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Abstract

The generalized successive overrelaxation (GSOR) method was presented and studied

by Bai, Parlett and Wang [Numer. Math. 102(2005), pp.1-38] for solving the augmented

system of linear equations, and the optimal iteration parameters and the corresponding

optimal convergence factor were exactly obtained. In this paper, we further estimate the

contraction and the semi-contraction factors of the GSOR method. The motivation of

the study is that the convergence speed of an iteration method is actually decided by the

contraction factor but not by the spectral radius in finite-step iteration computations. For

the nonsingular augmented linear system, under some restrictions we obtain the contraction

domain of the parameters involved, which guarantees that the contraction factor of the

GSOR method is less than one. For the singular but consistent augmented linear system,

we also obtain the semi-contraction domain of the parameters in a similar fashion. Finally,

we use two numerical examples to verify the theoretical results and the effectiveness of the

GSOR method.
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1. Introduction

We study an iterative solution of the augmented linear system
(

A B

−BT 0

)(
x

y

)
=

(
b

q

)
, or Az = f, (1.1)

where A ∈ Rm×m is symmetric positive definite, and B ∈ Rm×n is a rectangular matrix. Here
m ≥ n, and b ∈ Rm and q ∈ Rn are given vectors, and x ∈ Rm and y ∈ Rn are unknown
vectors, respectively. We use BT to denote the transpose of the matrix B. When B is of full
column-rank, we know that the augmented linear system (1.1) has a unique solution. When
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B is rank-deficient and q ∈ R(BT ) (the range of BT ), the augmented linear system (1.1) has
infinitely many solutions; which is called the singular but consistent augmented linear system.

The augmented linear system (1.1) results from a wide variety of scientific and engineering
applications such as mixed and hybrid finite element approximations of the elliptic problems,
Stokes equations, weighted least-squares problems, computer graphics, electronic networks and
others; see [1, 2]. The augmented linear system is also called as a saddle point problem, or
a Karush-Kuhn-Tucker (KKT) system. Recently, the augmented linear system has attracted
more and more researchers and various kinds of iteration methods have been established and
discussed. For example, the Uzawa-type methods [13, 15], the preconditioned Krylov subspace
methods [7,9,18], the relaxation methods [8,10,14,17], and the Hermitian and skew-Hermitian
splitting methods [3–6, 12], etc. Moreover, the singular augmented linear system has been
specially studied in [11,19].

The oldest and famous iteration method for solving the augmented linear system is the
Uzawa method [1]. Gloub et al. proposed an SOR-like method for solving the linear system
(1.1) in [16]. Based on this idea, Bai et al. established and discussed the GSOR method in [8]
and obtained the optimal parameters and the corresponding optimal convergence factor; see
also [10].

The GSOR method has the following form.

Method 1.1. ([8]) (The GSOR Method).
Let Q ∈ Rn×n be a symmetric and nonsingular matrix. Given initial vectors x(0) ∈ Rm and
y(0) ∈ Rn, and two relaxation factors ω, τ with ω, τ 6= 0. For k = 0, 1, 2, . . . until the iteration
sequence {(x(k)T

, y(k)T

)T } is convergent, compute

{
x(k+1) = (1− ω)x(k) + ωA−1(b−By(k)),
y(k+1) = y(k) + τQ−1(BT x(k+1) + q).

Here, Q is an approximate (preconditioning) matrix of the Schur complement matrix BT A−1B.

We know that an iteration method is convergent when the spectral radius of the corre-
sponding iteration matrix is less than one. As a matter of fact, the convergence speed of an
iteration method is, however, decided by the contraction factor, but not by the spectral radius
in practical computations. Therefore, to estimate the contraction factor of an iteration method
is a practically important task.

In this paper, firstly, we give the iteration matrix of the GSOR method and introduce a
new norm. According to this norm, we propose the concept about the contraction factor of
the GSOR method. Usually, it is difficult to obtain the optimal parameters which minimize
the contraction factor. Hence, we turn to estimate an upper bound of the contraction factor
proposed. The domain makes the upper bound be less than one. Moreover, we extend these
results to the singular but consistent augmented linear system.

