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Abstract

In this paper, we extend the reduced basis methods for parameter dependent problems
to the parareal in time algorithm introduced by Lions et al. [12] and solve a nonlinear
evolutionary parabolic partial differential equation. The fine solver is based on the finite
element method or spectral element method in space and a semi-implicit Runge-Kutta
scheme in time. The coarse solver is based on a semi-implicit scheme in time and the
reduced basis approximation in space. Offline-online procedures are developed, and it
is proved that the computational complexity of the on-line stage depends only on the
dimension of the reduced basis space (typically small). Parareal in time algorithms based
on a multi-grids finite element method and a multi-degrees finite element method are also
presented. Some numerical results are reported.
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1. Introduction

The parareal in time algorithm allows to use parallel computers for the approximation
of the solution to ordinary or evolution partial differential equations by decomposing the time
integration interval into time slabs and iterating on the resolution over each time slab to converge
to the global solution. The iterations combine in a predictor/corrector way the use of a coarse
propagator that is inexpensive and a precise solver (that is used only in parallel over each time
slab, allocated to different processors); see, e.g., [2,3,17,18]. In many instances the iterative
schemes provide an approximate solution as accurate as if the precise solver would be used over
the complete time integration interval. One of the expensive parts of the solver is the resolution
of the coarse solver since it is used sequentially over the complete time integration interval. Our
goal is the development of numerical methods that permit the efficient evaluation of parareal
in time simulation.

To achieve this goal we will pursue the reduced basis method. The reduced basis method
was first introduced in the late 1970s for the nonlinear analysis of structures [1,19,20] and has
subsequently been further investigated and developed more broadly; see, e.g., [4,5,9,21,22,24].
In the more recent past the reduced basis approach and in particular associated a posteriori error
estimation procedures have been successfully developed for the PDEs with affine parameter or
time dependence; see, e.g., [10,15,16,23,26]. Indeed, the reduced basis technique allows, from
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a few preliminary computations with a standard solver, to generate basis functions adapted
to the further approximation of problems that depend on a parameter. This is a very high
order approximation method, in the sense where, when the set of all solutions to the parameter
dependent problem has a small width and with (much) less than 100 degrees of freedom, a very
good approximation is available (the accuracy is about the one obtained with discretization).
In more general cases where the dependency of the solutions in the parameter is not so regular,
the number of degrees of freedom may become too large to get an acceptable accuracy. In this
paper, we consider the extension of the reduced basis method to define a coarse and very cheap
propagator that allows to get the full efficiency in a parareal context.

Many numerical methods are considered to define the coarse propogator in the literature
[17]: the most well-known ones are the usual coarse mesh of the finite element method (FEM),
the spectral approximation space based on the polynomial of lower degree, and a coarser model
based on simpler physics. The success of these numerous experiments not only richen the idea
of parareal in time algorithm, but also motivate the need for further studies in this direction.
The main contributions here are as follows: (i) we construct a coarse propagator based on a
semi-implicit scheme in time and the reduced basis approximation in space, and prove that the
computational complexity of the on-line stage of the procedure scales only with the dimension
of the reduced basis space (this fact means that good accuracy is obtained even for very few
basis functions, and thus the computational cost of the coarse solver is typically very small); (ii)
we propose a fine propagator based on the FEM or spectral element method (SEM) in space
and a semi-implicit Runge-Kutta (RK) scheme in time; (iii) the parareal in time algorithm
based on a multi-degrees FEM in space and the semi-implicit RK scheme in time is considered.

This paper is organized as follows: Section 2 describes the basic algorithm for a model
equation. Section 3 introduces the necessary notations and the initial-boundary problem which
is considered in this paper and proposes two types of fine approximated propagators based
on the FEM and SEM in space and semi-implicit RK scheme in time. Section 4 introduces
the coarse approximated propagator based on the reduced basis method. Section 5 gives the
parareal in time algorithms based on the multi-grids FEM and the multi-degrees FEM. Some
numerical results are reported in Section 6, and finally we give some conclusions in Section 7.

2. Basic Algorithm on a Model Equation

Consider the following time dependent problem

0

Ty Lu=0, u(0) =1, (2.1)
ot

where, for the sake of simplicity, the operator L does not depend on time. We introduce the
propagator S such that S;(v) is the solution, at time 7 of the problem

Ou
5 + Lu =0, u(0)=w. (2.2)

Due to time invariance, it is well-known that
ST = ST—t o St, YVt < T. (23)

Let 0 =Ty < Ty < ---<T, <--- < Ty =T be special times at which we are interested to
consider snapshots of the solution «(7},). Then we obtain from (2.2) and (2.3) that

U(Tn-i-l) = STn+1 (UO) = STn+1—Tn (uTn)'
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In most cases S is not achievable but only approximations based on time discretization and
the use of Euler or more involved schemes. For instance, we can introduce a fine and precise
approximated propagator F defined through the Runge-Kutta scheme of (2.1), which reads

um+1 _ um,

5 (Lu™ 4+ Lu™) =0 (2.4)

+

M| —

for any time T = Mt the approximated propagator Fr involves the iterative resolution of M
problems as above. Similarly as for the continuous solution, we have the approximations u,, of
u(Ty) given by

Up4+1 = ~7:T,L+1 (UO) = ‘FTn+1*Tn (un>

Assuming, for the sake of simplicity, that 7,11 — T}, is constant (AT >> dt), then this reads

Up41 :fAT(un), (2.5)

where it appears that the approximated solution process is sequential, which, prevents it from
a parallelization.

