Γ =
Γs(z) = Γ(s, z) be a function defined on R+ × Rd such that Γs (z) is a closed convex cone of
unit vectors in Rd for every z ∈ ∂Ds. To prove (1.27) we will also assume that

Γs (z) = {λγs (z) : λ > 0} for some S1 (0) -valued function γs (z)

which is uniformly continuous whenever z ∈ ∂Ds, s ∈ [0, T ] . (2.15)

In addition we will assume, for Γ as in (2.15), that

β := inf
s∈[0,T ]

inf
z∈∂Ds

〈γs (z) , ns (z)〉 > 0. (2.16)

Using these assumption, the following lemma is a consequence of Theorem 4.5 in [3], Lemma
2.5 in [10] and the fact that (1.3), (1.4) and (1.9) follows directly from (2.15).

Lemma 2.1. Let T > 0, let D ⊂ Rd+1 be a time-dependent domain satisfying (1.2) and let
Γ = Γs (z) be a closed convex cone of vectors in Rd for every z ∈ ∂Ds, s ∈ [0, T ]. Assume that
D and Γ satisfy (2.14)-(2.16). Then all assumptions in Theorem 1.1 concerning D and Γ are
fulfilled. In particular, there exists a constant 0 < Cl < ∞, such that

l (r) ≤ Clr, whenever r ∈ [0, T ] . (2.17)
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2.3. Estimates for the Skorohod problem in time-dependent domains

Given T > 0, we let D (
[0, T ] ,Rd

)
denote the set of cádlág functions w = ws : [0, T ] → Rd,

that is functions which are right continuous with left limits. For w ∈ D (
[0, T ] ,Rd

)
we introduce

the norm
‖w‖s1,s2

= sup
s1≤s̃1≤s̃2≤s2

|ws̃2 − ws̃1 | , (2.18)

for 0 ≤ s1 ≤ s2 ≤ T and, given δ > 0, we let

Dδ
(
[0, T ] ,Rd

)
=

{
w ∈ D (

[0, T ] ,Rd
)

: sup
s∈[0,T ]

|ws − ws− | < δ

}
, (2.19)

denote the set of cádlág functions with jumps bounded by δ. Finally, we let BV (
[0, T ] ,Rd

)

denote the set of functions λ = λs : [0, T ] → Rd with bounded variation and we let |λ| denote
the total variation of λ ∈ BV (

[0, T ] ,Rd
)
. In [10] we consider the Skorohod problem in the

following form.

Definition 2.1. Let d ≥ 1 and T > 0. Let D ⊂ Rd+1 be a time-dependent domain satisfying
(1.2) and let Γ = Γs(z) be, for every z ∈ ∂Ds, s ∈ [0, T ], a closed convex cone of vectors
in Rd. Given w ∈ D (

[0, T ] ,Rd
)
, with w0 ∈ D0, we say that the pair (x, λ) is a solution to

the Skorohod problem for (D, Γ, w), on [0, T ], if (x, λ) ∈ D (
[0, T ] ,Rd

)× BV (
[0, T ] ,Rd

)
and if

(w, x, λ) satisfies, for all s ∈ [0, T ],

xs = ws + λs, xs ∈ Ds, (2.20)

λs =
∫ s+

0

γr d |λ|r , γr ∈ Γ1
r (xr) d |λ| -a.e on ∪r∈[0,s] ∂Dr, (2.21)

and
d |λ| ({s ∈ [0, T ] : (s, xs) ∈ D}) = 0. (2.22)

In [10] we proved the following theorems.

Theorem 2.1. Let T > 0, D ⊂ Rd+1 and Γ = Γs (z) be as in the statement of Theorem 1.1
and let, in particular, δ0, ρ0 and h0 be as in Theorem 1.1. Then, given

w ∈ D(
δ0
4 ∧

ρ0
4h0

) (
[0, T ] ,Rd

)
, with w0 ∈ D0,

there exists a solution (x, λ) to the Skorohod problem for (D, Γ, w), in the sense of Definition
2.1, with x ∈ Dρ0 ([0, T ],R).

Theorem 2.2. Let T > 0, D ⊂ Rd+1 and Γ = Γs (z) be as in the statement of Theorem 1.1
and let, in particular, ρ0 be as in Theorem 1.1. Let w : [0, T ] → Rd be a continuous function
and let (x, λ) be any solution to the Skorohod problem for (D, Γ, w), in the sense of Definition
2.1. If x ∈ Dρ0

(
[0, T ] ,Rd

)
, then x is continuous.

Remark 2.1. Let T > 0, let D ⊂ Rd+1 be a time-dependent domain satisfying (1.2) and let
Γ = Γs (z) be a closed convex cone of vectors in Rd for every z ∈ ∂Ds, s ∈ [0, T ]. Then, using
Lemma 2.1, it is clear that the conclusions of Theorems 2.1 and 2.2 are valid also for D and Γ
satisfying (2.14)-(2.16).
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We next outline the estimates derived in [10] that are needed in the proof of (1.27). To do
this, recall the definitions of ∆∗, ∆, (D∆, Γ∆) and

(
X∆, U∆, Λ∆

)
stated in the introduction.

Then (X∆,Λ∆) solves the Skorohod problem for (D∆,Γ∆, U∆), in the sense of Definition 2.1,
and

d(X∆
τk

+ U∆
τk+1

− U∆
τk

, D∆
τk+1

) ≤ ||U∆||τk−1,τk
+ l(∆∗) (2.23)

≤ (sup
D
|b|)∆∗ + (sup

D
||σ||)

√
∆∗∆k+1η + l(∆∗),

whenever k ∈ {0, 1, ..., N − 1}. In particular, in the following we assume that
√

∆∗∆k+1η is
generated by some rule which ensures that we always have

(sup
D
|b|)∆∗ + (sup

D
||σ||)

√
∆∗∆k+1η + l(∆∗) < δ0. (2.24)

Hence, if (2.24) holds for all k ∈ {0, 1, ..., N − 1} then the processes
(
X∆, U∆, Λ∆

)
, introduced

in the introduction, are all well-defined. Given a > 0 and e ∈ (0, 1) we define the positive
functions K1 and K2 as follows,

K1 (a, e) =
a + 2a2e + 2 + ae

a (1− e)
, K2 (a, e) =

2a2e + 2 + ae

a (1− e)
. (2.25)

The following result is a version of Theorem 3.6 in [10] applied to
(
X∆,Λ∆, U∆

)
and (D∆,Γ∆).

Lemma 2.2. Let T > 0, D ⊂ Rd+1, r0, Γ = Γs (z), 0 < ρ0 < r0, η0, a, e, δ0 and h0 be as in
the statement of Theorem 1.1. Let t ∈ [0, T ], x ∈ Dt, let ∆ = {τk}N

k=0 be a partition of [t, T ]
as described in the introduction and assume that

l(∆∗) ≤ ρ0

4 (K2 (a, e) + 1)
.

