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Abstract

In this paper we give proof of three binomial coefficient inequalities. These inequalities

are key ingredients in [Wen and Jin, J. Comput. Math. 26, (2008), 1-22] to establish

the L1-error estimates for the upwind difference scheme to the linear advection equations

with a piecewise constant wave speed and a general interface condition, which were further

used to establish the L1-error estimates for a Hamiltonian-preserving scheme developed in

[Jin and Wen, Commun. Math. Sci. 3, (2005), 285-315] to the Liouville equation with

piecewise constant potentials [Wen and Jin, SIAM J. Numer. Anal. 46, (2008), 2688-2714].
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1. Introduction

In this paper we give proof of the following three binomial coefficient inequalities.

Theorem 1.1.

n∑

l=0

Γn,l(λ)|n− nλ− l| ≤
√

2
e

√
λ(1− λ)(n + 1), ∀0 < λ < 1, n ∈ N, (1.1)

where
Γn,l(λ) = Cl

nλn−l(1− λ)l, (1.2)

and Cl
n denote binomial coefficients.

Theorem 1.2. Let 0 < λ−, λ+ < 1, n ∈ N, J ∈ Z, with − nλ− < J < 0, K = λ+

λ− (J + nλ−).
Define

T1 = ν(n, n + J + 1, λ−)λ−, if [K]− = 0, (1.3)

T1 = ν(n, n + J + 1, λ−)λ− +
n−1∑

l=n+J+1−[K]−

min(n−l,−J)∑

j=max(n+1−l−[K]−,1)

l∑

k=0

Λn
j,k,l

+ ν(n, n + 1− [K]−, λ+)λ+, if [K]− > 0, (1.4)
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where [x]− denotes the largest integer no more than x, and

ν(n, p, z) =
n∑

l=p

Γn,l(z)z−1(l − p + 1), 0 ≤ p ≤ n, 0 < z < 1, (1.5)

Λn
i,j,k = Ck

j+k−1C
l−k
n−j−k(λ+)n−l−j+1(1− λ+)l−k(λ−)j−1(1− λ−)k. (1.6)

Then
T1 ≤ ν(n, n− [nλm]+ + 1, λm)λM , (1.7)

where [x]+ denotes the smallest integer no less than x, λm = min{λ−, λ+}, and λM = max
{λ−, λ+}.

Theorem 1.3. Let 0 < λ−, λ+ < 1, n ∈ N, J ∈ Z, with − nλ− < J < 0, K = λ+

λ− (J + nλ−).
Define

T2 =
n+J−[K]+−1∑

l=0

n−l−[K]+∑

j=1−J

l∑

k=0

Λn
i,j,k. (1.8)

Then
T2 ≤ η(n, n− [nλm]− − 1, λm)λM , (1.9)

where

η(n, p, z) =
p∑

l=0

Γl
n(z)z−1(p + 1− l), 0 ≤ p ≤ n− 1, 0 < z < 1. (1.10)

These binomial coefficient inequalities have been used in [6] to derive the L1-error estimates
for the upwind difference scheme to the linear advection equation

∂u

∂t
+ c

∂u

∂x
= 0, t > 0, x ∈ R, (1.11)

u|t=0 = u0(x), (1.12)

with a step function wave speed

c(x) =

{
c− x < 0,

c+ x > 0,
(1.13)

where we consider c(x) has definite sign.
Eqs. (1.11)-(1.13) is the simplest case of a hyperbolic equation with singular (discontinuous

or measure-valued) coefficients. In [6], we proved that given a general interface condition

u(0+, t) = ρu(0−, t), ρ > 0, (1.14)

the upwind difference scheme with the immersed interface condition converges in L1-norm to
Eqs. (1.11)-(1.13) with the corresponding interface condition, and derived the half-order L1-
error bounds with explicit coefficients for the numerical solutions. Due to the linearities of both
Eq. (1.11) and the upwind difference scheme, the error estimates for general BV initial data can
be derived based on error estimates for some Riemann initial data. This strategy is specifically
suitable for linear schemes and linear equations and has been used in [5] to estimate lower error
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bounds for monotone difference schemes to the linear advection equation with a constant wave
speed.

