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Abstract

In this paper, we extend the reduced basis methods for parameter dependent problems

to the parareal in time algorithm introduced by Lions et al. [12] and solve a nonlinear

evolutionary parabolic partial differential equation. The fine solver is based on the finite

element method or spectral element method in space and a semi-implicit Runge-Kutta

scheme in time. The coarse solver is based on a semi-implicit scheme in time and the

reduced basis approximation in space. Offline-online procedures are developed, and it

is proved that the computational complexity of the on-line stage depends only on the

dimension of the reduced basis space (typically small). Parareal in time algorithms based

on a multi-grids finite element method and a multi-degrees finite element method are also

presented. Some numerical results are reported.
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1. Introduction

The parareal in time algorithm allows to use parallel computers for the approximation
of the solution to ordinary or evolution partial differential equations by decomposing the time
integration interval into time slabs and iterating on the resolution over each time slab to converge
to the global solution. The iterations combine in a predictor/corrector way the use of a coarse
propagator that is inexpensive and a precise solver (that is used only in parallel over each time
slab, allocated to different processors); see, e.g., [2,3,17,18]. In many instances the iterative
schemes provide an approximate solution as accurate as if the precise solver would be used over
the complete time integration interval. One of the expensive parts of the solver is the resolution
of the coarse solver since it is used sequentially over the complete time integration interval. Our
goal is the development of numerical methods that permit the efficient evaluation of parareal
in time simulation.

To achieve this goal we will pursue the reduced basis method. The reduced basis method
was first introduced in the late 1970s for the nonlinear analysis of structures [1,19,20] and has
subsequently been further investigated and developed more broadly; see, e.g., [4,5,9,21,22,24].
In the more recent past the reduced basis approach and in particular associated a posteriori error
estimation procedures have been successfully developed for the PDEs with affine parameter or
time dependence; see, e.g., [10,15,16,23,26]. Indeed, the reduced basis technique allows, from
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a few preliminary computations with a standard solver, to generate basis functions adapted
to the further approximation of problems that depend on a parameter. This is a very high
order approximation method, in the sense where, when the set of all solutions to the parameter
dependent problem has a small width and with (much) less than 100 degrees of freedom, a very
good approximation is available (the accuracy is about the one obtained with discretization).
In more general cases where the dependency of the solutions in the parameter is not so regular,
the number of degrees of freedom may become too large to get an acceptable accuracy. In this
paper, we consider the extension of the reduced basis method to define a coarse and very cheap
propagator that allows to get the full efficiency in a parareal context.

Many numerical methods are considered to define the coarse propogator in the literature
[17]: the most well-known ones are the usual coarse mesh of the finite element method (FEM),
the spectral approximation space based on the polynomial of lower degree, and a coarser model
based on simpler physics. The success of these numerous experiments not only richen the idea
of parareal in time algorithm, but also motivate the need for further studies in this direction.
The main contributions here are as follows: (i) we construct a coarse propagator based on a
semi-implicit scheme in time and the reduced basis approximation in space, and prove that the
computational complexity of the on-line stage of the procedure scales only with the dimension
of the reduced basis space (this fact means that good accuracy is obtained even for very few
basis functions, and thus the computational cost of the coarse solver is typically very small); (ii)
we propose a fine propagator based on the FEM or spectral element method (SEM) in space
and a semi-implicit Runge-Kutta (RK) scheme in time; (iii) the parareal in time algorithm
based on a multi-degrees FEM in space and the semi-implicit RK scheme in time is considered.

This paper is organized as follows: Section 2 describes the basic algorithm for a model
equation. Section 3 introduces the necessary notations and the initial-boundary problem which
is considered in this paper and proposes two types of fine approximated propagators based
on the FEM and SEM in space and semi-implicit RK scheme in time. Section 4 introduces
the coarse approximated propagator based on the reduced basis method. Section 5 gives the
parareal in time algorithms based on the multi-grids FEM and the multi-degrees FEM. Some
numerical results are reported in Section 6, and finally we give some conclusions in Section 7.

2. Basic Algorithm on a Model Equation

Consider the following time dependent problem

∂u

∂t
+ Lu = 0, u(0) = u0, (2.1)

where, for the sake of simplicity, the operator L does not depend on time. We introduce the
propagator S such that Sτ (v) is the solution, at time τ of the problem

∂u

∂t
+ Lu = 0, u(0) = v. (2.2)

Due to time invariance, it is well-known that

Sτ = Sτ−t ◦ St, ∀t < τ. (2.3)

Let 0 = T0 < T1 < · · · < Tn < · · · < TM = T be special times at which we are interested to
consider snapshots of the solution u(Tn). Then we obtain from (2.2) and (2.3) that

u(Tn+1) = STn+1(u
0) = STn+1−Tn(uTn).
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In most cases S is not achievable but only approximations based on time discretization and
the use of Euler or more involved schemes. For instance, we can introduce a fine and precise
approximated propagator F defined through the Runge-Kutta scheme of (2.1), which reads

um+1 − um

δt
+

1
2
(Lum + Lum+1) = 0 (2.4)

for any time T = Mδt the approximated propagator FT involves the iterative resolution of M

problems as above. Similarly as for the continuous solution, we have the approximations un of
u(Tn) given by

un+1 = FTn+1(u
0) = FTn+1−Tn

(un).

Assuming, for the sake of simplicity, that Tn+1 − Tn is constant (∆T À δt), then this reads

un+1 = F∆T (un), (2.5)

where it appears that the approximated solution process is sequential, which, prevents it from
a parallelization.

In what follows Lions et al. [12] proposed an algorithm uk
n −→ un as k goes to infinity.

For this we assume that another propagator G is achievable. It is assumed to be cheap but
inaccurate. One can think about G based on the same time discretization as F but with
larger time step ∆t. Other possibility may be offered as e.g. F carries all the physics of the
phenomenon but G is based on a simplified physics. Then, the iterative process is

uk+1
n+1 = G∆T (uk+1

n ) + F∆T (uk
n)− G∆T (uk

n). (2.6)

This iterative process provides a converging sequence, in the sense that

if |S∆T −F∆T | ' δt2 and if |G∆T −F∆T | ' ε∆T, (2.7)

after k iterations the error between uk
n and u(Tn) is εk + δt2.