The paper is organized as follows. In Section 2, the contraction and semi-contraction factors
of the GSOR method are established, and the convergence and the semi-convergence of the
GSOR method are analyzed. In Section 3, the domains of parameters which guarantee the
contraction and the semi-contraction factors to be less than one are obtained. Numerical
examples are given in Section 4.
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2. Formulas of Contraction and Semi-Contraction Factors

For the GSOR method, we compute z(k+1) from z(k) by

z(k+1) = H(ω, τ)z(k) +M(ω, τ)−1f,

where the iteration matrix H(ω, τ) can be expressed as

H(ω, τ) =

(
(1− ω)I −ωA−1B

(1− ω)τQ−1BT I − ωτQ−1BT A−1B

)
,

M(ω, τ) =

(
1
ω A 0
−BT 1

τ Q

)
,

with I being the identity matrix. Let

N (ω, τ) = M(ω, τ)−A =

(
( 1

ω − 1)A −B

0 1
τ Q

)
.

Then A = M(ω, τ) − N (ω, τ) is a splitting of the matrix A. When the spectral radius of the
iteration matrix H(ω, τ) is less than one, the GSOR iteration method is convergent; see [8].

Assume that the matrix Q is symmetric positive definite. We define

G =

(
A

1
2 0

0 Q
1
2

)

and let H̃(ω, τ) = GH(ω, τ)G−1. Then

H̃(ω, τ) =

(
(1− ω)I −ωB̃

(1− ω)τB̃T I − ωτB̃T B̃

)
,

where B̃ = A−
1
2 BQ− 1

2 .
Now, we introduce a vector norm |||x||| = ||Gx||2 (for all x ∈ Rn). The corresponding matrix

norm is |||X||| = ||GXG−1||2 (for all X ∈ Rn×n); see [5]. At this situation,

|||H(ω, τ)||| = ||H̃(ω, τ)||2.

It is easy to know that the rank of B̃ is the same as that of B. In the following, we define
the contraction and the semi-contraction factors ‖‖H(ω, τ)‖‖ according to two cases.

Case (a) B is of full column-rank. We assume that the matrix B̃ has the following singular
value decomposition:

UB̃V ∗ = Σ =

(
Λ
0

)
,

where U and V are unitary matrices, and V ∗ is the conjugate transpose of V . Denote by

P =

(
U 0
0 V

)
.
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Then from the structure of the matrix P we know that P is also unitary. Hence,

Ĥ(ω, τ) = PH̃(ω, τ)P∗

=

(
(1− ω)I −ωUB̃V ∗

(1− ω)τV B̃T U∗ I − ωτV B̃T B̃V ∗

)

=

(
(1− ω)I −ωΣ

(1− ω)τΣT I − ωτΣT Σ

)

=




(1− ω)I 0 −ωΛ
0 (1− ω)I 0

(1− ω)τΛ 0 I − ωτΛ2


 .

It follows that the matrix Ĥ(ω, τ) is unitarily similar to the matrix H̃(ω, τ), and

‖ H̃(ω, τ) ‖2=‖ Ĥ(ω, τ) ‖2 .

Now, we define the contraction factor ‖‖H(ω, τ)‖‖ of the GSOR method as

‖‖H(ω, τ)‖‖ = |||H(ω, τ)||| =‖ Ĥ(ω, τ) ‖2 .

Therefore, when ‖‖H(ω, τ)‖‖ < 1, the GSOR iteration method is convergent.
Case (b) B is rank-deficient. Let rank(B) = r. The singular value decomposition of the

matrix B̃ has the form

UB̃V ∗ = Σ =

(
Λ 0
0 0

)
,

where U and V are unitary matrices, and Λ is a r-by-r diagonal matrix. Define

P =

(
U 0
0 V

)
.

Then

Ĥ(ω, τ) = PH̃(ω, τ)P∗

=

(
(1− ω)I −ωUB̃V ∗

(1− ω)τV B̃T U∗ I − ωτV B̃T B̃V ∗

)

=

(
(1− ω)I −ωΣ

(1− ω)τΣT I − ωτΣT Σ

)

=




(1− ω)I 0 −ωΛ 0
0 (1− ω)I 0 0

(1− ω)τΛ 0 I − ωτΛ2 0
0 0 0 I




:=

(
H̆(ω, τ) 0

0 I

)
.