In what follows Lions et al. [12] proposed an algorithm u¥ — u, as k goes to infinity.
For this we assume that another propagator G is achievable. It is assumed to be cheap but
inaccurate. Ome can think about G based on the same time discretization as F but with
larger time step At. Other possibility may be offered as e.g. F carries all the physics of the
phenomenon but G is based on a simplified physics. Then, the iterative process is

with = Gar(h™) + Far(u) — Gar(uy). (2.6)
This iterative process provides a converging sequence, in the sense that
if |SAT — -7:AT| ~ 52 and if |QAT — fAT| ~ eAT, (2.7)

after k iterations the error between u¥ and u(T),) is e* + 6t2.

3. Fine Approximated Propagator

Let T > 0, u > 0 be the kinetic viscosity, A be the Laplacian, and 02 be the boundary of
Q. f(t,z,y) and ug(r,y) describe the source term and the initial state. Denote by ¢(u) = u?
the nonlinear term. Then the nonlinear evolutionary parabolic partial differential equation to
be considered (see [10,17]) is of the form

Ou 04wt é(w=f, i Qx(0.7],
ot Oz 31
u =0, on 09 x (0,77, (3.1)
u(z,y,0) = ug(z,y), in QU 0.

Throughout the paper we use Sobolev space H"(Q) and HJ (). For simplicity, let L?(Q2) =
HO(2). The inner product, the semi-norm and the norm of H" (), r > 0, are denoted by (-, ).,
|“1r || || respectively. If r = 0, then the index r is omitted. We recall that the usual semi-norm
| - | is equivalent to the norm || - || in H{(R2). Further let H~"(92) be the dual space of Hj (),
and (-, '>L(H*"',H§) be the duality parting between H~"(2) and H{ (). Let g—; = O u.
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We show the weak formulation of (3.1). For given functions f € L*(0,7; H~'()) and
up € L?(Q), the weak solution of (3.1) is to find a function u € L?(0,T; Hg(£2)) such that

(;um) + (0zu,v) + p(Vu, Vo) + (¢(u),v) = (f,0) Lz -—.m1), Vv € HL(Q),

U(Q’J,y,O) = uO(l‘vy)'

(3.2)

It can be proved that if f € L?(0,T; H=*(Q)) and ug € L?(£2), then (3.2) has a unique solution
w e L2(0,T; HY(Q)) N L*°(0,T; L?(Q)).

3.1. Semi-implicit time discretization schemes

We first consider a time-discrete framework associated with the time interval I =]0,T].
We divide I = [0, 7] into Ms; subintervals of equal length 6t = T'/Ms; and define t5 = mot,
0 <m < Ms; = T/6t, and Is; = {1,2,---, Mg }. Also, we divide I into Ma; subintervals
of equal length At = T/Ma, and define ¢, = mAt, 0 < m < Ma, = T/At, and In, =
{1,2,--- ,Ma:}. Given a time step 7, set u™(z,y) = u(z,y, m7), also denoted by u™ for
simplicity. Let u™ € Hg(£2) be the approximation to the solution of (3.2) at time t™ = mr.
Denoted by u™+! the predicted value of u™*t!

pre
difference operators 0, and 9P™¢ are defined as
T

. The average operators A, and AP™, and the

1 1
Au™ = B (u(x, y, e + u(x,y,t;n+1)>, APrey™ = B <u(a:,y,t:”) + upre(oz,y,t:mrl)),

1 1
8Tum = ; (u(a:, Y, t:n+1) - u(xv Y, tT))v 871_7T€um = ; <up7«e(33, Y, tTJrl) - U(JZ, Y, t?)) .

In this paper the fine time discretization scheme of (3.2) is defined by the semi-implicit RK
scheme (see [11]): find ™! € HJ(Q2) such that

(95, “u™,v) + (Opu™, v) + W(VAL “u™, Vo) + (p(u™),v) = (f™,v), Yve Hy(%),
(Oseu™, v) + (0 AL, “u™, v) + p(VAsiu™, Vo) + (AL p(u™), v)

(A(;tfm,’l}), V'U € H&(Q), Vm S Lgt, (33)

UO = U,

and the coarse time discretization scheme of (3.2) is defined by a semi-implicit scheme: find
uPT € H}(Q) such that

(aAtup7 ’U) + (awup7 U) + IU’(VAAtupv VU) + (¢(’U’p)7 U) = (fp7 ’U),
Vo € HHQ), Vp € Ia, (3.4)
UO = Up.
It is well-known that the time step 6t and At are dependent on the spacial discretization of
problem (3.2).

3.2. Spectral element approximation

The SEM is based on a decomposition of the global domain, = QU 99, into E nonover-
lapping subdomains, Q¢, e = 1,2, --- , E. Each subdomain ¢ is a deformed quadrilateral in R?
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and can be considered as a mapping of a reference domain ) = [—1,1]2. We write Q¢ = @e(fl),
where @, is an one-to-one mapping. In terms of the reference variables, we have that

/ wvd) = /(uo@e)(voq)e)|Je|dQ, (3.5)

€ Q

/ Vu - VodQ = / TV (o ®,) - T TV (0o ®,)|J.]dQ, (3.6)
e 0

where J. is the Jacobian of &,
oz Jz
je - 25 gZ )

and |.J.| denotes the determinant of 7.