3. Fine Approximated Propagator

Let T > 0, µ > 0 be the kinetic viscosity, ∆ be the Laplacian, and ∂Ω be the boundary of
Ω. f(t, x, y) and u0(x, y) describe the source term and the initial state. Denote by φ(u) = u3

the nonlinear term. Then the nonlinear evolutionary parabolic partial differential equation to
be considered (see [10,17]) is of the form





∂u

∂t
+

∂u

∂x
− µ∆u + φ(u) = f, in Ω× (0, T ],

u = 0, on ∂Ω× (0, T ],
u(x, y, 0) = u0(x, y), in Ω ∪ ∂Ω.

(3.1)

Throughout the paper we use Sobolev space Hr(Ω) and Hr
0 (Ω). For simplicity, let L2(Ω) =

H0(Ω). The inner product, the semi-norm and the norm of Hr(Ω), r ≥ 0, are denoted by (·, ·)r,
| · |r, ‖·‖r respectively. If r = 0, then the index r is omitted. We recall that the usual semi-norm
| · |r is equivalent to the norm ‖ · ‖r in Hr

0 (Ω). Further let H−r(Ω) be the dual space of Hr
0 (Ω),

and 〈·, ·〉L(H−r,Hr
0 ) be the duality parting between H−r(Ω) and Hr

0 (Ω). Let ∂u
∂x = ∂xu.
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We show the weak formulation of (3.1). For given functions f ∈ L2(0, T ;H−1(Ω)) and
u0 ∈ L2(Ω), the weak solution of (3.1) is to find a function u ∈ L2(0, T ; H1

0 (Ω)) such that





(
∂

∂t
u, v

)
+ (∂xu, v) + µ(∇u,∇v) + (φ(u), v) = 〈f, v〉L(H−r,Hr

0 ), ∀v ∈ H1
0 (Ω),

u(x, y, 0) = u0(x, y).
(3.2)

It can be proved that if f ∈ L2(0, T ;H−1(Ω)) and u0 ∈ L2(Ω), then (3.2) has a unique solution
u ∈ L2(0, T ; H1

0 (Ω)) ∩ L∞(0, T ;L2(Ω)).

3.1. Semi-implicit time discretization schemes

We first consider a time-discrete framework associated with the time interval I =]0, T ].
We divide Ī = [0, T ] into Mδt subintervals of equal length δt = T/Mδt and define tmδt = mδt,
0 ≤ m ≤ Mδt ≡ T/δt, and Iδt ≡ {1, 2, · · · ,Mδt}. Also, we divide Ī into M∆t subintervals
of equal length ∆t = T/M∆t and define tm∆t = m∆t, 0 ≤ m ≤ M∆t ≡ T/∆t, and I∆t ≡
{1, 2, · · · ,M∆t}. Given a time step τ , set um(x, y) = u(x, y, mτ), also denoted by um for
simplicity. Let um ∈ H1

0 (Ω) be the approximation to the solution of (3.2) at time tmτ = mτ .
Denoted by um+1

pre the predicted value of um+1. The average operators Aτ and Apre
τ , and the

difference operators ∂τ and ∂pre
τ are defined as

Aτum =
1
2

(
u(x, y, tmτ ) + u(x, y, tm+1

τ )
)

, Apre
τ um =

1
2

(
u(x, y, tmτ ) + upre(x, y, tm+1

τ )
)

,

∂τum =
1
τ

(
u(x, y, tm+1

τ )− u(x, y, tmτ )
)

, ∂pre
τ um =

1
τ

(
upre(x, y, tm+1

τ )− u(x, y, tmτ )
)

.

In this paper the fine time discretization scheme of (3.2) is defined by the semi-implicit RK
scheme (see [11]): find um+1 ∈ H1

0 (Ω) such that





(∂pre
δt um, v) + (∂xum, v) + µ(∇Apre

δt um,∇v) + (φ(um), v) = (fm, v), ∀v ∈ H1
0 (Ω),

(∂δtu
m, v) + (∂xApre

δt um, v) + µ(∇Aδtu
m,∇v) + (Apre

δt φ(um), v)
= (Aδtf

m, v), ∀v ∈ H1
0 (Ω), ∀m ∈ Iδt,

u0 = u0,

(3.3)

and the coarse time discretization scheme of (3.2) is defined by a semi-implicit scheme: find
up+1 ∈ H1

0 (Ω) such that





(∂∆tu
p, v) + (∂xup, v) + µ(∇A∆tu

p,∇v) + (φ(up), v) = (fp, v),
∀v ∈ H1

0 (Ω), ∀p ∈ I∆t,

u0 = u0.

(3.4)

It is well-known that the time step δt and ∆t are dependent on the spacial discretization of
problem (3.2).

3.2. Spectral element approximation

The SEM is based on a decomposition of the global domain, Ω̄ = Ω ∪ ∂Ω, into E nonover-
lapping subdomains, Ωe, e = 1, 2, · · · , E. Each subdomain Ωe is a deformed quadrilateral in R2
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and can be considered as a mapping of a reference domain Ω̂ = [−1, 1]2. We write Ωe = Φe(Ω̂),
where Φe is an one-to-one mapping. In terms of the reference variables, we have that

∫

Ωe

uvdΩ =
∫

Ω̂

(u ◦ Φe)(v ◦ Φe)|Je|dΩ̂, (3.5)
∫

Ωe

∇u · ∇vdΩ =
∫

Ω̂

J−T
e ∇̂(u ◦ Φe) · J−T

e ∇̂(v ◦ Φe)|Je|dΩ̂, (3.6)

where Je is the Jacobian of Φe,

Je =

[
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

]
,

and |Je| denotes the determinant of Je.
We now consider a discretization of (3.5) and (3.6). Let PN (Ω̂) be the space of all functions

which are polynomials of degree less than or equal to N in each spatial direction on the reference
domain Ω̂. The discrete space of piecewise continuous functions that map to the polynomials
in the reference domain Ω̂ is then taken to be

PN,E(Ω) =
{

v ∈ H1
0 (Ω) : v ◦ Φe ∈ PN (Ω̂), e = 1, 2, · · · , E

}
.