For Eqs. (1.11)-(1.13) with Riemann initial data, the L1-error (upper bound) expressions
for the immersed interface upwind scheme are binomial coefficient expressions. Therefore,
estimating their upper bounds is equivalent to proving some inequalities on binomial coefficients,
which are Theorems 1.1, 1.2 and 1.3 (Theorems 3.3, 3.4 and 3.5 in [6]). Thus these binomial
coefficient inequalities are key ingredients in establishing the L1-error estimates in [6] for the
immersed interface upwind scheme to the linear advection equations (1.11)-(1.12) with a step
function wave speed (1.13) and general interface conditions (1.14).

More recently, we have applied the L1-error estimates established in [6] to study the L1-error
estimates for a Hamiltonian-preserving scheme developed in [1] to the Liouville equation with
a piecewise constant potential [8]. The related work on the L1-stability of the Hamiltonian-
preserving scheme and the L1-error estimates for the Hamiltonian-preserving scheme with per-
turbed initial data was studied in [7]. The Liouville equation with piecewise constant potentials
is a linear hyperbolic equation with a measure-valued coefficient. The Hamiltonian-preserving
scheme is designed by incorporating the particle behavior at the potential barrier into the nu-
merical fluxes, see, e.g., [1–4]. By using the results in [6], we established in [8] the half-order
L1-error bounds with explicit coefficients for the Hamiltonian-preserving scheme with Dirichlet
incoming boundary conditions and for a class of bounded initial data.

In Sections 2-4 we will prove Theorems 1.1-1.3 respectively. We conclude the paper in
Section 5.

2. Proof of Theorem 1.1

We will split the binomial coefficient expression at the left hand side of (1.1) into two
equivalent parts, for which the upper bound estimates are given.

Proof. We define

σ(n,m) =
[m]−∑

l=0

Γn,l

(
1− m

n

)
(m− l), 0 < m < n, n ∈ N, m ∈ R. (2.1)

Then we can show that

n∑

l=0

Γn,l(λ)|n− nλ− l| = σ(n, n− nλ) + σ(n, nλ), 0 < λ < 1, (2.2)

σ(n,m) =
{

[m]+
(
1− m

n

)
Γn,[m]+

(
1− m

n

)
,

[n−m]+ m
n Γn,[m]−

(
1− m

n

)
,

(2.3)

and

σ(n,m) ≤
√

1
2e

√
[m]+

(
1− m

n

)
, (2.4)

σ(n,m) ≤
√

1
2e

√
[n−m]+

m

n
. (2.5)

The result (2.2) can be verified directly. For (2.3), one has
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σ(n,m) =
[m]−∑

l=0

Γn,l

(
1− m

n

)
m−

[m]−∑

l=1

Γn,l

(
1− m

n

)
l

=
[m]−∑

l=0

Γn−1,l

(
1− m

n

)(
1− m

n

)
m−

[m]−∑

l=1

Γn−1,l−1

(
1− m

n

) m

n
(n−m)

= [n−m]+Γn,[m]−

(
1− m

n

) m

n
.

One can then check the two parts of the right-hand side of (2.3) are equivalent. To prove
(2.4)-(2.5), define

αm,n(x) =
√

[m]+
(
1− x

n

)
Γn,[m]+

(
1− x

n

)
, x ∈ (

[m]+ − 1, [m]+
]
. (2.6)

Using (2.3) one has

σ(n,m)√
[m]+

(
1− m

n

) = αm,n(m)

≤ αm,n

(
n

n + 1
2

[m]+
)

≤ 1√
2

(
1− 1

2
(
n + 1

2

)
)n+ 1

2

≤
√

1
2e

,

which gives (2.4). To prove (2.5), observe that (2.3) implies σ(n,m) = σ(n, n−m). Applying
(2.4) to σ(n, n−m) gives (2.5).