Let
√

∆∗∆k+1η be generated by some rule which ensures that (2.24) holds for all k ∈ {0, 1, ...,

N − 1}. Given ∆, let (D∆, Γ∆) and
(
X∆, Λ∆, U∆

)
be defined as in (1.16)-(1.22) and let, based

on a sample of {√∆∗∆k+1η}N−1
k=0 ,

(
X∆,Λ∆, U∆

)
=

(
X∆(ω), Λ∆(ω), U∆(ω)

)

be a path of
(
X∆, Λ∆, U∆

)
. Moreover, assume that X∆ ∈ Dρ0

(
[t, T ] ,Rd

)
. Then there exist

positive constants K and δ∆, with K being independent of ∆, such that

∣∣Λ∆
∣∣
s2
−

∣∣Λ∆
∣∣
s1
≤ K (T − t)

δ∆

(∥∥U∆
∥∥

s1,s2
+ l (s2 − s1) + l (∆∗)

)
, (2.26)

whenever t ≤ s1 ≤ s2 ≤ T .

Proof. Let w ∈ D (
[t, T ] ,Rd

)
with wt ∈ Dt and let w∆ be defined as

w∆
t = wτk

, whenever t ∈ [τk, τk+1) , k ∈ {0, 1, ..., N − 1} , (2.27)

and w∆
T = wT . Assume that ∥∥w∆

∥∥
τk,τk+1

+ l (∆∗) < δ0, (2.28)
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holds whenever k ∈ {0, 1, ..., N − 1}. Given ∆ and w∆, let x∆ and λ∆ be defined based on
w∆ in exactly the same manner as X∆ and Λ∆ are defined based on U∆ in (1.18) and (1.20).
Moreover, assume that x∆ ∈ Dρ0

(
[t, T ] ,Rd

)
. Now let δ′ be a fixed positive number satisfying

δ′ = min{η0, δ̂
′}, where δ̂

′
is such that l(δ̂

′
) ≤ ρ0/(4(K2 (a, e) + 1)). (2.29)

Note that δ′ is independent of ∆. Now, since w∆ is a cádlág function, there exists, for any
L > 0, a constant δw∆ (L, t, T ), satisfying

0 < δw∆ (L, t, T ) ≤ δ′ ∧ (T − t) ,

and a partition ∆̃ = {τ̃ j}Ñ
j=0, t = τ̃0 < τ̃1 < .... < τ̃ Ñ = T , such that

δw∆ (L, t, T ) ≤ τ̃ j+1 − τ̃ j ≤ δ′ ∧ (T − t) , for all j ∈ {0, 1, ..., Ñ − 1},

and such that
max

j∈{0,1,...,Ñ−1}
sup

s1,s2∈[τ̃j ,τ̃j+1)

∣∣w∆
s1
− w∆

s2

∣∣ < L. (2.30)

For L = ρ0/2K1 (a, e), we obtain, following the proofs of Theorem 3.2 and Theorem 3.6 in [10],

∣∣∣λ∆
∣∣∣
s2

−
∣∣∣λ∆

∣∣∣
s1

≤ 1 + K1 (a, e)
a

(
T − t

δw∆ (L, t, T )
+ 2

) ∥∥w∆
∥∥

s1,s2

+
1√

1− e

(
T − t

δw∆ (L, t, T )
+ 1

) ∥∥w∆
∥∥

s1,s2

+
1 + K1 (a, e)

a

(
T − t

δw∆ (L, t, T )
+ 2

)
(l (s2 − s1) + l (∆∗))

≤ K(T − t)
δw∆ (L, t, T )

(∥∥w∆
∥∥

s1,s2
+ l (s2 − s1) + l (∆∗)

)
, (2.31)

whenever t ≤ s1 ≤ s2 ≤ T , for some positive constant K, independent of ∆. Note that the
last step follows as, by construction, (T − t)/δw∆ (L, t, T ) ≥ 1. To complete the proof, we
observe that U∆ satisfies all properties required for w∆ above and, in particular, (2.28) follows
by (2.24). Hence, as X∆ and Λ∆ are generated, based on U∆, in exactly the same manner as
x∆ and λ∆ are generated based on w∆, we can immediately conclude, using (2.31), that

∣∣Λ∆
∣∣
s2
−

∣∣Λ∆
∣∣
s1
≤ K(T − t)

δU∆ (L, t, T )

(∥∥U∆
∥∥

s1,s2
+ l (s2 − s1) + l (∆∗)

)
, (2.32)

whenever t ≤ s1 ≤ s2 ≤ T . Hence the lemma holds with δ∆ = δU∆ (L, t, T ). ¤

The estimate in Lemma 2.2 can be used to deduce the following lemma which we shall use
in the proof of (1.27) in Section 3.

Lemma 2.3. Let T > 0, t ∈ [0, T ], let D ⊂ Rd+1 be a time-dependent domain satisfy-
ing (1.2) and let Γ = Γs(z) be a closed convex cone of vectors in Rd for every z ∈ ∂Ds,
s ∈ [t, T ]. Assume (1.26), let ∆ = {τk}N

k=0 be a partition of [t, T ] as described in the
introduction and let (D∆,Γ∆) and

(
X∆,Λ∆, U∆

)
be defined as in (1.16)-(1.22). Assume

that ∆k+1η is, for all k ∈ {0, 1, ..., N − 1}, a bounded random variable defined on Ω. Let
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H := supω∈Ω supk∈{0,1,...,N−1} |∆k+1η (ω)|, let Cl denote the Lipschitz norm of l and let the
positive constants ρ0, δ0 and h0 be as defined in Theorem 1.1. Let

B = δ0 ∧ ρ0

(1 + h0) ∨ (2 (K2 (a, e) + 1))
, (2.33)

and let

∆̂∗ := min

{
B

2 (Cl + supD |b|)
,

(
B

2H supD ‖σ‖
)2

}
. (2.34)

Then there exists, for any q ∈ N, a positive constant Cq depending only on q, D, H and the
coefficients of (1.31), such that

sup
∆∗<∆̂∗

sup
(t,x)∈D

E
[(∣∣Λ∆

∣∣
T

)q
]
≤ Cq < ∞. (2.35)

Proof. First note that (2.24) is satisfied for all ∆∗ ≤ ∆̂∗. Hence the projections in (1.18) are
well defined and, accordingly, so are X∆ and Λ∆. As noted earlier,