For this case, we define the semi-contraction factor ‖‖H(ω, τ)‖‖ of the GSOR method as

‖‖H(ω, τ)‖‖ =‖ H̆(ω, τ) ‖2 .
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Therefore, when ‖‖H(ω, τ)‖‖ < 1, the GSOR iteration method is semi-convergent.
According to the above analyses, we may need to solve the minimization problem min

ω,τ
‖‖H(ω,

τ)‖‖ to obtain the optimal iteration parameters ω and τ . These minimization problems can be
expressed as

min
ω,τ

‖ Ĥ(ω, τ) ‖2

and

min
ω,τ

‖ H̆(ω, τ) ‖2 .

In fact, solving these two problems is generally very difficult and even impossible.
In next section, we will derive upper bounds for ‖ Ĥ(ω, τ) ‖2 and ‖ H̆(ω, τ) ‖2. Further, the

ranges of parameters which make upper bounds be less than one are obtained.

3. Descriptions of Contraction Domains

In this section, we first compute the contraction and the semi-contraction factors, and then
get the corresponding upper bounds. Firstly, to estimate an upper bound for the contraction
factor ‖‖H(ω, τ)‖‖ of the GSOR method. We rewrite the matrix Ĥ(ω, τ) as

Ĥ(ω, τ) =




(1− ω)I 0 −ωΛ
0 (1− ω)I 0

−ωΛ 0 I − ωτΛ2


 +




0 0 0
0 0 0

(ω + τ − ωτ)Λ 0 0




:= W1(ω, τ) +W2(ω, τ).

Then it holds that

‖‖H(ω, τ)‖‖ = |||H(ω, τ)||| =‖ H̃(ω, τ) ‖2=‖ Ĥ(ω, τ) ‖2
≤‖ W1(ω, τ) ‖2 + ‖ W2(ω, τ) ‖2
= max{|1− ω|, |λ1|, |λ2|, . . . , |λn|}+ |ω + τ − ωτ |√µmax, (3.1)

where

λj =
1
2

[
2− ω − ωτµj ±

√
ω2(τµj − 1)2 + 4ω2µj

]
, j = 1, . . . , n.

Here, µj(j = 1, 2, . . . , n) are the eigenvalues of the matrix Q−1BT A−1B. Denote by µmax

and µmin the largest and the smallest eigenvalues of the matrix Q−1BT A−1B, respectively.
Because B̃T B̃ is similar to Q−1BT A−1B, we know that B̃T B̃ and Q−1BT A−1B have the
same eigenvalues. Hence, to guarantee the convergence of the GSOR method, we need to have
‖‖H(ω, τ)‖‖ < 1. Now, the following theorem gives such a condition.

Theorem 3.1. Let A ∈ Rm×m and Q ∈ Rn×n be symmetric positive definite, and B ∈ Rm×n

be of full column-rank. Denote the largest and the smallest eigenvalues of matrix Q−1BT A−1B

by µmax and µmin, respectively. Then the contraction factor ‖‖H(ω, τ)‖‖ of the GSOR method
is less than one, provided that
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(a) the parameters ω and τ satisfy 2− ω − ωτµmin ≤ 0 and

ω
√

(τµmax − 1)2 + 4µmax + 2|ω + τ − ωτ |√µmax < 4− ω − ωτµmax;

(b) the parameters ω and τ satisfy 2− ω − ωτµmax ≥ 0 and
{

ω
√

(τµmin − 1)2 + 4µmin + 2|ω + τ − ωτ |√µmax < ω + ωτµmin,

ω
√

(τµmax − 1)2 + 4µmax + 2|ω + τ − ωτ |√µmax < ω + ωτµmax;

(c) the parameters ω and τ satisfy 2− ω − ωτµmin > 0, 2− ω − ωτµmax < 0, and
{

ω
√

(τµmax − 1)2 + 4µmax + 2|ω + τ − ωτ |√µmax < 4− ω − ωτµmax,

ω
√

(τµmin − 1)2 + 4µmin + 2|ω + τ − ωτ |√µmax < ω + ωτµmin.

Proof. From formula (3), we know that the parameters ω and τ satisfy

|1− ω| < 1 and |ω + τ − ωτ |√µmax < 1. (3.2)

By assuming τ > 0, µmin > 0.125 and µmax > 1, from (3.2) we see that the parameters must
satisfy





0 < ω < 1,
−1− ω

√
µmax√

µmax − ω
√

µmax
< τ <

1− ω
√

µmax√
µmax − ω

√
µmax

< 1
(3.3)

or




1 < ω < 2,
−1− ω

√
µmax√

µmax − ω
√

µmax
> τ >

1− ω
√

µmax√
µmax − ω

√
µmax

> 1.
(3.4)

Let

f(ω, τ, µ) =
1
2

(
|2− ω − ωτµ|+ ω

√
(τµ− 1)2 + 4µ

)
, µ ∈ [µmin, µmax].