The basis of PN (Ω̂) is conveniently expressed in terms of the reference variables ξ and η. As
a basis for PN (Ω̂) we use a nodal basis through the tensor-product Gauss-Lobatto Legendre
(GLL) points; see,e.g., [8,13,14,25]. Specifically, we write uN ∈ PN,E(Ω) as

uN ◦ Φe(ξ, η) =
N∑

i=0

N∑

j=0

ue
i,jπi(ξ)πj(η),

where ue
i,j represents nodal values for the element e and πi(ξ) refers to a one-dimensional N -th

order Lagrangian interpolant through the GLL points ξm, m = 0, 1, · · · , N ; here, πi(ξm)πj(ξn) =
δimδjn for a given point (ξm, ξn) in the underlying tensor-product GLL grid. Within the frame-
work of multielement discretizations, the scalar product and the bilinear form are defined by

(uN , vN )N =
E∑

e=1

∫

Ω̂

(uN ◦ Φe)(vN ◦ Φe)|Je|dΩ̂, ∀uN , vN ∈ PN,E(Ω),

(∇uN ,∇vN )N =
E∑

e=1

∫

Ω̂

J−T
e ∇̂(uN ◦ Φe) · J−T

e ∇̂(vN ◦ Φe)|Je|dΩ̂, ∀uN , vN ∈ PN,E(Ω).

In the SEM, GLL quadrature is used to the evaluation of the integrals, resulting in local forms
similar to the spectral method. The other terms of (3.2) can be approximated similarly.

We denote by VN (Ω) the subspace PN,E(Ω)∩H1(Ω) and by ∂ΩD the subset of ∂Ω on which
homogeneous Dirichlet boundary conditions are enforced. The underlying approximation space
in the SEM is defined as

VN,0(Ω) =
{

v ∈ VN (Ω) : v|∂ΩD
= 0

}
.

We define the orthogonal projection operator Π1,N : H1
0 (Ω) 7→ VN,0(Ω) such that

(∇(u−Π1,Nu),∇vN )N = 0, ∀vN ∈ VN,0(Ω).
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We now consider the discretization only in space. The semi-discrete spectral element ap-
proximation of (3.2) is a function uN (x, y, t) ∈ VN,0(Ω) such that





(
∂

∂t
uN , vN

)

N

+ (∂xuN , vN )N + µ(∇uN ,∇vN )N + (φ(uN ), vN )N

= (f, vN )N , ∀vN ∈ VN,0(Ω),
uN (x, y, 0) = Π1,Nu0(x, y).

(3.7)

We describe the fully discrete scheme. We divide Ī into Mse subintervals of equal length
δtse = T/Mse and define Ise ≡ {1, 2, · · · ,Mse}. Let um

N ∈ VN,0(Ω) be the approximation to the
solution of (3.2) at time tm = mδtse. Then the semi-implicit RK spectral element approximation
for (3.2) is of the form: find um+1

N ∈ VN,0(Ω) such that




(∂pre
δtse

um
N , vN )N + (∂xum

N , vN )N + µ(∇Apre
δtse

um
N ,∇vN )N

+(φ(um
N ), vN )N = (fm, vN )N , ∀vN ∈ VN,0(Ω),

(∂δtseu
m
N , vN )N + (∂xApre

δtse
um

N , vN )N + µ(∇Aδtseu
m
N ,∇vN )N

+(Apre
δtse

φ(um
N ), vN )N = (Aδtsef

m, vN )N , ∀vN ∈ VN,0(Ω), ∀m ∈ Ise,

u0
N = Π1,Nu0.

(3.8)

Obviously the approximation solution on the initial level is well defined. Now assume that
the numerical solution on the mth level has been calculated. Let

aN (uN , vN ) = (uN , vN )N +
1
2
µδtse(∇uN ,∇vN )N , ∀uN , vN ∈ VN,0(Ω)

be the prediction-correction operator. Clearly, aN (uN , vN ) is a bilinear continuous and coercive
form on VN,0(Ω) × VN,0(Ω). Hence by Lax-Milgram theorem, the numerical solution on the
m + 1th level is determined uniquely. So this scheme has a unique solution on each level as
long as f ∈ C(0, T ;L2(Ω)) and u0 ∈ H1

0 (Ω). Moreover, the above scheme is the second-order
in time and high order in space (see [11]).

3.3. Finite element approximation

Let us consider a family of regular triangulation {Th} in Ω̄. Denote by Ωh the triangulated
domain of Ω, and by he the diameter of the closed triangulation element e. The mesh parameter
is defined as h = maxe∈Th

{he}. Denote by Ps(e), e ∈ Th, the spaces which contain polynomials
of degree s. Define

V s
h (Ωh) =

{
vh ∈ H1(Ωh) : vh|e ∈ Ps(e),∀e ∈ Th

}
.

Thus, a function vh ∈ V 1
h (Ωh) (i) is such that each restriction vh|e is in the space P1(e) for

each e ∈ Th and (ii) is completely determined by its values at all the vertices of the triangu-
lation. Likewise, a function of V 2

h (Ωh) (i) is in the space P2(e) for each e ∈ Th, and (ii) is
completely determined by its values at all the vertices and all the mid-points of the edges of
the triangulation. Let s = 1 or 2. The finite element approximation space is defined as

V s
h,0(Ωh) =

{
vh ∈ V s

h (Ωh) : vh|∂Ωh
= 0

}
.

Denote the node set of Th by {pj}Js
h

j=1, in which pj (1 ≤ j ≤ Ks
h) is the inner node of Ωh, and

pk (Ks
h + 1 ≤ k ≤ Js

h) is the boundary node on ∂Ωh. It is obvious that

dimV s
h (Ωh) = Js

h, dimV s
h,0(Ωh) = Ks

h.
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Define the V s
h -interpolation operator Πs

h: domΠs
h 7→ V s

h (Ω) such that

ψj(Πs
hv) = ψj(v), ∀v ∈ domΠs

h, j = 1, 2, · · · , Js
h.

Thus, if v ∈ domΠs
h and v|∂Ωh

= 0, then we have Πs
hv ∈ V s

h,0(Ω) (see [6]). Define

(uh, vh)h =
∑

e∈Th

∫

e

uh(x)vh(x)dx, (∇uh,∇vh)h

=
∑

e∈Th

∫

e

∇uh(x)∇vh(x)dx, ∀uh, vh ∈ V s
h (Ω). (3.9)

Denote by ê the reference finite element, and let Fe : x̂ ∈ ê 7→ x = Fe(x̂) = Bex̂+ be ∈ e be the
invertible affine mapping which maps ê onto e. Then

∫

e

uh(x)vh(x)dx = det(Be)
∫

ê

uh(Fe(x̂))vh(Fe(x̂))dx̂, ∀uh, vh ∈ V s
h (Ω).