(
X∆,Λ∆

)
is a solution to

the Skorohod problem for
(
D∆, Γ∆, U∆

)
and, by means of (2.23), (2.34) and the construction

of X∆, we can conclude that supt≤s≤T

∣∣X∆
s −X∆

s−
∣∣ ≤ ρ0. Furthermore, from the definition of

∆̂∗ it follows that l(∆∗) ≤ ρ0/(4(K2 (a, e) + 1)) whenever ∆∗ ≤ ∆̂∗. Hence all prerequisites
of Lemma 2.2 are satisfied and we can conclude that there exist positive constants K and δ∆,
with K being independent of ∆, such that (2.26) holds. Concerning δ∆ we note, as described
in (2.29)-(2.30) in the proof of Lemma 2.2, that in general δ∆ = δU∆ (L, t, T ) depends on U∆

and satisfies 0 < δU∆ (L, t, T ) ≤ δ′ ∧ (T − t) where δ′ was defined in (2.29). Applying the
Cauchy-Schwarz inequality to (2.26), using also the Lipschitz continuity of l, we obtain

E
[(∣∣Λ∆

∣∣
T

)q
]

≤L1

(
E

[(
T − t

δU∆ (L, t, T )

)2q
]) 1

2

·
(

L2 + E

[(
sup

t≤s1≤s2≤T

∣∣U∆
s2
− U∆

s1

∣∣
)2q

]) 1
2

, (2.36)

for some positive constants L1 and L2. Since

sup
t≤s1≤s2≤T

∣∣U∆
s2
− U∆

s1

∣∣ ≤ L3 + max
0≤l1≤l2≤N−1

∣∣∣∣∣
l2∑

k=l1

σ
(
τk+1, X

∆
τk

)√
∆∗∆k+1η

∣∣∣∣∣ , (2.37)

for some positive constant L3, we see that to complete the proof it suffices to prove that

sup
∆∗<∆̂∗

sup
(t,x)∈D

E


 max

0≤p≤p′≤N−1

∣∣∣∣∣∣

p′∑

k=p

σ
(
τk+1, X

∆
τk

)√
∆∗∆k+1η

∣∣∣∣∣∣

2q

 < ∞, (2.38)

and that

sup
∆∗<∆̂∗

sup
(t,x)∈D

E

[(
T − t

δU∆ (L, t, T )

)2q
]

< ∞. (2.39)

The estimate in (2.38) follows directly from the proof of (ii) in Lemma 3.3 in [2]. Regarding
(2.39), we first observe that δU∆ (L, t, T ) tends to zero either if t → T or if the variation of U∆

is large. As far as the first case is concerned we note that there exists a ε > 0 such that
∥∥U∆

∥∥
t,T

< L, whenever t ∈ [T − ε, T ] .



Weak Approximation of Obliquely Reflected Diffusions 593

Hence, for t ∈ [T − ε, T ] we can set δU∆ (L, t, T ) = T − t, whereby (2.39) easily follows. This
also implies that we can, without loss of generality, assume that 0 < δU∆ (L, t, T ) ≤ δ′ is
independent of T − t and we note that

(
T − t

δU∆ (L, t, T )

)2q

≤ max

{
T 2q

(
δ′

)2q ,
T 2q

(δ̃
∆

)2q

}
, (2.40)

where

δ̃
∆

= sup

{
δ > 0 : inf

∆̃
max

j∈{1,...,Ñ}
sup

s1,s2∈[τ̃j ,τ̃j−1)

∣∣U∆
s1
− U∆

s2

∣∣ < L

}
, (2.41)

and the infimum is taken over all partitions ∆̃ = {τ̃ j}Ñ
j=0, 0 = τ̃0 < τ̃1 < .... < τ̃ Ñ = T , such

that minj∈{1,...,Ñ} |τ̃ j − τ̃ j−1| > δ. Since δ′ is a fixed positive number independent of ∆, it
hence remains to show that

sup
∆∗<∆̂∗

sup
(t,x)∈D

E

[
1

(δ̃
∆

)2q

]
< ∞. (2.42)

However, (2.42) follows readily from the proof of (i) in Lemma 3.3 in [2] by noting that the
variable δ̃

∆
is equivalent to the variable δW h (ρ0/2K1 (a, e) , t, T ) in [2]. ¤

As a general comment we note that the question of uniqueness of solutions to the Skoro-
hod oblique reflection problem is, in general, still an open problem also for time-independent
domains. In fact, concerning uniqueness, the strongest known result is the following theorem
proved in Theorem C.2 of [7].

Theorem 2.3. Let T > 0 and let D ⊂ Rd+1 be a time-dependent domain satisfying (1.2) and
(2.14). Let w ∈ C (

[0, T ]× Rd
)

with w0 ∈ D0. Then there exists a unique solution to the
Skorohod problem for (D, N, w).

Let b : R+ × Rd → Rd and σ : R+ × Rd → Rd×m be given functions and assume that there
exists a constant K > 0 such that b and σ satisfy

|b (s, z)|+ |σ (s, z)| ≤ K, (2.43)

|b (s, z)− b (t, y)|+ |σ (s, z)− σ (t, y)| ≤ K
(
|z − y|+ |s− t|1/2

)
, (2.44)

whenever (s, z) , (t, y) ∈ D. Let x ∈ Rd. Then, assuming (2.43)-(2.44) one can apply standard
results on the existence of solutions to stochastic differential equations (see e.g. [1]) to conclude
that there exists a unique strong solution to

Xt,x
s = x +

s∫

t

b
(
r,Xt,x

r

)
dr +

s∫

t

σ
(
r,Xt,x

r

)
dWr. (2.45)

Combining this result with Theorem 2.3 one can verify the validity of the following theorem,
see Theorem 3.2 in [7].

Theorem 2.4. Let T > 0, let t ∈ [0, T ], and let D ⊂ Rd+1 be a time-dependent domain
satisfying (1.2) and (2.14). Let b : R+×Rd → Rd and σ : R+×Rd → Rd×m be given functions
on D satisfying (2.43)-(2.44) and let x ∈ Dt. Then there exists a unique weak solution, in the
sense of Definition 1.1, to the stochastic differential equation in D with coefficients b and σ,
reflection along Ns on ∂Ds, s ∈ [t, T ], and with initial condition x at t.
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Note that Theorem 2.4 can be proved without the requirement in (2.44) that b and σ are
Hölder continuous of order 1/2 with respect to the time variable. Nevertheless, we include this
additional regularity condition, as it enables us to establish the connection to second order
partial differential equations described below.