Then

f(ω, τ, µ) ≥ 1
2

[|2− ω − ωτµ|+ |ωτµ− ω|]

≥ 1
2
|2− ω − ωτµ + ωτµ− ω| = |1− ω|,

Which gives that

‖‖H(ω, τ)‖‖ ≤ max
µ∈[µmin,µmax]

{f(ω, τ, µ)}+ |ω + τ − ωτ |√µmax

:= g(ω, τ).

After direct calculations, we obtain

f(ω, τ, µ) =

{
1
2 [2− ω − ωτµ + ω

√
(τµ− 1)2 + 4µ], for 2− ω − ωτµ ≥ 0,

1
2

[
−(2− ω − ωτµ) + ω

√
(τµ− 1)2 + 4µ

]
, for 2− ω − ωτµ < 0.
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Consequently, we have

∂f(ω, τ, µ)
∂µ

=





−ωτ
2

[
1− (τµ+ 2

τ−1)√
(τµ−1)2+4µ

]
, for 2− ω − ωτµ > 0,

ωτ
2

[
1 + (τµ+ 2

τ−1)√
(τµ−1)2+4µ

]
, for 2− ω − ωτµ < 0

and
(
τµ +

2
τ
− 1

)2

− (τµ− 1)2 − 4µ =
4
τ2

(1− τ).

And under the condition (3.3), it holds that

∂f(ω, τ, µ)
∂µ

{
> 0, for 2− ω − ωτµ > 0,

> 0, for 2− ω − ωτµ < 0.

Hence, we get

g(ω, τ) = f(ω, τ, µmax) + |ω + τ − ωτ |√µmax.

Under the condition (3.4), it holds that

∂f(ω, τ, µ)
∂µ

{
< 0, for 2− ω − ωτµ > 0,

> 0, for 2− ω − ωτµ < 0.

Hence, we get

g(ω, τ) = max{f(ω, τ, µmin), f(ω, τ, µmax)}+ |ω + τ − ωτ |√µmax.

Now, we define the functions g1(ω, τ) and g2(ω, τ) by

g1(ω, τ) = 1
2

[
|2− ω − ωτµmin|+ ω

√
(τµmin − 1)2 + 4µmin

]

+|ω + τ − ωτ |√µmax,

and

g2(ω, τ) = 1
2

[
|2− ω − ωτµmax|+ ω

√
(τµmax − 1)2 + 4µmax

]

+|ω + τ − ωτ |√µmax.

Easily, it holds that

g(ω, τ) = max{g1(ω, τ), g2(ω, τ)}.

Now we discuss the contraction conditions on the parameters ω and τ .
(a) Assume 2− ω − ωτµmin ≤ 0. For this case, it holds that

2− ω − ωτµmax ≤ 0.

Consequently,

g1(ω, τ) = 1
2

[
−(2− ω − ωτµmin) + ω

√
(τµmin − 1)2 + 4µmin

]

+|ω + τ − ωτ |√µmax



908 F. CHEN, Y.L. JIANG AND B. ZHENG

and

g2(ω, τ) = 1
2

[
−(2− ω − ωτµmax) + ω

√
(τµmax − 1)2 + 4µmax

]

+|ω + τ − ωτ |√µmax.

Let h(τ, µ) = (τµ− 1)2 + 4µ. Because

∂h(τ, µ)
∂µ

= 2τ(τµ− 1) + 4 = 2τ2µ− 2τ + 4 > 0, for µ ∈ [µmin, µmax],

we see that the function h(τ, µ) is increasing with respect to µ when µ ∈ [µmin, µmax]. Further,
it holds that

h(τ, µmax) > h(τ, µmin) > 0.

Nothing that

g1(ω, τ)− g2(ω, τ) =
1
2
τω(µmin − µmax) +

1
2
ω[

√
h(τ, µmin)−

√
h(τ, µmax)] < 0,

we obtain g(ω, τ) = g2(ω, τ). Therefore, g(ω, τ) < 1 if

ω
√

(τµmax − 1)2 + 4µmax + 2|ω + τ − ωτ |√µmax < 4− ω − ωτµmax.