Consequently, for each s, we need only a numerical quadrature scheme over the reference finite
element to approximating the integrals which appear in (3.9).

The semi-discrete finite element approximation of (3.2) is a function uh ∈ V s
h,0(Ω), s = 1, 2,

such that 



(
∂

∂t
uh, vh

)

h

+ (∂xuh, vh)h + µ(∇uh,∇vh)h + (φ(uh), vh)h

= (f, vh)h, ∀vh ∈ V s
h,0(Ω),

uh(x, y, 0) = Πs
hu0(x, y).

(3.10)

We divide Ī = [0, T ] into Mfe subintervals of equal length δtfe = T/Mfe and define Ife ≡
{1, 2, · · · ,Mfe}. Let um

h ∈ Vh,0(Ω) be the approximation to the solution of (3.2) at time tm =
mδtfe. Denoted by um+1

h,pre the predicted value of um+1
h . Then the semi-implicit RK finite element

approximation for (3.2) is of the form: find um+1
h ∈ V s

h,0(Ω), s = 1, 2, such that





(∂pre
δtfe

um
h , vh)h + (∂xum

h , vh)h + µ(∇Apre
δtfe

um
h ,∇vh)h

+(φ(um
h ), vh)h = (fm, vh)h, ∀vh ∈ V s

h,0(Ω),
(∂δtfeu

m
h , vh)h + (∂xApre

δtfe
um

h , vh)h + µ(∇Aδtfeu
m
h ,∇vh)h

+(Apre
δtfe

φ(um
h ), vh)h = (Aδtfef

m, vh)h, ∀vh ∈ V s
h,0(Ω), ∀m ∈ Ife,

u0
h = Πs

hu0.

(3.11)

Similarly, the prediction-correction operator is now defined as

a(uh, vh) = (uh, vh)h +
1
2
µδtfe(∇uh,∇vh)h, ∀uh, vh ∈ V s

h,0(Ω).

From Lax-Milgram theorem, we can show that this scheme has a unique solution on each time
level.

4. Coarse Approximated Propagator

We first introduce the nested sample sets Sse
Nr

= {m1δtse, m2δtse, · · · ,mNrδtse}, 1 ≤ Nr ≤
Nse,max, and Sfe

Ns
= {n1δtfe, n2δtfe, · · · , nNsδtfe}, 1 ≤ Ns ≤ Nfe,max; note that the samples must
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reside in the discrete time space. Here, Nr and Ns are the dimensions of the reduced basis
spaces for the time parameter. We then define the reduced basis spaces

W se
Nr

= span
{

ζse
1 = um1

N , ζse
2 = um2

N , · · · , ζse
Nr

= u
mNr

N

}
, (4.1)

and

W fe
Ns

= span
{

ζfe
1 = un1

h , ζ fe
2 = un2

h , · · · , ζ fe
Ns

= u
nNs

h

}
, (4.2)

where umk

N is the solution of (3.8) at time t = mkδtse and unk

h is the solution of (3.11) at time
t = nkδtfe with s = 2.

We divide Ī into Mse subintervals of equal length ∆tse = T/Mse and define tp = p∆tse, 0 ≤
p ≤Mse ≡ T/∆tse, and Ise ≡ {1, 2, · · · ,Mse}. Also, we divide Ī into Mfe subintervals of equal
length ∆tfe = T/Mfe and define tq = q∆tfe, 0 ≤ q ≤Mfe ≡ T/∆tfe, and Ife ≡ {1, 2, · · · ,Mfe}.

4.1. Semi-implicity spectral element reduced basis approximation

The spectral element reduced basis approximation up+1
Nr

(x, y) to u(x, y, tp+1) is defined by a
standard Galerkin projections: find up+1

Nr
∈ W se

Nr
such that





(∂∆tseu
p
Nr

, vNr )N + (∂xup
Nr

, vNr )N + µ(∇A∆tseu
p
Nr

,∇vNr )N

+(φ(up
Nr

), vNr )N = (fp, vNr )N , ∀vNr ∈ W se
Nr

,∀p ∈ Ise,

u0
Nr

= Π1,Nu0.

(4.3)

To ensure stability of the reduced basis solution, all basis functions are orthogonalized,
but we keep the basis functions representing different time separated. For the spectral element
reduced basis functions, the orthogonalization is done with respect to the discrete inner product
(·, ·)N + 1

2µ∆tse(∇·,∇·)N . Let {ϕi}i=1,2,··· ,Nr be the orthogonal basis functions of W se
Nr

and
up

Nr
=

∑Nr

k=1 ûp
kϕk. Then we have

φ(up
Nr

) =
Nr∑

k=1

(ûp
k)3ϕ3

k + 3
Nr∑

k,l=1
k 6=l

(ûp
k)2ûp

l ϕ
2
kϕl + 6

Nr∑
i,k,l=1
i<k<l

ûp
i û

p
kûp

l ϕiϕkϕl,

which gives us

(φ(up
Nr

), ϕj)N =
Nr∑

k=1

(ûp
k)3(ϕ3

k, ϕj)N

+ 3
Nr∑

k,l=1
k 6=l

(ûp
k)2ûp

l (ϕ
2
kϕl, ϕj)N + 6

Nr∑
i,k,l=1
i<k<l

ûp
i û

p
kûp

l (ϕiϕkϕl, ϕj)N .

Note that
(ϕk, ϕj)N +

1
2
µ∆tse(∇ϕk,∇ϕj)N = δk,j .

Then, we find that

ûp+1
j = 2(up

Nr
, ϕj)N − ûp

j −∆tse(∂xup
Nr

, ϕj)N

−∆tse(φ(up
Nr

), ϕj)N + ∆tse(fp, ϕj)N , j = 1, 2, · · · , Nr. (4.4)
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Off-line Stage

In the offline stage, all of the following precomputing are performed only once.

1. Calculate ζse
i = umi

N , i = 1, · · · , Nr, to form W se
Nr

as in (4.1).