2.4. Parabolic partial differential equations with oblique boundary conditions in
time-dependent domains

To be able to prove the convergence for the numerical algorithm outlined in the introduction,
we need to ensure that there exists a unique C1,2 (D) -solution u to (1.31) satisfying

(i) us is Hölder continuous with exponent 1/2 as a function of s

(ii) uxixj
is Lipschitz continuous as a function of x for i, j ∈ {1, 2, ..., d},

(iii) u can be extended to a function C1,2
(
[0, T ]× Rd

)
. (2.46)

If D is a time-dependent domain satisfying (1.2) and (2.14), if the closed convex cone Γ
of directions of reflection satisfies (2.15) and (2.16), and if (2.46) holds, then we are able to
prove that the numerical approximation described in the introduction converges to the unique
solution u (see Theorem 3.1 below). Note that concerning a priori knowledge of the regularity
of u we shall need (2.46) and naturally the validity of (2.46) imposes implicit conditions on the
structure of the operator L. Note, however, that the statement in (2.46) does not, by necessity,
require that the operator L in (1.31) is uniformly elliptic.

In this subsection we state some regularity conditions, under which the relation between
second order parabolic partial differential equations with Robin boundary conditions and the
expectation of a functional of the solution to a stochastic differential equation with reflection,
already stated in Theorem 1.2 above, holds. In the following, we assume that d = m and that
there exists λ ∈ [1,∞) such that the following uniform ellipticity condition holds

λ−1 |ξ|2 ≤
d∑

i,j=1

aij (s, z) ξiξj ≤ λ |ξ|2 , whenever (s, z) ∈ Rd+1, ξ ∈ Rd. (2.47)

The following two results concerning regularity of the solution to the partial differential equation
in (1.31) can be deduced from Theorem 5.18 in [11] (or from [12] in the time-independent case)
and the relation to the stochastic differential equations follows by an application of Itô’s formula.
A similar result is found in Proposition 3.7 of [7].

Theorem 2.5. Let D ⊂ Rd+1 be a time-dependent domain satisfying (1.2) and (2.14), for some
α ∈ (0, 1). Assume that b and σ satisfy (2.43)-(2.44), which in turn implies that b ∈ Hα (D)
and aij ∈ Hα (D), and assume that {aij} satisfies the uniform ellipticity condition in (2.47).
Furthermore, let ϕ ∈ Hα (D), θ ∈ H1+α (D), g ∈ H1+α (D), h ∈ Hα (D) and let f be a
bounded and continuous function on Rd. Assume that Γ satisfies (2.15) and (2.16) and that the
d components of γ all belong to H1+α (D). Then there exists a unique solution u to problem
(1.31) and u is given by (1.15). If, in addition, f ∈ H2+α (D) and the compatibility condition

〈∇xf (x) , γ (T, x)〉 − d (T, x) f (x) = g (T, x) , (2.48)

holds whenever x ∈ ∂DT , then u ∈ H2+α (D).
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Theorem 2.6. Let D ⊂ Rd+1 be a time-dependent H3-domain satisfying (1.2), assume that b

and σ satisfy (2.43)-(2.44) and that {aij} satisfies the uniform ellipticity condition in (2.47).
Furthermore, let ϕ ∈ H1 (D), θ ∈ H2 (D), f ∈ H3 (D), g ∈ H2 (D), h = 0. Assume that Γ
satisfies (2.15) and (2.16) and that the d components of γ all belong to H2 (D). Then there
exists, if the compatibility condition (2.48) holds whenever x ∈ ∂DT , a unique solution u ∈
H3 (D) to problem (1.31) and u is given by (1.15).

Note, in the context of the last two theorems, that if u ∈ Hk+α (D), with α > 0 and k ∈ Z+,
and if D is a Hk+α-domain, then u can be extended to a function ũ ∈ Hk+α

(
[0, T ]× Rd

)
(see

for example [13]) and, as a consequence, it is clear that (2.46) holds if D is a H3-domain and
the solution to (1.31) belongs to H3 (D). Hence Theorem 2.6 gives sufficient regularity and
compatibility conditions for (2.46) in the case of vanishing source term.

3. Proof of the Order of Convergence for the Numerical Algorithm

for Weak Approximation

This section is devoted to the proof of (1.27) under the assumption in (1.26). In the
introduction we outlined the numerical algorithm considered in this article by defining, for
a partition ∆, the processes

(
X∆, U∆, Λ∆, Y ∆, Z∆

)
on (D∆, Γ∆) as approximations of the

processes (X,U, Λ, Y, Z) on (D, Γ). Finally, we defined the functional F∆
t,T (X∆, Λ∆) as an

approximation of Ft,T (X, Λ). In order to fully specify the numerical algorithm, it remains to
determine a rule for generating the random variables ∆k+1η, for k = 0, 1, ..., N−1, which should
approximate the increments of the Wiener process. In the following we discuss two alternative
choices of such rules.

To describe the first alternative we note that the term
√

∆∗∆k+1η in (1.18) and the Wiener
increment Wk+1−Wk will be identical in law if ∆k+1η is chosen as a Gaussian random variable
with zero mean and unit variance. Let δ0 > 0 be as in the definition of the (δ0, h0)-property
of good projections along Γ and recall that the existence of a projection onto ∂Ds along Γs is
only asserted for points z ∈ Rd \Ds, satisfying d (z,Ds) < δ0. As Gaussian random variables
are unbounded we cannot rule out, if choosing ∆k+1η to be Gaussian, the possibility that
(1.19) is violated, in which case X∆ might remain undefined. However, to make this approach
operational, we note, see Lemma 4.1 in [14], that

P
(∣∣∣U∆

τk+1
− U∆

τk

∣∣∣ > δ
)
≤ K (T ) exp

(
−C

δ2

∆∗

)
, (3.1)

for some positive constants C and K (T ). Hence the probability that
∣∣∣U∆

τk+1
− U∆

τk

∣∣∣ exceeds a
fixed δ decreases exponentially with ∆∗. In particular, as ∆∗ tends to zero, the error produced
by throwing away those values of ∆k+1η which are too large, decreases much faster compared
to the time-discretization error and hence it can be argued that these values of ∆k+1η can
be neglected. Recall that assuming (2.14) we know that l is Lipschitz continuous and by Cl

we denote the Lipschitz norm of l. Hence the constraint in (2.24), asserting that X∆ is well
defined, is fulfilled if

(sup
D
|b|)∆∗ + (sup

D
‖σ‖)

√
∆∗∆k+1η + Cl∆∗ < δ0. (3.2)

Let

∆̃∗ := min

{
δ0

2 (Cl + supD |b|)
,

(
δ0

8 supD ‖σ‖
)2

}
. (3.3)
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Then, if we consider ∆∗ < ∆̃∗ we see, by proceeding as above, that only values of ∆k+1η

exceeding 4 have to be discarded and we note that if ∆k+1η is generated as a Gaussian variable
with unit variance such values occur with very small probability. Furthermore, as ∆∗ decreases
we can gradually allow for higher values of ∆k+1η and, as ∆∗ tends to zero, the law of ∆k+1η

converges to that of a Gaussian variable.
To describe the second alternative for generating ∆k+1η we proceed as in [2]. In particular,

in this case we let, as in [2], ∆k+1η be defined as a bounded random variable satisfying the
constraints