(b) Assume 2− ω − ωτµmax ≥ 0. For this case, it holds that

2− ω − ωτµmin ≥ 0.

Consequently,

g1(ω, τ) = 1
2

[
(2− ω − ωτµmin) + ω

√
(τµmin − 1)2 + 4µmin

]

+|ω + τ − ωτ |√µmax

and

g2(ω, τ) = 1
2

[
(2− ω − ωτµmax) + ω

√
(τµmax − 1)2 + 4µmax

]

+|ω + τ − ωτ |√µmax.

By direct calculations we get

g1(ω, τ)− g2(ω, τ) =
1
2
ω

[
τ(µmax − µmin) +

√
h(τ, µmin)−

√
h(τ, µmax)

]
.

Note that
[
τ(µmax − µmin) +

√
h(τ, µmin)

]2

−
[√

h(τ, µmax)
]2

= 2(µmax − µmin)
[
τ
√

h(τ, µmin)− (τ2µmin − τ + 2)
]

and

τ2h(τ, µmin)− (τ2µmin − τ + 2)2 = 4(τ − 1).
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Therefore, g(ω, τ) < 1 if
{

ω
√

(τµmin − 1)2 + 4µmin + 2|ω + τ − ωτ |√µmax < ω + ωτµmin,

ω
√

(τµmax − 1)2 + 4µmax + 2|ω + τ − ωτ |√µmax < ω + ωτµmax.

(c) Assume 2− ω − ωτµmin > 0 and 2− ω − ωτµmax < 0. For this case, it holds that

g1(ω, τ) = 1
2

[
(2− ω − ωτµmin) + ω

√
(τµmin − 1)2 + 4µmin

]

+|ω + τ − ωτ |√µmax

and

g2(ω, τ) = 1
2

[
−(2− ω − ωτµmax) + ω

√
(τµmax − 1)2 + 4µmax

]

+|ω + τ − ωτ |√µmax.

It follows that

g1(ω, τ)− g2(ω, τ)

= (2− ω)− 1
2τω(µmax + µmin) + 1

2ω
[√

h(τ, µmin)−
√

h(τ, µmax)
]

= (2− ω) + 1
2ω

√
h(τ, µmin)− 1

2τω(µmax + µmin)− 1
2ω

√
h(τ, µmax).

Therefore, g(ω, τ) < 1 if g1(ω, τ) < 1 and g2(ω, τ) < 1.
The above analysis directly leads to the results in this theorem. ¤

According to Theorem 3.1, similar to the analysis in [14,19], we can obtain semi-contraction
factor of the GSOR method for the singular but consistent augmented linear system.

Theorem 3.2. Let A ∈ Rm×m and Q ∈ Rn×n be symmetric positive definite, and B ∈ Rm×n

be rank deficient. Denote the nonzero largest and smallest eigenvalues of matrix Q−1BT A−1B

by µmax and µmin, respectively. Then the semi-contraction factor of the GSOR method is less
than one under the same conditions in Theorem 3.1.

4. Numerical Experiments

In this section, we use two examples to show the correctness of the estimates about the
contraction and semi-contraction factors. In actual computations, our examples are run in
MATLAB with machine precision 10−16. The right-hand-side vector is chosen such that the
exact solution of the augment linear system is (1, 1, . . . , 1)T ∈ Rm+n.

Example 4.1. ([6]) Consider the augmented linear system (1.1) with its coefficient matrix
being of the matrix blocks

A =

(
I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

)
∈ R2l2×2l2 (4.1)

and

B =

(
I ⊗ F

F ⊗ I

)
∈ R2l2×l2 , (4.2)
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where

T =
1
h2
· tridiag(−1, 2,−1) ∈ Rl×l and F =

1
h
· tridiag(−1, 1, 0) ∈ Rl×l, (4.3)

with ⊗ being the Kronecker product symbol and h = 1
l+1 the discretization meshsize.

For this example, m = 2l2 and n = l2. Hence, the total number of variables in the augmented
linear system (1.1) is m+n = 3l2. The choices of the matrix Q, an approximation to the Schur
complement BT A−1B, are listed in Table 4.1, where λmin and λmax are used to denote the
smallest and the largest eigenvalues of the matrix A, respectively.