2. Form the orthogonal basis functions {ϕi}i=1,··· ,Nr
of W se

Nr
.

3. Evaluate and store B
(0)
i,j = 2(ϕi, ϕj)N , B

(1)
i,j = ∆tse(∂xϕi, ϕj)N , i, j = 1, · · · , Nr.

4. Calculate and store B
(2)
i,j = ∆tse(ϕ3

i , ϕj)N , Ci,j,k = 3∆tse(ϕ2
i ϕj , ϕk)N and

Di,j,k,l = 6∆tse(ϕiϕjϕk, ϕl)N .

5. Compute and store the linear functions F
(p)
j = ∆tse(fp, ϕj)N , j = 1, · · · , Nr, ∀p ∈ P se.

On-line Stage

Let A
(0,p)
j = 2(up

Nr
, ϕj)N , A

(1,p)
j = ∆tse(∂xup

Nr
, ϕj)N , A

(2,p)
j = ∆tse(φ(up

Nr
), ϕj)N .

1. Compute A
(0,p)
j =

∑Nr

k=1 ûp
kB

(0)
k,j , A

(1,p)
j =

∑Nr

k=1 ûp
kB

(1)
k,j , j = 1, 2, · · · , Nr.

2. Evaluate the inner product of the nonlinear term as

A
(2,p)
j =

Nr∑

k=1

(ûp
k)3B(2)

k,j +
Nr∑

k,l=1
k 6=l

(ûp
k)2ûp

l Ck,l,j +
Nr∑

i,k,l=1
i<k<l

ûp
i û

p
kûp

l Di,k,l,j , j = 1, 2, · · · , Nr.

3. Calculate ûp+1
j = A

(0,p)
j − ûp

j −A
(1,p)
j −A

(2,p)
j + F

(p)
j , j = 1, 2, · · · , Nr.

This stage requires 2Nr evaluations of A
(0,p)
j and A

(1,p)
j ; 3Nr computations for

∑Nr

k=1(û
p
k)3B(2)

k,j ,
and 3(N2

r − Nr) operations for
∑Nr

k,l=1
k 6=l

(ûp
k)2ûp

l Ck,l,j , and 1
6Nr(Nr − 1)(Nr − 2) operations for

∑Nr
i,k,l=1
i<k<l

ûp
i û

p
kûp

l Di,k,l,j . Hence, as required in the many-query or real-time contexts, the online

complexity is independent of dim(VN,0(Ω)), the dimension of the underlying spectral element
approximation space. Since Nr ¿ dim(VN,0(Ω)), the cost to compute ûp+1

j in the online stage
will typically be much less than the cost to directly evaluate up+1

Nr
in physical space.

Now the fine propagator F se
∆T is defined by (3.8), the coarse propagator Gserb

∆T is defined by
(4.3), and the iterative process (2.6) is of the form

uk+1
n+1,serb = Gserb

∆T (uk+1
n,serb) + F se

∆T (uk
n,serb)− Gserb

∆T (uk
n,serb). (4.5)

4.2. Semi-implicit finite element reduced basis approximation

The finite element reduced basis approximation uq+1
Ns

(x, y) to u(x, y, tq+1) is as the solution
of 




(∂∆tfeu
q
Ns

, vNs)h + (∂xuq
Ns

, vNs)h + µ(∇A∆tfeu
q
Ns

,∇vNs)h

+(φ(uq
Ns

), vNs)h = (fq, vNs)h, ∀vNs ∈ W fe
Ns

,∀q ∈ Ife,

u0
Ns

= Π2
hu0.

(4.6)

Also, the finite element reduced basis functions are the orthogonalized with respect to the
discrete inner product (·, ·)h + 1

2µ∆tfe(∇·,∇·)h. Let {λi}i=1,2,··· ,Ns be the orthogonal basis
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functions of W fe
Ns

and uq
Ns

=
∑Ns

k=1 ûq
kλk. From

(λk, λj)N +
1
2
µ∆tse(∇λk,∇λj)N = δk,j ,

we still have that

ûq+1
j =2(uq

Ns
, λj)h − ûq

j −∆tfe(∂xuq
Ns

, λj)h

−∆tfe(φ(uq
Ns

), λj)h + ∆tfe(fq, λj)h, j = 1, · · · , Ns. (4.7)

Off-line Stage

1. Calculate ζfe
i = uni

h , i = 1, · · · , Ns, to form W fe
Ns

as in (4.2) by using P2−FEM.

2. Form the orthogonal basis functions {λi}i=1,2,··· ,Ns of W fe
Ns

.

3. Evaluate and store B
(0)
i,j = 2(λi, λj)h, B

(1)
i,j = ∆tfe(∂xλi, λj)h, i, j = 1, · · · , Ns.

4. Calculate and store B
(2)
i,j = ∆tfe(λ3

i , λj)h, Ci,j,k = 3∆tfe(λ2
i λj , λk)h and

Di,j,k,l = 6∆tfe(λiλjλk, λl)h.

5. Compute and store the linear functions F
(q)
j = ∆tfe(fq, λj)h, j = 1, · · · , Ns, ∀q ∈ P fe.

On-line Stage

Denote A
(0,q)
j = 2(uq

Ns
, λj)h, A

(1,q)
j = ∆tfe(∂xuq

Ns
, λj)h, and A

(2,q)
j = ∆tfe(φ(uq

Ns
), λj)h.

1. Compute A
(0,q)
j =

∑Ns

k=1 ûq
kB

(0)
k,j , A

(1,q)
j =

∑Ns

k=1 ûq
kB

(1)
k,j , j = 1, · · · , Ns.

2. Evaluate

A
(2,q)
j =

Ns∑

k=1

(ûq
k)3B(2)

k,j +
Ns∑

k,l=1
k 6=l

(ûq
k)2ûq

l Ck,l,j +
Ns∑

i,k,l=1
i<k<l

ûq
i û

q
kûq

l Di,k,l,j , j = 1, · · · , Ns.

3. Calculate ûq+1
j = A

(0,q)
j − ûq

j −A
(1,q)
j −A

(2,q)
j + F

(q)
j , j = 1, · · · , Ns.