By (2.3)-(2.5), for 0 < λ < 1, n ∈ N,

σ(n, n− nλ) = σ(n, nλ)

≤
√

1
2e

√
min{[λn]+(1− λ), [(1− λ)n]+λ}. (2.7)

Then applying (2.2) gives

n∑

l=0

Γn,l(λ)|n− nλ− l|

= σ(n, n− nλ) + σ(n, nλ)

≤
√

2
e

√
min{[λn]+(1− λ), [(1− λ)n]+λ}

≤
√

2
e

√
λ(1− λ)(n + 1). (2.8)

This completes the proof of this theorem. ¤
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3. Proof of Theorem 1.2

Define

θ(n, p, q) =
n∑

l=n−p+q

Γn,l(λ−)(l − n + p− q + 1) +
n∑

l=p+1

Γn,l(λ+)(l − p)

+
n−1∑

l=q

min(n−l,p−q+1)∑

j=max(p+1−l,1)

l∑

k=0

Λn
j,k,l, 0 ≤ q ≤ p ≤ n− 1, (3.1)

θ(n, p, q) =
n∑

l=p+1

Γn,l(λ+)(l − p), for q ≥ p + 1, 0 ≤ p ≤ n− 1, (3.2)

θ(n, p, q) =
n∑

l=q

Γn,l(λ−)(l − q + 1), for 0 ≤ q ≤ n, p = n, (3.3)

θ(n, p, q) = 0, for q ≥ n + 1, p = n. (3.4)

From the definition (1.3)-(1.4), one can check that

T1 = θ(n, n− [K]−, n + J + 1− [K]−). (3.5)

We will focus on upper bound estimates for θ(n, p, q) when 0 < λ− 6= λ+ < 1 and

(n, p, q) ∈ Ω1 ≡
{
(n, p, q) ∈ N× Z2|0 ≤ p ≤ n, 0 ≤ q ≤ p + 1

}
, (3.6)

and consequently prove Theorem 1.2. We use the recurrence relations for θ(n, p, q) when (n, p, q)
are restricted in Ω1. We establish the upper bound estimates for θ(n, p, q) when (n, p, q) are at
boundaries of Ω1 where the recurrence relations do not apply. Together with these results we
can prove upper bound estimates for θ(n, p, q) in Ω1. Finally we give the proof of Theorem 1.2.

3.1. Some lemmas

Lemma 3.1. For ν defined by (1.5), one has

ν(n, q, z2) ≤ ν(n, q0, z1), for 0 < z1 < z2 < 1, (3.7)

where
q0 = [q + (n− q + 1) (1− z1/z2)]

−
. (3.8)

Proof. Define m̂ = [(n− q + 1)z1/z2]
+. Then q0 = n − m̂ + 1. Using the monotonically

decreasing property of ν(n, q0, z) with respect to z gives

ν(n, q0, z1) ≥ ν(n, q0, m̂z2/(n− q + 1)). (3.9)

We will use the following inequality

ν(n, n−m + 1, λm/(m + 1)) ≥ ν(n, n−m, λ), 1 ≤ m ≤ n, 0 < λ < 1 (3.10)



Some Related Binomial Coefficient Inequalities 479

which is proved as follows

ν(n, n−m + 1, λm/(m + 1))λ

=
m + 1

m

n∑

l=n−m+1

Cl
n

(
λ

m

m + 1

)n−l (
(1− λ) +

1
m + 1

λ

)l

(l − n + m)

=
m + 1

m

n∑

l=n−m+1

Cl
n

(
λ

m

m + 1

)n−l l∑

k=0

Ck
l (1− λ)k

(
1

m + 1
λ

)l−k

(l − n + m)

=
m + 1

m

n∑

k=0

n∑

l=max(n−m+1,k)

Cl
nCk

l λn−k(1− λ)k

(
m

m + 1

)n−l ( 1
m + 1

)l−k

(l − n + m)

≥ m + 1
m

n∑

k=n−m

n∑

l=k

Cl
nCk

l λn−k(1− λ)k

(
m

m + 1

)n−l ( 1
m + 1

)l−k

(l − n + m)