E [∆k+1η] = 0, E
[
∆k+1ηi∆k+1ηj

]
= δij , E

[
|∆k+1η|3

]
< ∞, (3.4)

for all k ∈ {0, 1, ..., N − 1}, where δij is the Kronecker delta. To give an example of a choice
of ∆k+1η which satisfies these constraints we let ∆k+1ηi, i ∈ {1, .., d}, be independent random
variables which only take on the values ±1 and satisfy

P (∆k+1ηi = ±1) =
1
2
. (3.5)

Clearly, the advantage of the approach to generating ∆k+1η is that ∆k+1η can be drawn from
a simple and easily generated distribution. For ∆k+1η satisfying the constraints in (3.4), we let
H := supω∈Ω supk∈{0,1,...,N−1} |∆k+1η (ω)|, and define

∆̃∗ := min

{
δ0

2 (Cl + supD |b|)
,

(
δ0

2H supD ‖σ‖
)2

}
. (3.6)

Then X∆ is clearly well defined whenever ∆∗ < ∆̃∗.
Based on the discussion above we conclude that either of the two alternatives can be used to

generate ∆k+1η. In the following we shall refer to these alternatives as Method 1 and Method
2, respectively.

1. For ∆∗ < ∆̃∗, with ∆̃∗ as in (3.3), choose ∆k+1η as a Gaussian random variable with
mean zero and unit variance. Redraw the value of ∆k+1η if condition (3.2) is violated.

2. For ∆∗ < ∆̃∗, with ∆̃∗ as in (3.6), choose ∆k+1η as a bounded random variable satisfying
the conditions in (3.4).

We are now ready to state the main result of this article. Since the derivations, in connection
to the numerical algorithm, require less regularity when Method 2 is used, we have chosen to
concentrate on this approach in the following. However, in Remark 3.2 we indicate how to
obtain a similar result based on Method 1.

Theorem 3.1. Assume (1.26) and assume that ∆k+1η is generated using Method 2. Then

E
[
Ft,T (X, Λ)− F∆

t,T

(
X∆,Λ∆

)] → 0, (3.7)

as ∆∗ → 0. Furthermore, if ∆∗ < ∆̂∗, where ∆̂∗ is defined in Lemma 2.3, then

E
[
Ft,T (X, Λ)− F∆

t,T

(
X∆,Λ∆

)] ≤ C (∆∗)1/2
, (3.8)

where C is a positive constant depending only on T , D, H and the coefficients of (1.31).
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Remark 3.1. As in [2] the algorithm stated above can, in the case for normal projection,
easily be generalized to the case of piecewise H2-domains satisfying the consistency and non-
degeneracy conditions stated in Theorem 4.6 in [3]. The algorithm can also be generalized to
the case of mixed Dirichlet and Robin boundary conditions. For notational clarity, we have
chosen not to consider these cases in order to not to divert the focus from the new aspects of
the algorithm considered in this article, i.e., the aspects of time-dependency, oblique reflection
and second order parabolic partial differential equations with non-zero right hand side.

Below we prove Theorem 3.1 by means of a series of lemmas. First we note that, assum-
ing (1.26), it follows, see Lemma 2.1 that ([0, T ] × Rd) \ D has the (δ0, h0)-property of good
projections along Γ. Hence for any z ∈ Rd \Ds, s ∈ [0, T ], such that d (z, Ds) < δ0, we have

∣∣∣πΓs

∂Ds
(z)− z

∣∣∣ ≤ h0d (z, Ds) . (3.9)

Moreover, using this estimate, the Lipschitz continuity of l, the fact that ∆∗ < ∆̂∗ and (2.23),
we obtain

∆k+1

∣∣Λ∆
∣∣ =

∣∣∣πΓτk+1
∂Dτk+1

(X∆
τk

+ U∆
τk+1

− U∆
τk

)− (X∆
τk

+ U∆
τk+1

− U∆
τk

)
∣∣∣

≤ h0d(X∆
τk

+ U∆
τk+1

− U∆
τk

, D∆
τk+1

)

≤ h0

∣∣∣∣(Cl + sup
D
|b|)∆∗ + sup

D
‖σ‖

√
∆∗∆k+1η

∣∣∣∣ . (3.10)

For ∆k+1X
∆ := X∆

τk+1
−X∆

τk
we obtain, similarly,

∣∣∆k+1X
∆

∣∣ ≤
∣∣∣U∆

τk+1
− U∆

τk

∣∣∣ + ∆k+1

∣∣Λ∆
∣∣

≤ (1 + h0)
∣∣∣∣(Cl + sup

D
|b|)∆∗ + sup

D
‖σ‖

√
∆∗∆k+1η

∣∣∣∣ . (3.11)

To formulate the first two lemmas we need to introduce some notation. In particular, we let

uk = u
(
τk+1, X

∆
τk

)
, ak

i = ai

(
τk+1, X

∆
τk

)
, θk+1 = θ

(
τk+1, X

∆
τk+1

)
, (3.12a)

uk
xi

= ∂xiu
(
τk+1, X

∆
τk

)
, ϕk = ϕ

(
τk+1, X

∆
τk

)
, γk+1

i = γi

(
τk+1, X

∆
τk+1

)
. (3.12b)

uk
xixj

= ∂xixj u
(
τk+1, X

∆
τk

)
, ek = exp

(
Y ∆

τk
+ Z∆

τk

)
, (3.12c)

and we introduce two error functions r (t, T, ∆) and R (t, T, ∆) as follows. We let

r (t, T, ∆) =
N−1∑

k=0

τk+1∫

τk

ek
(
∂su

(
s, X∆

s

)− ∂su
(
τk+1, X

∆
τk

))
ds, (3.13)

and we let

R (ε, T, ∆) =
N−1∑

k=0

d+2∑

i,j=1

(
∂vivj ζ

(
τk+1, V

∆
τk

+ ν∆
k ∆k+1V

∆
)

− ∂vivj ζ
(
τk+1, V

∆
τk

))
∆k+1V

∆
i ∆k+1V

∆
j , (3.14)
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where 0 < ν∆
k < 1,

vi = xi,
(
V ∆

τk

)
i
=

(
X∆

τk

)
i
, ∆k+1V

∆
i = ∆k+1X

∆
i , for i = 1, ..., d, (3.15a)

vd+1 = y,
(
V ∆

τk

)
d+1

= Y ∆
τk

, ∆k+1V
∆
d+1 = ∆k+1Y

∆ := Y ∆
τk+1

− Y ∆
τk

, (3.15b)

vd+2 = z,
(
V ∆

τk

)
d+2

= Z∆
τk

, ∆k+1V
∆
d+1 = ∆k+1Z

∆ := Z∆
τk+1

− Z∆
τk

, (3.15c)

and ζ (t, v) = u (t, x) exp (y + z). Following the proof of Lemma 3.1 in [2] we can then deduce
the following two technical lemmas. We state the lemmas without proofs and refer the reader
to [2] for details. Note that the crucial part in the proof of Lemma 3.2 stated below is that
(3.10) and (3.11) are the counterparts of equations (3.13)-(3.15) in [2].