The operations in the online stage is thus only 1
6N3

s + 5
2N2

s + 7
3Ns for each j, and thus the

online complexity is independent of dim(V 2
h,0(Ω)). Since Ns ¿ dim(V 2

h,0(Ω)), we expect signif-
icant computational savings in the online stage relative to classical discretization and solution
approaches.

Finally, the fine propagator F fe
∆T is defined by (3.11) with s = 2, the coarse propagator Gferb

∆T

is defined by (4.6), and the iterative process (2.6) is of the form

uk+1
n+1,ferb = Gferb

∆T (uk+1
n,ferb) + F fe

∆T (uk
n,ferb)− Gferb

∆T (uk
n,ferb). (4.8)

5. Multi-grids and Multi-Degrees Finite Element Method

The coarse propagators G can be differ in other ways. In this section we consider other
methods for the parareal in time algorithm of (3.2).
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5.1. Semi-implicity multi-grids finite element approximation

We divide Ī into MH subintervals of equal length ∆tH = T/MH and define tp = p∆tH ,
0 ≤ p ≤ MH ≡ T/∆tH , and IH ≡ {1, 2, · · · , MH}. Also, we divide Ī into Mh subintervals of
equal length δth = T/Mh and define tq = qδth, 0 ≤ q ≤ Mh ≡ T/δth, and Ih ≡ {1, 2, · · · ,Mh}.

The coarse operator Gmg
∆T based on larger time step ∆tH and the coarse grid (H) is defined

as: find up+1
H ∈ V 1

H,0(Ω) such that




(∂∆tH
up

H , vH)H + (∂xup
H , vH)H + µ(∇A∆tH

up
H ,∇vH)H

+(φ(up
H), vH)H = (fp, vH)H , ∀vH ∈ V 1

H,0(Ω), ∀p ∈ IH ,

u0
H = Π1

Hu0.

(5.1)

Then we dive each coarse triangle into nine triangles to form a fine grid (h), in which the
resulting number of vertices is equal to 2601 in the coarse mesh (H) and 22801 in the fine
mesh (h). The propagator Fmg

∆T based on time step δt and the fine grid (h) is defined as: find
um+1

h ∈ V 1
h,0(Ω) such that





(∂pre
δth

um
h , vh)h + (∂xum

h , vh)h + µ(∇Apre
δth

um
h ,∇vh)h

+(φ(um
h ), vh)h = (fm, vh)h, ∀vh ∈ V 1

h,0(Ω),
(∂δth

um
h , vh)h + (∂xApre

δth
um

h , vh)h + µ(∇Aδth
um

h ,∇vh)h

+(Apre
δth

φ(um
h ), vh)h = (Aδth

fm, vh)h, ∀vh ∈ V 1
h,0(Ω), ∀m ∈ Ih,

u0
h = Π1

hu0.

(5.2)

Now the iterative process (2.6) is of the form

uk+1
n+1,mg = Πh

HGmg
∆T (ΠH

h uk+1
n,mg) + Fmg

∆T (uk
n,mg)−Πh

HGmg
∆T (ΠH

h uk
n,mg). (5.3)

The operator that allows one to go from the coarse mesh to the fine one (denoted as Πh
H) and

reciprocally (i.e.,ΠH
h ) is the interpolation operator.

5.2. Semi-implicity multi-degrees finite element approximation

We divide Ī into MH subintervals of equal length ∆tH = T/MH and define

tp = p∆tH , 0 ≤ p ≤ MH ≡ T/∆tH , andIH ≡ {1, 2, · · · ,MH}.
Also, we divide Ī into MH2 subintervals of equal length δtH = T/MH2 and define tq = qδtH ,
0 ≤ q ≤ qH ≡ T/δtH , and IH2 ≡ {1, 2, · · · ,MH2}.

The coarse operator Gmd
∆T based on larger time step ∆tH and the coarse grid (H) is defined

as: find up+1
H ∈ V 1

H,0(Ω) such that




(∂∆tH
up

H , vH)H + (∂xup
H , vH)H + µ(∇A∆tH

up
H ,∇vH)H

+(φ(up
H), vH)H = (fp, vH)H , ∀vH ∈ V 1

H,0(Ω), ∀p ∈ IH ,

u0
H = Π1

Hu0.

(5.4)

Then the propagator Fmd
∆T based on time step δtH is defined as: find um+1

H ∈ V 2
H,0(Ω) such that





(∂pre
δtH

um
H , vH)H + (∂xum

H , vH)H + µ(∇Apre
δtH

um
H ,∇vH)H

+(φ(um
H), vH)H = (fm, vH)H , ∀vH ∈ V 2

H,0(Ω),
(∂δtH

um
H , vH)H + (∂xApre

δtH
um

H , vH)H + µ(∇AδtH
um

H ,∇vH)H

+(Apre
δtH

φ(um
H), vH)H = (AδtH

fm, vH)H , ∀vH ∈ V 2
H,0(Ω), ∀m ∈ IH2 ,

u0
H = Π2

Hu0.

(5.5)
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Now the iterative process (2.6) is of the form

uk+1
n+1,md = P 2

1 Gmd
∆T (P 1

2 uk+1
n,md) + Fmd

∆T (uk
n,md)− P 2

1 Gmd
∆T (P 1

2 uk
n,md), (5.6)

where P 2
1 is the L2 prolongation operator from V 1

H,0(Ω) onto V 2
H,0(Ω) and P 1

2 is the L2 projection
operator from V 2

H,0(Ω) onto V 1
H,0(Ω).

6. Numerical Results

In this section, we report the numerical results. Let u·,N be the solution of spectral element
approximation (3.8), u·,H be the solution of finite element approximation (3.11) based on the
grid (H) and s = 2, and u·,h be the solution of finite element method (5.2) based on the grid
(h) and s = 1; and denoted by u·,Nr and u·,Ns the solution of scheme (4.3) based on the Nr

dimensional spectral element reduced basis space and scheme (4.6) based on the Ns dimensional
finite element reduced basis space, respectively. Denote by un,· the numerical solution at time
t = Tn. Define the relative error as

erb
n,H,Ns

=
‖un,H − un,Ns

‖
‖un,H‖ , eferb,(k)

n,H,Ns
=
‖un,H − u(k)

n,ferb‖
‖un,H‖ ,

emd,(k)
n,H =

‖un,H − u(k)
n,md‖

‖un,H‖ , erb
n,N,Nr

=
‖un,N − un,Nr‖

‖un,N‖ ,

eserb,(k)
n,N,Nr

=
‖un,N − u(k)

n,serb‖
‖un,N‖ , emg,(k)

n,h =
‖un,h − u(k)

n,mg‖
‖un,h‖ .