=
m + 1

m

n∑

k=n−m

Γn,k(λ)
n∑

l=k

Γn−k,l−k

(
m

m + 1

)
(l − n + m)

=
n∑

k=n−m

Γn,k(λ)

[
(m + 1)

n∑

l=k

Γn−k,l−k

(
m

m + 1

)
−

n∑

l=k

Γn−k,l−k

(
m

m + 1

)
m + 1

m
(n− l)

]

=
n∑

k=n−m

Γn,k(λ)

[
m + 1− (n− k)

n−1∑

l=k

Γn−k−1,l−k

(
m

m + 1

)]

=
n∑

k=n−m

Γn,k(λ) (k − n + m + 1) .

Therefore, by repeatedly using (3.10) one obtains

ν(n, n− m̂ + 1, m̂z2/(n− q + 1)) ≥ ν(n, n− (n− q + 1) + 1, z2). (3.11)

Combining (3.9) and (3.11) gives (3.7). ¤

Lemma 3.2. For (n, p, q) ∈ Ω1, θ(n, p, q) defined in (3.1)-(3.4) satisfies

θ(n, p, q) ≤
{

ν
(
n,Φn,1

p,q , λ−
)
λ+, 0 < λ− < λ+ < 1,

ν
(
n,Φ2

p,q, λ
+
)
λ−, 0 < λ+ < λ− < 1,

(3.12)

where

Φn,1
p,q =

[
q + (n− p)

(
1− λ−/λ+

)]−
, Φ2

p,q =
[
q + (p + 1− q)

(
1− λ+/λ−

)]−
. (3.13)

Proof. We give proof for the first part of (3.12). The second part can be proved in the same
spirit. Firstly we check that θ(n, p, q) defined in (3.1) and (3.3) satisfies

θ (n, p, 0) ≤ ν
(
n,

[
(n− p)

(
1− λ−/λ+

)]−
, λ−

)
λ+, for 0 < λ− < λ+ < 1. (3.14)

One can check the following equality

θ (n, p, 0) =
n∑

l=0

Γn,l(λ−)(l + 1)− (
λ+/λ− − 1

) n−p−2∑

l=0

Γn,l(λ−)(n− p− 1− l). (3.15)
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Denote m̂ = [(n− p) (1− λ−/λ+)]−. From (3.15) one can check (3.14) as follows

n∑

l=m̂

Γn,l(λ−) (l − m̂ + 1) λ+/λ− − θ (n, p, 0)

≥
n∑

l=m̂

Γn,l(λ−) (l − m̂ + 1) λ+/λ− −
n∑

l=0

Γn,l(λ−) (l + 1) λ+/λ−

+
(
λ+/λ− − 1

) n∑

l=0

Γn,l(λ−)(l + 1) +
(
λ+/λ− − 1

) n∑

l=0

Γn,l(λ−)(n− p− 1− l)

≥ (
λ+/λ− − 1

)
(n− p)− m̂λ+/λ−

= λ+/λ−
[
(n− p)

(
1− λ−/λ+

)− m̂
] ≥ 0.

The first part of (3.12) is equivalent to

ν
(
n, Φn,1

p,q , λ−
)
λ+ − θ(n, p, q) ≡ θ−(n, p, q) ≥ 0, if 0 < λ− < λ+ < 1. (3.16)

From (3.14) and Lemma 3.1 one has

θ− (n, p, 0) ≥ 0, θ−(n, p, p + 1) ≥ 0, if 0 < λ− < λ+ < 1, n ∈ N. (3.17)

We will prove (3.16) by induction. First, (3.16) holds for n = 1. Now suppose (3.16) holds for
n, we will prove it is also true for n + 1. It can be checked that θ(n, p, q) defined in (3.1)-(3.4)
satisfies the following recurrence relation for 1 ≤ q ≤ p + 1, 0 ≤ p ≤ n

θ(n + 1, p + 1, q) = λ−θ(n, p, q) + (1− λ−)θ(n, p, q − 1). (3.18)