Lemma 3.1. Assume (1.26) and assume that ∆k+1η is generated using Method 2. If ∆∗ <

∆̃∗, where ∆̃∗ is defined as in (3.6), then for all (t, x) ∈ D, the following expansion of
E [Ft,T (X, Λ)]− E

[
F∆

t,T

(
X∆, Λ∆

)]
holds, for some constants 0 < ν̂∆

k < 1 and 0 < ν̃∆
i,k < 1.

∣∣∣∣E [Ft,T (X, Λ)]− E
[
F∆

t,T

(
X∆,Λ∆

)] ∣∣∣∣

=− E

[
N−1∑

k=0

ekG∆,k
t,T

(
X∆, Λ∆

)
]
− E [r (t, T, ∆)]− E [R (t, T, ∆)] , (3.16)

where

G∆,k
t,T

(
X∆, Λ∆

)

=θk+1
d∑

i=1

[
uxi

(
τk+1, X

∆
τk

+ ν̂∆
k ∆k+1X

∆
)
− uxi

(
τk+1, X

∆
τk

) ]
∆k+1X

∆
i ∆k+1

∣∣Λ∆
∣∣

+
d∑

i=1

γk+1
i

d∑

j=1

(uxixj

(
τk+1, X

∆
τk

+ ν̃∆
i,k∆k+1X

∆
)

− uxixj

(
τk+1, X

∆
τk

)
)∆k+1X

∆
j ∆k+1

∣∣Λ∆
∣∣

+
1
2


uk

(
θk+1

)2

−
d∑

i,j=1

uk
xixj

γk+1
i γk+1

j


 (

∆k+1

∣∣Λ∆
∣∣)2

+
1
2


2ϕk

d∑

i=1

uk
xi

ak
i +

d∑

i,j=1

uk
xixj

ak
i ak

j + uk
(
ϕk

)2


 (∆∗)2

+

(
d∑

i=1

uk
xi

γk+1
i − ukθk+1

)
ϕk∆∗∆k+1

∣∣Λ∆
∣∣ . (3.17)

Lemma 3.2. Assume (1.26) and assume that ∆k+1η is generated using Method 2. Let

HN = max
k∈{0,1,...,N−1}

|∆k+1η| .
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If ∆∗ < ∆̃∗, where ∆̃∗ is defined as in (3.6), then the upper bound
∣∣∣∣E [Ft,T (X, Λ)]− E

[
F∆

t,T

(
X∆, Λ∆

)] ∣∣∣∣

≤CE
[
HN |Λ∆|T

]√
∆∗ + C

(
1 + E

[|Λ∆|T
]
+ E

[
H2

N |Λ∆|T
] )

∆∗

+
∣∣∣∣E [r (t, T, ∆)] |+ |E [R (t, T, ∆)]

∣∣∣∣ +Opol (∆∗) , (3.18)

holds uniformly with respect to (t, x) ∈ D for some positive constant C depending only on T ,
D, H and the coefficients of (1.31). By Opol (∆∗) we mean a quantity that is bounded by a
positive constant times (∆∗)−k for any k ≥ 0.

Furthermore, the estimates of the error terms |E [r (t, T, ∆)]| and |E [R (t, T, ∆)]| derived in
[2], in the time-independent case, can also be carried over to the time-dependent case considered
in this article. Hence we can state the following result, which is essentially Lemma 3.2 in [2],
without proof.

Lemma 3.3. Assume (1.26) and assume that ∆k+1η is generated using either Method 1 or
Method 2. Then

lim
∆∗→0

sup
(t,x)∈D

|E [r (t, T, ∆)]| → 0, lim
∆∗→0

sup
(t,x)∈D

|E [R (t, T, ∆)]| → 0. (3.19)

Furthermore, if ∆∗ < ∆̃∗, where ∆̃∗ is defined as in (3.3) or (3.6), then

sup
(t,x)∈D

|E [r (t, T, ∆)]| ≤ C
√

∆∗, sup
(t,x)∈D

|E [R (t, T, ∆)]| ≤ C
√

∆∗, (3.20)

for some positive constant C which is independent of ∆∗.

Now, as HN and H2
N are bounded in the case of Method 2, Theorem 3.1 follows immediately

by combining Lemma 2.3 for q = 1 with Lemmas 3.2 and 3.3.

Remark 3.2. For ∆k+1η chosen according to Method 1 it was shown in [15] that if the domain
D is convex and time-independent, and if the coefficients b and σ are time-independent, then the
result in Lemma 2.3 regarding Λ∆ still holds. However, as HN is expected to increase without
bound as N increases, Lemma 3.2 cannot be applied in this case. Nevertheless, under much
stronger regularity conditions compared to those stated in (1.26), for example assuming that
the domain D and the coefficients of (1.31) are smooth and time-independent, it was shown in
Lemma 4.1 in [14] that the probability of ∆k+1

∣∣Λ∆
∣∣ being non-zero is of order

√
∆∗. Hence,

applying the Hölder inequality to the third term in (3.17), we obtain, for arbitrary 1 < q < ∞
and for some positive constant L,

E

[
N−1∑

k=0

(
∆k+1

∣∣Λ∆
∣∣)2

]
=

N−1∑

k=0

E
[(

∆k+1

∣∣Λ∆
∣∣)2

1∆k+1|Λ∆|>0

]

≤
N−1∑

k=0

(
E

[(
∆k+1

∣∣Λ∆
∣∣)2p

]) 1
p

(
E

[(
1∆k+1|Λ∆|>0

)q] ) 1
q

≤ L

N−1∑

k=0

(
E

[(
∆k+1

∣∣Λ∆
∣∣)2p

]) 1
p

(∆∗)
1
2q . (3.21)
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Now by (3.10), which applies also when ∆k+1η is generated according to Method 1, we have

(
E

[(
∆k+1

∣∣Λ∆
∣∣)2p

]) 1
p ≤

(
E

[
pL2p (∆k+1η)2p (∆∗)p

]) 1
p

= p
1
p L2

(
E

[
(∆k+1η)2p

]) 1
p

∆∗, (3.22)

for some positive constant L, independent of p and ∆. Furthermore, using basic properties of
the normal distribution we have that,

(
E

[
(∆k+1η)2p

]) 1
p ≤

(
(2p)!
2pp!