We now consider a discretization of (3.5) and (3.6). Let Py () be the space of all functions
which are polynomials of degree less than or equal to N in each spatial direction on the reference
domain Q. The discrete space of piecewise continuous functions that map to the polynomials
in the reference domain €2 is then taken to be

Pn () = {v € HY(Q):vod, € Py(Q), e=1,2,--- ,E}.

The basis of PN(Q) is conveniently expressed in terms of the reference variables £ and 7. As

a basis for Py(€) we use a nodal basis through the tensor-product Gauss-Lobatto Legendre
(GLL) points; see,e.g., [8,13,14,25]. Specifically, we write uy € Py, g(2) as

N N
uy o P (&,1m) = Z Zuijﬂ—i(g)ﬂ—j(nL
i=0 j=0

where uf ; represents nodal values for the element e and 7;(§) refers to a one-dimensional N-th
order Lagrangian interpolant through the GLL points §,,,, m = 0, 1, - - - , N; here, 7;(&)7; (&n) =
dim0jn for a given point (&, &,) in the underlying tensor-product GLL grid. Within the frame-
work of multielement discretizations, the scalar product and the bilinear form are defined by

E
(un, NN = Z/(UN 0 ®.) (v o B)|J.|dSY, Yun,vn € Py p(Q),
e=1 Q

E
(Vun,Von)y = Z/ je_T@(UN o®,) - je_T@(vN ° ‘I’e)|Je\dQ, Vun,vy € Py ().
e=1 Q2

In the SEM, GLL quadrature is used to the evaluation of the integrals, resulting in local forms
similar to the spectral method. The other terms of (3.2) can be approximated similarly.

We denote by Vv (2) the subspace Py (2) N H'(Q2) and by 9Qp the subset of 92 on which
homogeneous Dirichlet boundary conditions are enforced. The underlying approximation space
in the SEM is defined as

Vo(Q) = {v € Vn(Q) : v]oq, = 0}.

We define the orthogonal projection operator ITy x : Hi(2) — Vi 0(£2) such that

(V(U, — HLN’U,),VUN)N = 0, V’UN S VN70(Q).
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We now consider the discretization only in space. The semi-discrete spectral element ap-
proximation of (3.2) is a function un(x,y,t) € Vn,0(2) such that
0
(atuz\r, 'UN) + (Orun,vn)N + p(Vun, Von)n + (o(un), vn )N
N

= (f,on)n, Yon € Vao(9),
un(z,y,0) =11 yuo(x,y).

(3.7)

We describe the fully discrete scheme. We divide I into M. subintervals of equal length
Otse = T'/Mge and define Iy = {1,2,- -+ , Mg }. Let ullt € Vv o(2) be the approximation to the
solution of (3.2) at time t"™ = mdts.. Then the semi-implicit RK spectral element approximation
for (3.2) is of the form: find uit* € Vv o(Q) such that

(8ptreuN,vN)N + (Opu,oN)N + u(VApt ul, Von) N

+(o(uy), vn)n = (f™ vN)N, Yoy € Vi,o(€2),

(Ot ufys ON) N + (0 AG  uRp, un ) v + u(V Ase, ulf, Von ) n (3.8)
(A:g:i(ZS(UN) UN)N = (A5tsef ,UN)N, Yoy € VNyo(Q),Vm S ISC,

u(])\, = HI,NUO~

Obviously the approximation solution on the initial level is well defined. Now assume that
the numerical solution on the mth level has been calculated. Let

1
an(un,vn) = (un,oN)N + §u5tse(VUN,VUN)N, Vun,vn € V,o(£2)

be the prediction-correction operator. Clearly, an (un,vy) is a bilinear continuous and coercive
form on Vno(Q2) x Vn,0(©2). Hence by Lax-Milgram theorem, the numerical solution on the
m + 1th level is determined uniquely. So this scheme has a unique solution on each level as
long as f € C(0,T;L?(Q)) and ug € HZ(2). Moreover, the above scheme is the second-order
in time and high order in space (see [11]).

3.3. Finite element approximation

Let us consider a family of regular triangulation {7},} in €. Denote by €, the triangulated
domain of 2, and by h. the diameter of the closed triangulation element e. The mesh parameter
is defined as h = maxer, {h.}. Denote by Ps(e),e € Ty, the spaces which contain polynomials
of degree s. Define

VhS(Qh) = {Uh S Hl(Qh) : Uh|e € Ps(e),Ve S Th}.

Thus, a function v, € V;! () (i) is such that each restriction vp|. is in the space P (e) for
each e € Ty, and (ii) is completely determined by its values at all the vertices of the triangu-
lation. Likewise, a function of V;2(Q) (i) is in the space Py(e) for each e € Ty, and (ii) is
completely determined by its values at all the vertices and all the mid-points of the edges of
the triangulation. Let s = 1 or 2. The finite element approximation space is defined as

V;,O(Qh) = {Uh S V;f(Qh) : Uh|39h = 0}.