Example 6.1. Consider Eq.(3.1) on the unit square Ω = (−1, 1)2, with µ = 1.0 and T = 1,
choose the right-hand side f = 0 and the initial condition u0 = sin(πx) sin(πy). First, we
test the convergence of the iterative process (5.3) and (5.6) based on the multi-grids and the
multi-degrees FEM, respectively. We then compare the CPU time between different coarse
solvers.

We consider the parareal in time algorithm based on the multi-grids and the multi-degrees
FEM. For this example, a regular triangular mesh is used in computations. We choose the
number of vertices is equal to 2601 in the coarse mesh (H) and 22801 in the fine mesh (h); take
the coarse time step ∆tH = 0.001 in scheme (5.1) and (5.4), the fine time step δth = δtH =
0.001 in scheme (5.2) and (5.5), and the time step of snapshots ∆T = 0.1 in (5.3) and (5.6),
respectively.

Numerical tests at time T = 1 are presented in Table 1. It indicates that both of the
iterative process (5.3) and (5.6) provide a converging sequence. Indeed, we know from (2.7)
that the errors between uk

n,mg and uh(Tn) (the solution of scheme (3.10) at time t = Tn based
on the fine mesh (h) and s = 1) is about εk + δt2h, while the errors between uk

n,md and uH(Tn)
(the solution of scheme (3.10) at time t = Tn based on the mesh (H) and s = 2) is about and
εk + δt2H , respectively. Thus the numerical experiment supports the theoretical analysis.

We then compare the CPU time between the coarse propagator based on the finite element
reduced basis scheme (4.6) and the coarse propagator based on the finite element scheme (5.1)
with the mesh (H) or the mesh (h). We choose ∆tfe = ∆tH = 0.001. The reduced basis
approximation space is define as

W fe
Ns

= span
{

ζ fe
1 = u1, ζ

fe
2 = u2, · · · , ζ fe

Ns
= uNs

}
, (6.1)
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Table 1. Errors of iterative process (5.3) and (5.6).

k = 1 k = 2 k = 3 k = 4 k = 5

e
mg,(k)
10,h 3.7E-1 1.3E-2 5.8E-4 2.5E-4 1.9E-5

e
md,(k)
10,H 4.5E-1 1.4E-2 2.0E-3 6.9E-6 2.7E-6

Table 2. CPU time of Scheme (4.6) and Scheme (5.1).

Scheme(4.6) Scheme(5.1)

Ns = 3 Ns = 4 Ns = 5

m.g.(H) 1.903(s) 2.614(s) 3.815(s) 147.242(s)

m.g.(h) 1.903(s) 2.614(s) 3.815(s) 580.175(s)

where un is the solution of the scheme (3.11) based on the mesh (H) or the mesh (h), δtfe = 0.001
and s = 2 at time t = n∆T .

Table 2 shows that one of the expensive part in the parareal in time algorithm is the
resolution of the coarse solver computed in physical space, such as the SEM and the FEM, etc..
Also, it shows that the CPU time of our reduced basis approximation is dependent only on
Ns (the dimension of reduced basis space), and independent of the mesh parameters, such as
the vertices, the nodes and the dimension of the finite element approximation space. This is
consistent with the analysis of the previous section. Thus, the reduced basis method provides
a coarse and very cheap propagator.

Example 6.2. Consider Eq. (3.1) on the domain

Ω =
{

(x, y)| x2 + y2 ≥ 1
4
, |x| ≤ 1, |y| ≤ 1

}
,

with µ = 1.0 and T = 10, choose the right-hand side f = 5 sin(3t + 2) and the initial condition
u0 = sin(x2 + y2 − 0.25) sin(πx) sin(πy). First, we test the convergence of the iterative process
(4.5) for fixed Nr. We then show the accuracy of (4.5) decreases when Nr increases. Finally,
we compare the accuracy of the iterative process (4.5) with the iterative process (4.8).

We now consider the spectral element approximation (3.8) and choose δtse = 0.001. We
divide the computational domain Ω into E non-overlapping subdomains. Several spectral ele-
ment meshes are presented in Fig. 6.1. Let ∆T = 0.1. The reduced basis approximation space
is define as

W se
Nr

= span
{

ζse
1 = u1, ζ

se
2 = u2, · · · , ζse

Nr
= uNr

}
, (6.2)

where un is the solution of the scheme (3.8) at time t = n∆T .
We choose Nr = 3 and ∆tse = 0.01. The numerical tests are presented in Table 3. It indi-

cates that the iterative process (4.5) is convergent, and the error ‖uk
n,serb−un,N‖ is independent

Table 3. Errors of (4.5) for different E and N

(E, N) erb
100,N,3 e

serb,(1)
100,N,3 e

serb,(2)
100,N,3 e

serb,(3)
100,N,3 e

serb,(4)
100,N,3 e

serb,(5)
100,N,3

(4,16) 1.4E-3 5.4E-5 1.4E-6 5.5E-8 1.3E-8 1.4E-9

(4,10) 1.4E-3 5.4E-5 1.4E-6 5.6E-8 1.3E-8 1.4E-9

(8,10) 1.4E-3 5.4E-5 1.4E-6 5.5E-8 1.3E-8 1.4E-9
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Fig. 6.1. Spectral element meshes with (a)(E, N) = (4, 10), (b)(E, N) = (4, 16), (c)(E, N) = (8, 10).