Table 4.1: Choices of the matrix Q for Example 4

Case No. Matrix Q Description

I 1
v
BT B v =

√
λminλmax

II tridiag(BT Â−1B) Â=tridiag(A)

III tridiag(BT A−1B)

Table 4.2: Optimal parameters versus contraction factor for Example 4

m 128 512 1152 2048

n 64 256 576 1024

m + n 192 768 1728 3072

ω∗ 0.31 0.19 0.14 0.11

Case I τ∗ 0.40 0.23 0.16 0.12

‖‖H‖‖∗ 0.98732 0.99777 0.99924 0.99967

ω∗ 0.63 0.63 0.63 0.62

Case II τ∗ 1.13 1.10 1.08 1.08

‖‖H‖‖∗ 0.91699 0.95480 0.96885 0.97614

ω∗ 0.68 0.69 0.71 0.70

Case III τ∗ 1.32 1.41 1.42 1.46

‖‖H‖‖∗ 0.88841 0.93172 0.95040 0.96077

In this section, we use ω∗ and τ∗ to denote the optimal parameters in the computations. The
optimal parameters ω∗ and τ∗, and the corresponding contraction factor ‖‖H(ω∗, τ∗)‖‖(denoted
as ‖‖H‖|‖∗ for short) of the GSOR method for Examples 4 and 4 are listed in Tables 4.2 and
4.4, respectively, for different problem sizes (m,n).

In Table 4.2, for the same choices of the matrix Q, when m and n increase, the corresponding
‖‖H‖‖∗ also increase. According to the matrix Q in Table 4.1, Case III is the best choice for
the GSOR method in our test for Example 4.

Example 4.2. ([19]) Consider the augmented linear system (1.1) in which the matrix B is
rank deficient, with its coefficient matrix of the matrix blocks

A =

(
I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

)
∈ R2l2×2l2

and

B =
(

B̂ b1 b2

)
,
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where T = 1h−2 · tridiag(−1, 2,−1) ∈ Rl×l, B̂ is of the form (4.2), and

b1 = B̂

(
e

0

)
, b2 = B̂

(
0
e

)
, e = (1, 1, . . . , 1)T ∈ Rl2/2,

with F = 1h−1 · tridiag(−1, 1, 0) ∈ Rl×l.

For Example 4, m = 2l2 and n = l2 + 2. Hence, the total number of variables in the
augmented linear system (1.1) is m+n = 3l2 +2. In fact, Example 4 is a technical modification
of Example 4. In Table 4.3, we list the four cases of the matrix Q, where Diag(M,N) denotes
the block diagonal matrix

Diag(M,N) =

(
M 0
0 N

)
.

We list the results of Example 4 in Table 4.4. For the same choices of the matrix Q, when
m and n are increasing, the corresponding ‖‖H‖‖∗ are also increasing. According to the matrix
Q in Table 4.3, Case IV is the best choice for the GSOR method in our test.

Table 4.3: Choices of the matrix Q for Example 4, with Q̂ = Diag(B̂T Â−1B̂, B̃T B̃)

Case No. Matrix Q Description

I Q̂ Â=tridiag(A)

II Q̂ Â=diag(A)

III tridiag(Q̂) Â=tridiag(A)

IV tridiag(Q̂) Â = A

Table 4.4: Optimal parameters versus semi-contraction factor for Example 4

m 128 512 1152 2048

n 64 256 576 1024

m + n 192 768 1728 3072

ω∗ 0.21 0.07 0.03 0.02

Case I τ∗ 0.24 0.07 0.03 0.02

‖‖H‖‖∗ 0.98544 0.99876 0.99977 0.99990

ω∗ 0.13 0.04 0.02 0.01

Case II τ∗ 0.13 0.04 0.02 0.01

‖‖H‖‖∗ 0.99567 0.99960 0.99990 0.99997

ω∗ 0.63 0.62 0.63 0.62

Case III τ∗ 1.12 1.11 1.08 1.08

‖‖H‖‖∗ 0.91419 0.95361 0.96823 0.97577

ω∗ 0.68 0.69 0.71 0.70

Case IV τ∗ 1.31 1.41 1.42 1.46

‖‖H‖‖∗ 0.88477 0.93005 0.94943 0.96017
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