Denote the node set of T} by {p] 2y, in which p; (1 < j < Kj}) is the inner node of Q, and
pr (K +1<k<J})is the boundary node on 0€),. It is obvious that

dlIl’lV;:(Qh) = J,:, dlthS,O(Qh) = K;L
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Define the V;*-interpolation operator II3: domll; — V;?(€) such that
wj( ?Lv):¢j(v)? VUEdOIﬂH;, Jj=12-- an‘i

Thus, if v € domllI}, and v|sq, =0, then we have [T} v € V;?((Q) (see [6]). Define

(up,vp)n Z/uh x)vp (x)dx, (Vup, Vop)n
ecTh

Z Vuh Wop(x)dx, Yup,v, € Vi7(Q). (3.9)
ecTy

Denote by é the reference finite element, and let F, : X € é — x = F.(X) = B.x+ b, € e be the
invertible affine mapping which maps é onto e. Then

/uh(x)vh(x)dx = det(Be)/uh(Fe(fc))vh(Fe(fc))df(, Yup, v, € V7 ().
Consequently, for each s, we need only a numerical quadrature scheme over the reference finite
element to approximating the integrals which appear in (3.9).

The semi-discrete finite element approximation of (3.2) is a function uj, € V7 ,(Q2), s = 1,2,
such that

0
(atuh, Uh) + (Optn, vi)n + p(Vun, Vop)n + (¢(un), vn)n
h

= (f7 Uh)ha V’Uh E V]—i()(Q)7
Uh(x, y70) = quo('ray)

We divide I = [0,7] into My, subintervals of equal length dtg, = T/Mp, and define Iy, =
{1,2,--+, Mg }. Let uh € Vi0(2) be the approximation to the solution of (3.2) at time t™ =
mdts. Denoted by uh pre ! the predicted value of umJrl Then the semi-implicit RK finite element
approximation for (3.2) is of the form: find um'H € Vi o(Q), s = 1,2, such that

(3.10)

(86tfeuh ,'Uh)h + (8 uhm,vh)h + ,U(VAgtTfeuh ,Vvh)h

o), vn)n = (f™, vn)n, Vop € Vi) (),
(a5tfeuh a'Uh)h + ( g:feuh 7vh)h + N’(VA&feu;znv Vvh)h (311)
(Af;:feqs( ) Uh)h - (A5tfef 7vh)ha V’Uh S V}iO(Q)7vm S Ife7

u% = Il ug.
Similarly, the prediction-correction operator is now defined as
1 .
a(uh,vh) = (uh,uh)h + iuétfe(Vuh, V’Uh)h, Yup, vy € V}S,O(Q)

From Lax-Milgram theorem, we can show that this scheme has a unique solution on each time

level.
4. Coarse Approximated Propagator
We first introduce the nested sample sets S¥ = {m10tse, madtse, - ,mn, e}, 1 < Ny <

Nise,max, and S]f\efs = {n10tse, n20tse, - -+ , NN, Otfe }, 1 < Ny < Npe max; Dote that the samples must
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reside in the discrete time space. Here, N, and N, are the dimensions of the reduced basis
spaces for the time parameter. We then define the reduced basis spaces

m se se MmN,
WN - Span{41 - uNla 2 = UN 76N, T U ! }7 (41)
and
£ fi fi TN
Wespan{luh,;uh,u',l\iuhé}, (4.2)

where u}y* is the solution of (3.8) at time t = my0tse and uy* is the solution of (3.11) at time

t = npotge with s = 2.

We divide I into My, subintervals of equal length Aty, = T/ My, and define t? = pAty,, 0 <
p < Mg = T/Atye, and Te = {1,2, -+ , M. }. Also, we divide I into My, subintervals of equal
length Atg, = T/ My, and define t7 = gAtg, 0 < ¢ < My = T/ Atge, and Zge = {1,2, -+, Mo}

4.1. Semi-implicity spectral element reduced basis approximation

The spectral element reduced basis approximation ufy” Lz, y) to u(z,y, tPT1) is defined by a
standard Galerkin projections: find up e Wy such that

(Ot s UN, )N + (Ol sun, )N + (VAae Ul VU, )N
+(o(uly, ) vn, )N = (fP o, )N, Yon, € W, Vp € T, (4.3)
u?vr = HI,NUO-

To ensure stability of the reduced basis solution, all basis functions are orthogonalized,
but we keep the basis functions representing different time separated. For the spectral element
reduced basis functions, the orthogonalization is done with respect to the discrete inner product
()N + %uAtse(V-,V-)N. Let {pi}i=12,. n, be the orthogonal basis functions of W and
uyy = ZkNgl iy . Then we have

N,
duly ) =D (@8)°eh +3 Z )il ool + 6 Z bl il oiopl,
k=1 k=1 ik, l=1
k£l i<k<l
which gives us
N,.
(e(uly )y oi)n = ) (05)* (@}, 0i) N
k=1
N,
+3 Z (P31, 05)N + 6 Z ab il (piprer, 95)N-
k,l=1 ik, =1
kH#1 < <l

Note that 1
(ks j)N + §MAtse(V§0ka Voi)n = Ok,j-
Then, we find that

— Atee(Oruly , 05)N
)a‘ﬂj)N + Atse(fpagoj)Na .7 = 1727 e 7Nr- (44)
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Off-line Stage
In the offline stage, all of the following precomputing are performed only once.
L. Calculate (j° = uy*, i =1,---, N,, to form Wi asin (4.1).
2. Form the orthogonal basis functions {;}i=1,... v, of W
B{Y) = Atoe(Oupispi)n inj =1, N,

2
4. Calculate and store Bi(,j) = Atse(03, )Ny Ci i = 3Atse(p205, 01) N and
Dij ki = 6Atse(0ipjpr, Q1IN -
5. Compute and store the linear functions F(p) At (fP,0j)n, 7 =1, ,N,, Vp € P*.