) 1
p

=
1
2

(
(2p) (2p− 1) · ... · (p + 1)

) 1
p

≤ 1
2

(
(2p)p

) 1
p

= p. (3.23)

Hence, we conclude that there exist positive constants L and L′, independent of q and ∆, such
that

E

[
N−1∑

k=0

(
∆k+1

∣∣Λ∆
∣∣)2

]
≤ L′

N−1∑

k=0

(p)
1
p p (∆∗)1+

1
2q ≤ Lq

q − 1
(∆∗)

1
2q . (3.24)

Similar results can also be found for the other terms in (3.17) and, as 1 < q < ∞ is arbitrary,
this enables us to obtain an order of convergence equal to 1/2−ε whenever ∆k+1η is chosen ac-
cording to Method 1. The problem of generalizing these results, valid only for time-independent
domains, to the time-dependent setting considered in this article is left as a subject for future
research.

Remark 3.3. Although the solution to (1.31) is unique we cannot be certain that the solution
to the corresponding stochastic differential equation with reflection is pathwise unique. This
also explains why there is no need to require that the oblique projections of x onto ∂D along
Γ are unique. If we, however, use Theorem 2.6 to assert that (2.46) holds, the regularity
assumptions are sufficient to ensure that the oblique projections are indeed unique. This is a
consequence of Theorem 4.6 in [3].

4. Numerical Examples

In this section we empirically evaluate the performance of the algorithm described in this
article based on two examples. In both examples we consider D ⊂ R3 and the examples are
constructed in such a way that the solution u to (1.31) can be explicitly found. As we shall see,
the numerical results suggest that the order of convergence of the suggested algorithm does not
fall below the theoretical bound of 1/2.

4.1. A reflected Langevin type equation on a square

Let T > 0 be given and let ρ : [0, T ] → R+ be some function. Based on ρ we let D ⊂ R3 be
a time-dependent domain with time sections

Dt =
{

x = (x1, x2) ∈ R2, (x1, x2) ∈ [−ρ (t) , ρ (t)]× [−ρ (t) , ρ (t)]
}

, (4.1)



Weak Approximation of Obliquely Reflected Diffusions 601

whenever t ∈ [0, T ]. Note that the time sections are squares with side lengths specified by the
function ρ. Inspired by the numerical example in Section 4 of [2], we let the drift and diffusion
coefficients be

b(t, x) =
( −x2

x1

)
and σ(t, x) =




sin (x1 + x2)
κ (t)

0

0
cos (x1 + x2)

κ (t)


 , (4.2)

for some function κ : [0, T ] → R+. Furthermore, we let, in (1.31), f (x) = x2
1 + x2

2 and we set
γ = n, ϕ ≡ 0, θ ≡ 0, g (t, x) = −2ρ (t) and h (t, x) = µ (t), for some function µ : [0, T ] → R.
Note that n = nt denotes the inward normal on ∂Dt. Then the solution u to (1.31) is given by

u (t, x) = x2
1 + x2

2 + ξ (t) , (4.3)

for some function ξ : [0, T ] → R+ which we specify below based on κ and µ. Indeed, applying
(4.2) and (4.3) to the differential operator L, we obtain

Lu =
2∑

i=1

bi (t, x) ∂xiu +
1
2

2∑

i,j=1

2∑

k=1

σik (t, x) σjk (t, x) ∂xixj u =
1

(κ (t))2
. (4.4)

Accordingly, the partial differential equation and the terminal condition for u reduce to

∂tu (t, x) + Lu (t, x)− ϕ (t, x)u (t, x)− h (t, x) = ξ′ (t) +
1

(κ (t))2
− µ (t) = 0, (4.5)

and
u (T, x)− f (x) = ξ (T ) = 0, (4.6)

respectively. Hence, given κ and µ, the unknown function ξ is easily obtained as the solution
to the ordinary differential equation

ξ′ (t) = µ (t)− 1
(κ (t))2

, with terminal condition ξ (T ) = 0. (4.7)

Finally, considering the boundary condition, we note that on the subset of the boundary given
by

{
(t, ρ (t) , x2) ∈ R3 : x2 ∈ [−ρ (t) , ρ (t)] , t ∈ [0, T ]

} ⊂ ∂D, the boundary condition is satisfied
since

〈∇xu (t, x) , γ (t, x)〉 =
2∑

i=1

(∂xiu)ni = 2x1 (−1) = −2ρ (t) = g (t, x) . (4.8)

Analogous relations hold on the other parts of the boundary. Observe that the time-dependence
of the domain enters in (1.31) through the right hand side in the Neumann condition. To
conclude we can, under fairly weak assumptions on κ, µ and ρ, always find the explicit form of
the solution u to (1.31). Note that the functional F∆

t,T corresponding to this problem equals

F∆
t,T

(
X∆, Λ∆

)
=

∣∣X∆
τN

∣∣2 + 2
N−1∑

k=0

ρ
(
τk+1, X

∆
τk+1

)
∆k+1

∣∣Λ∆
∣∣−

N−1∑

k=0

µ (τk+1) ∆∗. (4.9)

To numerically evaluate the algorithm described in this article, for the problem outlined
above, we set T = 1 and we estimate u (0, 0.2, 0.2) for the following three specifications of the
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functions κ, µ and ρ.

(i) κ (t) =
√

t + 1, µ ≡ 0, ρ ≡ 1,

(ii) κ (t) =
√

t + 1, µ ≡ 0, ρ (t) = 1− 2t (T − t)
T 2

,

(iii) κ (t) =
√

t + 1, µ (t) =
4t (T − t)

T 2
, ρ (t) = 1− 2t (T − t)

T 2
.

(4.10)

In the first case in (4.10) the domain is time-independent and the setup is quite similar to the
one studied in Section 4 of [2]. In the second case the complexity is increased by allowing for
genuinely time-dependent domains and in the third case we complicate the situation further by
introducing an inhomogeneity in the partial differential equation. Numerical simulations based
on M = 108 trajectories, corresponding to a statistical error of approximately 1.4 · 10−4 in the
first case and 1.1 · 10−4 in the other two cases, are found in Figure 4.1. Evidently the orders
of convergence are asymptotically close to 1/2 in cases (ii) and (iii), i.e. in the cases where
the domain is time-dependent. In the first case, the results are significantly more instable and
harder to interpret and hence, somewhat surprisingly, the results are more stable in the time-
dependent case. The instability arises as the approximated value oscillates around the correct
value. This property of the Euler approximation is well known and has been described in the
literature, see for example [16].
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Fig. 4.1. Plot of the error in the estimate of the solution to (4.6) as a function of the number of time

steps. Legend: case (i) (solid); case (ii) (dash); case (iii) (dot); reference line with slope 1/2 (solid

thick); reference line with slope 1 (dash thick).