From (3.18) one can deduce

θ−(n + 1, p + 1, q) = λ−θ−(n, p, q) + (1− λ−)θ−(n, p, q − 1). (3.19)

From (3.19), applying the assumption that (3.16) holds for n, one has

θ−(n + 1, p + 1, q) ≥ 0, if 0 < λ− < λ+ < 1, 1 ≤ q ≤ p + 1, 0 ≤ p ≤ n. (3.20)

Combining (3.20) and (3.17) implies that (3.16) holds for n + 1. ¤

3.2. Proof of Theorem 1.2

Proof. From the relation (3.5) and applying the first part of Lemma 3.2, for 0 < λ− < λ+ < 1
one has

T1 ≤ ν(n, q1, λ−)λ+, (3.21)

where

q1 =
[
n + J + 1− [K]− + [K]−

(
1− λ−

λ+

)]−
≥ n− [nλ−]+ + 1. (3.22)

Thus
T1 ≤ ν

(
n, n− [

nλ−
]+ + 1, λ−

)
λ+, if 0 < λ− < λ+ < 1. (3.23)
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From the relation (3.5) and applying the second part of Lemma 3.2, for 0 < λ+ < λ− < 1 one
has

T1 ≤ ν(n, q2, λ+)λ−, (3.24)

where

q2 =
[
n + J + 1− [K]− − J

(
1− λ+

λ−

)]−
≥ n− [nλ+]+ + 1. (3.25)

Thus
T1 ≤ ν

(
n, n− [

nλ+
]+ + 1, λ+

)
λ−, if 0 < λ+ < λ− < 1. (3.26)

Combining (3.23), (3.26) and checking that (1.7) holds for 0 < λ− = λ+ < 1 complete the proof
of Theorem 1.2. ¤

4. Proof of Theorem 1.3

Define

χ(n, p, q) =
p∑

l=0

p+1+q−l∑

j=1+q

l∑

k=0

Λn
j,k,l, 0 ≤ p, q, p + q ≤ n− 1. (4.1)

From the definition (1.8), one can check that

T2 = χ(n, n + J − [K]+ − 1,−J). (4.2)

The idea of the proof is similar to that of Theorem 1.2. More precisely, we will focus on upper
bound estimates for χ(n, p, q) when 0 < λ− 6= λ+ < 1 and

(n, p, q) ∈ Ω2 ≡
{
(n, p, q) ∈ N× Z2|0 ≤ p, q, p + q ≤ n− 1

}
, (4.3)

using the recurrence relations for χ(n, p, q) when (n, p, q) are restricted in Ω2 and upper bound
estimates for χ(n, p, q) when (n, p, q) are at boundaries of Ω2 where the recurrence relations do
not apply. Based on these estimates we then give the proof of Theorem 1.3.

Proof. We will use the following estimates. For (n, p, q) ∈ Ω2, χ(n, p, q) defined in (4.1)
satisfies

χ(n, p, q) ≤
{

η
(
n,Ψn,1

p,q , λ−
)
λ+, 0 < λ− < λ+ < 1,

η
(
n,Ψ2

p,q, λ
+
)
λ−, 0 < λ+ < λ− < 1,

(4.4)

where

Ψn,1
p,q =

[
p + (n− 1− p− q)

(
1− λ−/λ+

)]+
, Ψ2

p,q =
[
p + q

(
1− λ+/λ−

)]+
. (4.5)

We check the first part of (4.4) which is equivalent to

η
(
n,Ψn,1

p,q , λ−
)
λ+ − χ(n, p, q) ≡ χ−(n, p, q) ≥ 0, if 0 < λ− < λ+ < 1, (4.6)

and omit the proof for the second part being in similar spirit. Firstly we check that

χ− (n, 0, q) ≥ 0, χ−(n, p, 0) ≥ 0, if 0 < λ− < λ+ < 1, n ∈ N. (4.7)

In a similar spirit for proving Lemma 3.1 one can prove the following inequality

η(n, p, z2) ≤ η(n, q0, z1), for 0 < z1 < z2 < 1, (4.8)
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where
q0 = [p + (n− 1− p) (1− z1/z2)]