3. Evaluate and store BZ-(’O]-) = 2(s,05)N»

On-line Stage
Let AP = 28 ) n, AP = Ate(@udy , 05)n, AP = Atee(0(uh ), 05N

1. Compute A;Ovp) — Ny APB(O) A;lvp) — Z r pB(l)

k=1 k,5° kjaj:1727"'7N’r~

2. Evaluate the inner product of the nonlinear term as

N,
APP =S (a)PBE) + Z )26 Chyj + Z AP Digrgy §=1,2,--, Ny

k=1 k=1 ik, l=1
k£l i<k<l

3. Calculate @ Ap+ A;O’p) uy — A;l’p) — A§.2’p) + Fj(p)’ j=1,2,---,N,.

This stage requires 2N, evaluations of A(O’p ) and A(l’p ): 3N, computations for Zg;l( )dB](f]),
and 3(N? — N,.) operations for ZH 1 (uk) @ Ch,,5, and N, (N, — 1)(N, — 2) operations for

ZAE i Gt 47 Dy gy 5. Hence, as requlred in the many-query or real-time contexts, the online
complexity is independent of dim(Vi ¢(€2)), the dimension of the underlying spectral element

approximation space. Since N, < dim(Vi,0(€)), the cost to compute @} *1in the online stage

i phyblcal space.

will typically be much less than the cost to directly evaluate up
Now the fine propagator FXr is defined by (3.8), the coarse propagator G5&b is defined by

(4.3), and the iterative process (2.6) is of the form

uﬁi%,serb gserb( Ztérb) f ( n serb) gberb( n serb) (45)

4.2. Semi-implicit finite element reduced basis approximation

The finite element reduced basis approximation u}l\,tl(a:, y) to u(z,y,t?t) is as the solution

of
(Oatuly,, onDn + (Ozuly,, vn)n + 1(VAaguly,, VN, )n
+(o(ul);on)n = (f90n)n  Yon, € WE Vg € I, (4.6)
uQ; = I} uo.
Also, the finite element reduced basis functions are the orthogonalized with respect to the
discrete inner product (-,-)p + %//LAtfe(V',V')h. Let {A;}i=1,2,...,n, be the orthogonal basis
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functions of W and uyy = Y=y UpAg. From
1
(Ak, Aj)n + §MAtse(V)\k:a V)N = Ok j,

we still have that

A;H—l —2(UN ,)\ ')h — ﬂ;l — Atfe(axu?vs,)\j)h
_Atfe(¢(u?vs)7>‘j)h+Atfe(fq7Aj)ha .7:17 aNS' (47)

Off-line Stage

Calculate ¢fe = up’,i=1,---, Ny, to form W]f\? as in (4.2) by using P,—FEM.
Form the orthogonal basis functions {\; }i=12,... n, of W]fvi.

Evaluate and store B-(O-) =2(Ni, Nj)n, B(}j) = Atse(0zAi, Aj)ny 1,5 =1, , N,

-~ W o=

Calculate and store B( ) — = Atee( N2, N, ins Cijk = 3Atfe(>\12)\j7>\k)h and
Dijri= GAtfeO\ A )\kv)\l)

5. Compute and store the linear functions Fj(q) = At (f4,\j)n, j=1,-++, N, Vg € P
On-line Stage
Denote Ag,O»Q) = 2(u}ys A\j)ns A(va) = Atge(Dzufy_, Aj)n, and A@vq) = Atge(d(uly,), Aj)n-

1. Compute A =31 alBY), AN =N @Bl j=1,-- N,

2. Evaluate

N
A(»27q) = Z z (2) Z Ul Cklj + Z ol ukul i,k,0,5 ]: 13 7Ns~

J
k=1 k=1 ik, =1
k£l i<k<l

3. Calculate uq's'1 A;-O’q) 113 A§1’q) - A;Z’q) + Fj(Q), j=1,--+,Ns.

The operations in the online stage is thus only %Ns?’ + gNSQ + %Ns for each j, and thus the
online complexity is independent of dim(V;?((§2)). Since Ny < dim(V;?,(£2)), we expect signif-
icant computational savings in the online stage relative to classical discretization and solution

approaches.
Finally, the fine propagator F'¢. is defined by (3.11) with s = 2, the coarse propagator G:P
is defined by (4.6), and the iterative process (2.6) is of the form

k+1 ferb /. k+1 fi k ferb
unil,ferb ger ( n-?erb)+fAeT(un,ferb) ger ( nferb) (48)

5. Multi-grids and Multi-Degrees Finite Element Method

The coarse propagators G can be differ in other ways. In this section we consider other
methods for the parareal in time algorithm of (3.2).
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5.1. Semi-implicity multi-grids finite element approximation

We divide I into My subintervals of equal length Aty = T/Mpy and define t? = pAty,
0<p< Myg=T/Aty, and Iy = {1,2,--- ,My}. Also, we divide I into M, subintervals of
equal length §t, = T/Mj, and define t? = ¢ity, 0 < ¢ < My, = T/6tp, and I, = {1,2,--- , Mp}.