Table 4 Errors of reduced basis method and iterative process (4.5)

Nr = 2 Nr = 3 Nr = 4

∆tse 0.01 0.001 0.01 0.001 0.01 0.001

erb
100,10,Nr

2.9E-2 2.9E-2 1.4E-3 1.4E-3 2.4E-4 3.9E-5

e
serb,(1)
100,10,Nr

4.8E-4 4.3E-4 5.4E-5 5.3E-5 6.0E-6 6.9E-7

e
serb,(2)
100,10,Nr

1.1E-5 1.1E-5 1.4E-6 1.4E-6 2.4E-7 1.6E-8

e
serb,(3)
100,10,Nr

3.5E-7 3.5E-7 5.6E-8 5.8E-8 7.4E-9 1.3E-9

e
serb,(4)
100,10,Nr

1.3E-8 1.3E-8 1.3E-8 1.3E-8 1.3E-10 1.7E-10

e
serb,(5)
100,10,Nr

2.2E-9 2.2E-9 1.4E-9 1.4E-9 1.1E-11 1.6E-11

of E and N . Moreover, Table 4 shows that the error ‖uk
n,serb − un,N‖ is also independent of

∆tse. Also, Table 4 indicates that when Nr increases, the solution of the reduced basis approxi-
mation converges at an exponential rate. Thus, the reduced basis method provides a technique
how to speed up the iterative process (4.5). By compare with (2.7), we discover that the errors
between uk

n,serb and uN (Tn) (the solution of scheme (3.7) at time t = Tn) is about

‖uk
n,serb − uN (Tn)‖ ≤ ‖uk

n,serb − un,N‖+ ‖un,N − uN (Tn)‖
≈ εk(Nr) + δt2se, (6.3)

where ε(Nr) decreases when Nr increases. This is consistent with the numerical results of
(Nr, k) = (2, 3), (3, 2), (4, 1).

We now choose δtse = δtfe = 0.01, ∆tse = ∆tfe = 0.001, Nr = Ns = 3, (E,N) = (4, 10)
and the mesh (h): (Triangle=6642, Vertices=3491, Nodes=13624). The reduced basis approxi-
mation space W fe

Ns
is defined in (6.1). Numerical results of scheme (4.3) and scheme (4.6), and

iterative process (4.5) and iterative process (4.8) at time t = n∆T are presented in Table 5.
It indicates that iterative process (4.5) and iterative process (4.8) provide fast and very cheap
iterative processes.

Example 6.3. Consider Eq. (3.1) on the domain

Ω = {(x, y)| x2 + y2 ≤ 2},

with µ = 1.0 and T = 10, choose the right-hand side f = 3 cos(1.5t + 1) + 1 and the initial
condition u0 = sin(x2 + y2 − 2). Again we compare the accuracy of the iterative process (4.5)
with the iterative process (4.8).
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Table 5. Errors of reduced basis methods and iterative processes (4.5) and (4.8)

n erb
n,N,3 e

serb,(1)
n,N,3 e

serb,(3)
n,N,3 e

serb,(5)
n,N,3 erb

n,H,3 e
ferb,(1)
n,H,3 e

ferb,(3)
n,H,3 e

ferb,(5)
n,H,3

20 8.1E-4 5.2E-5 1.9E-7 4.1E-10 1.8E-2 4.0E-3 1.6E-4 3.2E-6

40 8.9E-4 5.2E-5 1.5E-7 1.4E-10 1.9E-2 3.9E-3 1.1E-4 3.7E-6

60 8.9E-4 5.3E-5 1.1E-7 1.7E-10 2.0E-2 3.7E-3 5.8E-5 9.9E-6

80 9.8E-4 5.3E-5 5.8E-8 6.2E-10 2.3E-2 3.4E-3 8.8E-5 2.1E-5

100 1.4E-3 5.4E-5 5.6E-8 1.4E-9 2.9E-2 2.6E-3 3.9E-4 5.0E-5
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Fig. 6.2. Spectral element meshes with (a)N = 10, (b)N = 14, and (c)N = 16.

The spectral element meshes with (E, N) = (5, 10), (5, 14) and (5, 16) are plotted in Fig.
6.2. The finite element mesh (H) with number of triangles, number of vertices, number of
nodes (6970, 3586, 14141), (10910, 5581, 22071) and (13452, 6867, 27185) are considered. The
reduced basis approximation spaces W se

Nr
and W fe

Ns
are defined in (6.1) and (6.2), respectively.

We choose ∆T = 0.1, δtse = δtfe = 0.001, ∆tse = ∆tfe = 0.01 and Nr = Ns = 4. The Numerical
testes are presented in Table 6. It indicates that iterative process (4.5) and iterative process
(4.8) provide fast and very cheap iterative processes. It also shows that the error ‖uk

n,serb−un,N‖
is independent of N , and the error ‖uk

n,ferb − un,H‖ is independent of (H) when the mesh (H)
fine enough.

Table 6. Errors of iterative processes (4.5) and (4.8)

N 10 14 16 Vertices 3586 5581 6867

erb
100,N,4 1.0E-2 1.0E-2 1.0E-2 erb

100,H,4 9.0E-3 9.0E-3 9.0E-3

e
serb,(1)
100,N,4 1.2E-3 1.2E-3 1.2E-3 e

ferb,(1)
100,H,4 9.2E-4 9.1E-4 9.2E-4

e
serb,(2)
100,N,4 1.0E-4 1.0E-4 1.0E-4 e

ferb,(2)
100,H,4 4.1E-4 2.7E-4 2.2E-4

e
serb,(3)
100,N,4 1.0E-5 1.0E-5 1.0E-5 e

ferb,(3)
100,H,4 2.9E-4 1.8E-4 1.5E-4

e
serb,(4)
100,N,4 1.6E-6 1.6E-6 1.6E-6 e

ferb,(4)
100,H,4 1.8E-4 1.2E-4 9.7E-5

e
serb,(5)
100,N,4 3.4E-7 3.4E-7 3.4E-7 e

ferb,(5)
100,H,4 1.1E-4 7.2E-5 5.8E-5

7. Conclusions

In this paper, we have presented the reduced basis technique as a coarse solver for the
parareal in time algorithms of nonlinear evolutionary parabolic partial differential equations.
We have demonstrated that a coarse solver based on reduced basis technique provides higher
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accuracy and significant speedup than the multi-grids finite element method and the multi-
degrees finite element method during the parareal in time simulation procedure. The methods
presented in this paper have good efficiency for computing the solutions of the ordinary and
partial differential equations and also provide a way to construct parallel method.

Although we have only considered the nonlinear evolutionary parabolic partial differential
equations, the proposed methods can also be efficiently applied to the Navier-Stokes equations.
On the other hand, the proposed method has also its limitations. The method is efficient
when applied to problems approximated by a continuous Galerkin method; however, for the
discontinuous Galerkin method (see [7,27]), there are still some challenging issues.
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