4.2. A reflected geometric Brownian motion on a disc

Let T > 0 be given and let ρ : [0, T ] → R+ be some function. Based on ρ we let D ⊂ R3 be
a time-dependent domain with time sections

Dt =
{
x ∈ R2 : |x| ≤ ρ (t)

}
, (4.11)
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Fig. 4.2. Plot of the error in the estimate of the solution to (4.13) as a function of the number of time

steps. Legend: case (i) (solid); case (ii) (dash); case (iii) (dot); case (iv) (dash dot); reference line with

slope 1/2 (solid thick); reference line with slope 1 (dash thick).

whenever t ∈ [0, T ]. Note that the time sections are discs with radii specified by the function
ρ. We let the drift and diffusion coefficients be

b(t, x) =
(

αx1

αx2

)
and σ(t, x) =

(
βx1 0
0 βx2

)
, (4.12)

for some choice of constants α, β ∈ R. Furthermore, we let, in (1.31), f (x) = x2
1 + x2

2 and
we set γ = n, ϕ (t, x) = ϕ̂ (t), θ (t, x) = θ̂ (t) and h (t, x) = µ (t)

(
x2

1 + x2
2

)
, for some functions

ϕ̂, θ̂, µ : [0, T ] → R. Note that n = nt denotes the inward normal on ∂Dt. Then the solution u

to (1.31) is given by
u (t, x) = ξ (t)

(
x2

1 + x2
2

)
, (4.13)

for some function ξ : [0, T ] → R+ which we specify below based on ϕ̂, θ̂ and µ. Note that g (t, x)
in (1.31) will also be specified below based on θ̂, ρ and ξ. Indeed, applying (4.12) and (4.13) to
the differential operator L, we obtain

Lu =
2∑

i=1

bi (t, x) ∂xiu +
1
2

2∑

i,j=1

2∑

k=1

σik (t, x)σjk (t, x) ∂xixj u

= ξ (t)
(
x2

1 + x2
2

) (
2α + β2

)
, (4.14)

and, hence, the partial differential equation and terminal condition for u reduce to

∂tu (t, x) + Lu (t, x)− ϕ (t, x)u (t, x)− h (t, x)

=
(
x2

1 + x2
2

) (
ξ′ (t) + ξ (t)

(
2α + β2

)− ξ (t) ϕ̂ (t)− µ (t)
)

= 0, (4.15)
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and
u (T, x)− f (x) =

(
x2

1 + x2
2

)
(ξ (T )− 1) = 0, (4.16)

respectively. Hence, given α, β, ϕ̂ and µ, the function ξ is easily obtained as the solution to
the ordinary differential equation

ξ′ (t) +
( (

2α + β2
)− ϕ̂ (t)

)
ξ (t) = µ (t) , with terminal condition ξ (T ) = 1. (4.17)

Finally considering the boundary condition, we obtain

〈∇xu (t, x) , γ (t, x)〉 − θ (t, x)u (t, x)

=

〈
ξ (t) (2x1, 2x2) ,− (x1, x2)√

x2
1 + x2

2

〉
− θ̂ (t) ξ (t)

(
x2

1 + x2
2

)

=− 2ξ (t) ρ (t)− ξ (t) (ρ (t))2 θ̂ (t) := g (t) , (4.18)

and, as mentioned above, we specify g based on the specific form of ξ (t). As in the previous
example, the time-dependence of the domain enters (1.31) through the right hand side of the
Neumann condition. To conclude we can, under fairly weak assumptions on α, β, ϕ̂, θ̂, µ

and ρ, always find the explicit form of the solution u to (1.31). Note that the functional F∆
t,T

corresponding to this problem is

F∆
t,T

(
X∆, Λ∆

)

=
∣∣X∆

τN

∣∣2 exp
(
Y ∆

τN
+ Z∆

τN

)−
N−1∑

k=0

g (τk+1) exp
(
Y ∆

τk
+ Z∆

τk

)
∆k+1

∣∣Λ∆
∣∣

−
N−1∑

k=0

µ (τk+1)
∣∣∣X∆

τk+1

∣∣∣
2

exp
(
Y ∆

τk
+ Z∆

τk

)
∆∗, (4.19)

where g is defined in (4.18) and the processes Y ∆
τk

and Z∆
τk

are given as

Y ∆
τk

= −
k−1∑

k=0

ϕ̂ (τk+1)∆∗ and Z∆
τk

= −
k−1∑

k=0

θ̂ (τk+1)∆k+1

∣∣Λ∆
∣∣ . (4.20)

Note that the processes Y ∆
τk

and Z∆
τk

are zero for the setup considered in Section 4.1.
To numerically evaluate the algorithm described in this article, for the problem outlined

above, we set T = 1, α = 3/8, β = 1/2 (so that 2α + β2 = 1) and we estimate u (0, 0.2, 0.2), for
the following four specifications of the functions ϕ̂, θ̂, µ and ρ.

(i) ϕ̂ ≡ 0, θ̂ ≡ 0, µ ≡ 0, ρ ≡ 1,

(ii) ϕ̂ ≡ 0, θ̂ ≡ 0, µ ≡ 0, ρ (t) = 1− 2t (T − t)
T 2

,

(iii) ϕ̂ ≡ 0, θ̂ (t) = sin
(

πt

T

)
, µ ≡ 0, ρ (t) = 1− 2t (T − t)

T 2
,

(iv) ϕ̂ ≡ −1, θ̂ (t) = sin
(

πt

T

)
, µ (t) = sin

(
πt

T

)
, ρ (t) = 1− 2t (T − t)

T 2
.

(4.21)

The first case in (4.21) represents a homogenous partial differential equation in a time-independent
domain and the second case represents the same equation but in a time-dependent domain. In



Weak Approximation of Obliquely Reflected Diffusions 605

the last two cases we add, respectively, a u-term in the boundary condition and a non-zero
right hand side in the partial differential equation. Numerical simulations based on M = 108

trajectories, corresponding to a statistical error of approximately 3.4 · 10−5 in the first three
cases and 7.8 · 10−5 in the last case, are found in Figure 4.2. We observe that the asymptotic
orders of convergence decrease, from just under 1 in case (i) to around 0.6 in case (iv), as the
complexity of the problem is increased. Note also that, in general, the convergence is more
stable for this problem compared to the problem considered in Section 4.1.
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