The coarse operator Gos based on larger time step Aty and the coarse grid (H) is defined
as: find ub € Vi 0(€2) such that

(Oatyuly,ve) g + (00l v )m + p(VAae, vy, Vou)
+(¢(UZI)—I)7UH)H = (fanH)H; V’UH € VI-ILO(Q)?VP S IHa (51)
ud, =IILw
H HUo-

Then we dive each coarse triangle into nine triangles to form a fine grid (h), in which the

resulting number of vertices is equal to 2601 in the coarse mesh (H) and 22801 in the fine

mesh (h). The propagator FA5 based on time step 6t and the fine grid (h) is defined as: find
u"t e Vi 0(§2) such that

(05 ups vi)n + (Opuf s vn)n + p(VAG ‘Ui, Yoy )

+(P(up); vn)n = (f™, vn)n, Yo € V) o(9),
(Ost, up, vn)n + (0 Ag:euh R+ (VAse, upt, Vop)n (5.2)
+(AG  o(ui), vn)n = (Ase, ™ vn)ns Yon € Vi o(),¥m € I,
u% = H}Luo.

Now the iterative process (2.6) is of the form
Ut me = THOAF (TR0 ) + FAZ () mg) — TEGAR (I 0y ). (5:3)
The operator that allows one to go from the coarse mesh to the fine one (denoted as I1%) and
reciprocally (i.e.,HhH ) is the interpolation operator.
5.2. Semi-implicity multi-degrees finite element approximation
We divide I into My subintervals of equal length Aty = T /My and define
P =pAtg,0<p< My =T/Atg,andly ={1,2,--- ,My}.

Also, we divide I into M= subintervals of equal length 6ty = T/Mp= and define t9 = ¢dtyy,
0<qg<qug=T/0ty, and Iyg= ={1,2, -+ ,My=}.

The coarse operator gg}% based on larger time step Aty and the coarse grid (H) is defined
as: find ub;t' € Vi 0(€2) such that

(Oatyulp, ve) g + (0ol v ) + p(VAar, vy, Vor) g
+(p(uly),ver)u = (fP,vm)m, Yo € Viro(), Vp € In, (5.4)
ud, =Tk u
H U0

Then the propagator F2¢ based on time step 0ty is defined as: find um+1 € VEI,O(Q) such that

(05w, ve) i + (Opuly, v g + (VAL ull, Vg o
+(o(ug), va)e = (f™,vu)n, Vo € Vij o(9),
(Ostpulfy, ver) o + (0 A5 w, v )i + (Y Astulfy, Vor) m (5.5)

"’(Agtr; (), ve)m = (Asty f™ vE)H, Yom € VI-21,0(Q)7 VYm € Iy,
uY = T1%uy.
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Now the iterative process (2.6) is of the form

Up L1 ma = PPORT(Pavy fna) + FRE (U ma) — PEGRT (P3;; ima), (5.6)

n+1,md n,md n,md

where P7 is the L? prolongation operator from V; ,(€2) onto V37 ;(€) and Py is the L* projection
operator from VE,O(Q) onto Vi 4(€).

6. Numerical Results

In this section, we report the numerical results. Let u. y be the solution of spectral element
approximation (3.8), u. iz be the solution of finite element approximation (3.11) based on the
grid (H) and s = 2, and u.;, be the solution of finite element method (5.2) based on the grid
(h) and s = 1; and denoted by u. n, and u. n, the solution of scheme (4.3) based on the N,
dimensional spectral element reduced basis space and scheme (4.6) based on the N, dimensional
finite element reduced basis space, respectively. Denote by u,, . the numerical solution at time
t = T,,. Define the relative error as

(k)
otb o Hun,H — Un,N, eferb,(k) . ||un,H - un,ferbH
N (e N [, a1 ||
Al :
ma ) _ Mt = il N [
(k) _ _
N
k
serb, (k) _ 10,8 = Uy o | g, 09 1t — Uhhng |
€, N,N, — ) Coh =
A [~ |l ’ (|

Example 6.1. Consider Eq.(3.1) on the unit square Q = (—1,1)%, with y = 1.0 and T = 1,
choose the right-hand side f = 0 and the initial condition ug = sin(rz)sin(ry). First, we
test the convergence of the iterative process (5.3) and (5.6) based on the multi-grids and the
multi-degrees FEM, respectively. We then compare the CPU time between different coarse
solvers.

We consider the parareal in time algorithm based on the multi-grids and the multi-degrees
FEM. For this example, a regular triangular mesh is used in computations. We choose the
number of vertices is equal to 2601 in the coarse mesh (H) and 22801 in the fine mesh (h); take
the coarse time step Aty = 0.001 in scheme (5.1) and (5.4), the fine time step dtp, = dty =
0.001 in scheme (5.2) and (5.5), and the time step of snapshots AT = 0.1 in (5.3) and (5.6),
respectively.

Numerical tests at time T = 1 are presented in Table 1. It indicates that both of the
iterative process (5.3) and (5.6) provide a converging sequence. Indeed, we know from (2.7)
that the errors between uﬁ,mg and up(T},) (the solution of scheme (3.10) at time ¢t = T,, based
on the fine mesh (h) and s = 1) is about ¥ + §¢2, while the errors between uﬁymd and up (T,)
(the solution of scheme (3.10) at time ¢ = T, based on the mesh (H) and s = 2) is about and
e¥ + 6t2, respectively. Thus the numerical experiment supports the theoretical analysis.