+
. (4.9)

Applying (4.8) in the case p = 0 one can check the first part of (4.7)

χ(n, 0, q) ≤ (λ−)qη
(
n− q,

[
(n− q − 1)

(
1− λ−/λ+

)]+
, λ−

)
λ+

≤ η
(
n,

[
(n− 1− q)

(
1− λ−/λ+

)]+
, λ−

)
λ+. (4.10)

Define

ϕ(n, p) =
p∑

l=0

∑

j=p+1−l

l∑

k=0

Λn
j,k,l. (4.11)

From the definition (4.1) and applying Lemma 3.1 in [6] one has

χ(n, p, 0) =
n∑

i=n−p

ϕ(n, n− i) = η(n, p, λ+)λ+. (4.12)

Then applying (4.8) gives the second part of (4.7).
It can be easily verified that (4.6) holds for n = 1. Now suppose (4.6) holds for n, we will

prove it is also true for n + 1. It can be checked that χ(n, p, q) defined in (4.1) satisfies the
following recurrence relation for 1 ≤ p, q, p + q ≤ n

χ(n + 1, p, q) = λ−χ(n, p, q − 1) + (1− λ−)χ(n, p− 1, q). (4.13)

From (4.13) one can deduce

χ−(n + 1, p, q) = λ−χ−(n, p, q − 1) + (1− λ−)χ−(n, p− 1, q). (4.14)

From (4.14), applying the assumption that (4.6) holds for n, one has

χ−(n + 1, p, q) ≥ 0, if 0 < λ− < λ+ < 1, 1 ≤ p, q, p + q ≤ n. (4.15)

Combining (4.15) and (4.7) implies that (4.6) holds for n + 1.
From the relation (4.2) and applying the first part of (4.4), for 0 < λ− < λ+ < 1 one has

T2 ≤ η(n, q1, λ−)λ+, (4.16)

where

q1 =
[
n + J − [K]+ − 1 + [K]+

(
1− λ−

λ+

)]+

≤ n− [nλ−]− − 1. (4.17)

Thus
T2 ≤ η

(
n, n− [

nλ−
]− − 1, λ−

)
λ+, if 0 < λ− < λ+ < 1. (4.18)

From the relation (4.2) and applying the second part of (4.4), for 0 < λ+ < λ− < 1 one has

T2 ≤ η(n, q2, λ+)λ−, (4.19)

where

q2 =
[
n + J − [K]+ − 1− J

(
1− λ+

λ−

)]+

≤ n− [nλ+]− − 1. (4.20)
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Thus
T2 ≤ η

(
n, n− [

nλ+
]− − 1, λ+

)
λ−, if 0 < λ+ < λ− < 1. (4.21)

Combining (4.18), (4.21), and checking that (1.9) holds for 0 < λ− = λ+ < 1 complete the
proof of Theorem 1.3. ¤

5. Conclusion

In this paper, three binomial coefficient inequalities were proved, which are key ingredi-
ents used in [6] to establish the L1-error estimates for the upwind difference scheme to the
linear advection equations with piecewise constant wave speeds and a general interface con-
dition. More recently based on the work [6] we have established the L1-error estimates for
a Hamiltonian-preserving scheme developed in [1] to the Liouville equation with a piecewise
constant potential [8].

In proving the first binomial coefficient inequality (Theorem 1.1), we split the binomial
coefficient expression into two equivalent parts, for which upper bound estimates were derived.

In proving the next two binomial coefficient inequalities (Theorems 1.2 and 1.3), we obtained
upper bound estimates for the binomial coefficient expressions when their parameters taking
values in larger domains than considered in the theorems. We used the recurrence relations
for the binomial coefficient expressions in the extended domains and established upper bound
estimates for the binomial coefficient expressions at boundaries of the extended domains where
the recurrence relations do not apply. Together with these results we proved upper bound
estimates for the binomial coefficient expressions in the extended domains.
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