We then compare the CPU time between the coarse propagator based on the finite element
reduced basis scheme (4.6) and the coarse propagator based on the finite element scheme (5.1)
with the mesh (H) or the mesh (h). We choose At = Aty = 0.001. The reduced basis

approximation space is define as

s

ers :span{gfe:ul,cée:u%... 7C1f\f; :uNS}7 (6.1)
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Table 1. Errors of iterative process (5.3) and (5.6).

k=1 k=2 ]| k=3 | k=4 | k=5
ems® 1 37E-1 | 1.3E-2 | 5.8E-4 | 2.5E-4 | 1.9E-5
et 1 45E-1 | 1.4E-2 | 2.0E-3 | 6.9E-6 | 2.7E-6

Table 2. CPU time of Scheme (4.6) and Scheme (5.1).

Scheme(4.6) Scheme(5.1)
Ng; =3 Ny, =4 Ns=5 —
m.g.(H) | 1.903(s) | 2.614(s) | 3.815(s) | 147.242(s)
m.g.(h) | 1.903(s) | 2.614(s) | 3.815(s) | 580.175(s)

where u,, is the solution of the scheme (3.11) based on the mesh (H) or the mesh (h), ¢t = 0.001
and s = 2 at time t = nAT .

Table 2 shows that one of the expensive part in the parareal in time algorithm is the
resolution of the coarse solver computed in physical space, such as the SEM and the FEM, etc..
Also, it shows that the CPU time of our reduced basis approximation is dependent only on
N (the dimension of reduced basis space), and independent of the mesh parameters, such as
the vertices, the nodes and the dimension of the finite element approximation space. This is
consistent with the analysis of the previous section. Thus, the reduced basis method provides
a coarse and very cheap propagator.

Example 6.2. Consider Eq. (3.1) on the domain

1
o= {4022 4 ol <1, bl <1,

with ¢ = 1.0 and T = 10, choose the right-hand side f = 5sin(3t + 2) and the initial condition
up = sin(z? + y? — 0.25) sin(mz) sin(ry). First, we test the convergence of the iterative process
(4.5) for fixed N,. We then show the accuracy of (4.5) decreases when N, increases. Finally,
we compare the accuracy of the iterative process (4.5) with the iterative process (4.8).

We now consider the spectral element approximation (3.8) and choose dts, = 0.001. We
divide the computational domain 2 into E non-overlapping subdomains. Several spectral ele-
ment meshes are presented in Fig. 6.1. Let AT = 0.1. The reduced basis approximation space
is define as

Wy, = Span{CTe =, " =g, (R, = uNr}’ (6.2)

where u,, is the solution of the scheme (3.8) at time ¢t = nAT.

We choose N,. = 3 and Aty = 0.01. The numerical tests are presented in Table 3. It indi-

k

Y orb — Un,~ || is independent

cates that the iterative process (4.5) is convergent, and the error ||u

Table 3. Errors of (4.5) for different £ and N

b serb, (1) serb,(2) serb, (3) serb, (4) serb,(5)
(E,N) | €loon3 | Clo0.n,3 €100,N,3 | €100,N,3 | €100,N,3 | ©100,N,3

(4,16) 1.4E-3 5.4E-5 1.4E-6 5.5E-8 1.3E-8 1.4E-9
(4,10) 1.4E-3 5.4E-5 1.4E-6 5.6E-8 1.3E-8 1.4E-9
(8,10) 1.4E-3 5.4E-5 1.4E-6 5.5E-8 1.3E-8 1.4E-9
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Fig. 6.1. Spectral element meshes with (a)(E, N) = (4,10), (b)(E, N) = (4,16), (c¢)(E, N) = (8, 10).

Table 4 Errors of reduced basis method and iterative process (4.5)

N, =2 N, =3 N, =4
Aty 0.0l | 0.001 | 001 | 0.00I | 0.01 0.001

oo, | 29E-2 | 29E-2 | 1.4E-3 | 1.4E-3 | 2.4E-4 | 3.9E-5
oo, | 4.8E-4 | 4.3E-4 | 54E-5 | 5.3E-5 | 6.0E6 | 6.9E-7
S ian, | 11E-5 [ 11E5 | 14E-6 | 14E6 | 2.4E-7 | 1.6E-8
o i, | 3-5E-7 [ 35E-7 | 5.6E-8 | 5.8E-8 | T.4E-9 | 1.3E-9
o010, | 1.3E-8 [ 1.3E-8 | 1.3E-8 | 1.3E-8 | 1.3E-10 | 1.7E-10
oo, | 22E-9 | 22E-9 | 14E-9 | 14E-9 | L1E-11 | 1.6E-11

of E and N. Moreover, Table 4 shows that the error |[u¥ . —u, x| is also independent of
Atge. Also, Table 4 indicates that when N, increases, the solution of the reduced basis approxi-
mation converges at an exponential rate. Thus, the reduced basis method provides a technique
how to speed up the iterative process (4.5). By compare with (2.7), we discover that the errors

between uiserb and un(T),) (the solution of scheme (3.7) at time ¢ = T},) is about

||u’lr€1,serb - U’N(T’ﬂ)” < ||ui€1,serb - un,N” + Hu",N - UN(TN)H
~ e®(N,) + 6t2,, (6.3)

where ¢(N,) decreases when N, increases. This is consistent with the numerical results of
(Nr k) =(2,3), (3,2), (4,1).

We now choose dtse = 0tse = 0.01, Atse = Aty = 0.001, N, = Ny = 3, (E,N) = (4,10)
and the mesh (h): (Triangle=6642, Vertices=3491, Nodes=13624). The reduced basis approxi-
mation space WJf\Z is defined in (6.1). Numerical results of scheme (4.3) and scheme (4.6), and
iterative process (4.5) and iterative process (4.8) at time ¢ = nAT are presented in Table 5.
It indicates that iterative process (4.5) and iterative process (4.8) provide fast and very cheap
iterative processes.

Example 6.3. Consider Eq. (3.1) on the domain
Q={(z,y)| 2" +y* <2},

with g = 1.0 and T" = 10, choose the right-hand side f = 3cos(1.5¢ + 1) + 1 and the initial
condition ug = sin(x? + y? — 2). Again we compare the accuracy of the iterative process (4.5)
with the iterative process (4.8).
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Table 5. Errors of reduced basis methods and iterative processes (4.5) and (4.8)

b serb, (1) serb, (3) serb,(5) b ferb, (1) ferb,(3) ferb,(5)
n n,N,3 | Cn N3 ©n.N.3 €n,N,3 €n,H3 | ©nH3 n.H,3 n.H,3

20 | 8.1E-4 | 5.2E-5 1.9E-7 | 4.1E-10 | 1.8E-2 | 4.0E-3 | 1.6E-4 | 3.2E-6
40 | 8.9E-4 | 5.2E-5 1.5E-7 | 1.4E-10 | 1.9E-2 | 3.9E-3 | 1.1E-4 | 3.TE-6
60 | 8.9E-4 | 5.3E-5 1.1E-7 | 1.7E-10 | 2.0E-2 | 3.7E-3 | 5.8E-5 | 9.9E-6
80 | 9.8E-4 | 5.3E-5 5.8E-8 | 6.2E-10 | 2.3E-2 | 3.4E-3 | 8.8E-5 | 2.1E-5
100 | 1.4E-3 | 5.4E-5 5.6E-8 14E-9 | 2.9E-2 | 2.6E-3 | 3.9E-4 | 5.0E-5

Fig. 6.2. Spectral element meshes with (a)N = 10, (b)N = 14, and (¢)N = 16.

The spectral element meshes with (E, N) = (5,10), (5,14) and (5,16) are plotted in Fig.
6.2. The finite element mesh (H) with number of triangles, number of vertices, number of
nodes (6970, 3586, 14141), (10910, 5581, 22071) and (13452, 6867, 27185) are considered. The
reduced basis approximation spaces W57 and W]fvi are defined in (6.1) and (6.2), respectively.
We choose AT = 0.1, §tge = dtge = 0.001, Aty = Atge = 0.01 and N, = Ny, = 4. The Numerical
testes are presented in Table 6. It indicates that iterative process (4.5) and iterative process
(4.8) provide fast and very cheap iterative processes. It also shows that the error |[uf ., —un ||
is independent of N, and the error ||ufl,ferb — U, g is independent of (H) when the mesh (H)
fine enough.

Table 6. Errors of iterative processes (4.5) and (4.8)

N 10 14 16 | Vertices | 3586 | 5581 | 6867
elbona | 1.OE-2 | 1.OE-2 | 1.0E-2 | elfg x4 | 9.0E-3 | 9.0E-3 | 9.0E-3
e na | 12E-3 | 12E-3 | 1.2E3 | elpy ) | 9.2B4 | 9.1E-4 | 9.2E-4
e a | LOE-4 | 1L.OE-4 | 1.0E-4 | elgy) | 4.1E-4 | 2.7B-4 | 2.2E-4
oo na | LOE5 | 1L.OE-5 | 1.0E5 | efgyyy | 2.9E-4 | 1.8E-4 | 1.5E-4
e | 1.6E-6 | 1.6E-6 | 1.6E-6 | elgys ) | 1.8E-4 | 1.2E-4 | 9.7E-5
oo na | 3AET | 34E-7 | 34E7 | elgp ) | 11E4 | 7.2E5 | 5.8E-5

7. Conclusions

In this paper, we have presented the reduced basis technique as a coarse solver for the
parareal in time algorithms of nonlinear evolutionary parabolic partial differential equations.
We have demonstrated that a coarse solver based on reduced basis technique provides higher
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accuracy and significant speedup than the multi-grids finite element method and the multi-
degrees finite element method during the parareal in time simulation procedure. The methods
presented in this paper have good efficiency for computing the solutions of the ordinary and
partial differential equations and also provide a way to construct parallel method.

Although we have only considered the nonlinear evolutionary parabolic partial differential
equations, the proposed methods can also be efficiently applied to the Navier-Stokes equations.
On the other hand, the proposed method has also its limitations. The method is efficient
when applied to problems approximated by a continuous Galerkin method; however, for the
discontinuous Galerkin method (see [7,27]), there are still some challenging issues.

Acknowledgments. Major portion of this work was done in Laboratoire J.-L. Lions of Uni-
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