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Abstract

Superconvergence and recovery a posteriori error estimates of the finite element ap-

proximation for general convex optimal control problems are investigated in this paper.

We obtain the superconvergence properties of finite element solutions, and by using the

superconvergence results we get recovery a posteriori error estimates which are asymptot-

ically exact under some regularity conditions. Some numerical examples are provided to

verify the theoretical results.
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1. Introduction

Efficient numerical methods are essential to successful applications of optimal control prob-
lems (see, e.g., [17, 27, 33]) in practical areas. It is well known that finite element methods
are undoubtedly the most widely used numerical methods in solving optimal control prob-
lems. There have been extensive studies in convergence of the finite element approximation
for various optimal control problems (see, e.g., [2, 14, 16, 21, 22, 34]). Recently, a priori error
estimates of the finite element approximation for optimal control problems governed by linear
state equations can be found in [3], and a posteriori error estimates in [4, 5, 19, 20, 25, 28–31].
Some primary works on sharp a posteriori error estimates and a priori error estimates of mixed
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finite element methods for optimal control problems were obtained in [11–13, 36, 37]. Adap-
tive finite element methods are among the most important classes of numerical methods to
boost accuracy and efficiency of the finite element discretization. The literature in this area is
huge, see, e.g., [1, 6, 35, 40, 42–44]. The superconvergence property of finite element solutions
has also been an active research area in numerical analysis for optimal control problems (see,
e.g., [10, 26, 32, 39]). Very recently, superconvergence of mixed finite element methods for op-
timal control problems has been studied in [7–9, 12, 41]. The main objective for investigating
the superconvergence property is to improve the existing approximation accuracy by applying
certain postprocessing techniques which are easy to implement. For the quadratic optimal con-
trol problems, some superconvergence results have been established (see [26,39]). In [18], Hinze
presented a method that is not necessary to discretize the control variable for linear quadratic
optimal control problems.

Finite element recovery techniques are post-processing methods that reconstruct numerical
approximations from finite element solutions to achieve better results. To be practically useful,
a good recovery method should have the following three features: (i) It is simple to implement
and cost effective. In practice, a recovery procedure takes only very small portion of the whole
computation cost; (ii) It is applicable to higher dimensions; and (iii) It is problem independent,
i.e., a recovery process uses only numerical solution data.

This paper is concerned with the following general convex optimal control problem:

min
u∈K⊂L2(ΩU )

{g(y) + h(u)} (1.1)

− div(A∇y) + a0y = f + Bu, in Ω , (1.2)

y = 0, on ∂Ω, (1.3)

where g and h are convex functionals, K is a closed convex set in L2(ΩU ), Ω and ΩU are two
bounded open subsets in Rn (n ≤ 3) with Lipschitz boundaries ∂Ω and ∂ΩU , respectively. Let
f be a given function of the space L2(Ω) and B be a continuous linear operator from L2(ΩU ) to
L2(Ω). The coefficient matrix A(·) = (aij(·))n×n is symmetric and positive definite. Moreover,
we require 0 6 a0 ∈ L∞(Ω).

Denote by Wm,p(Ω) the usual Sobolev space on Ω with norm and semi-norm defined by

‖φ‖p
m,p,Ω =

∑

|α|≤m

∫

Ω

| ∂αφ |p dx,

| φ |pm,p,Ω =
∑

|α|=m

∫

Ω

| ∂αφ |p dx,

where φ ∈ Wm,p(Ω). We set Wm,p
0 (Ω) = {φ ∈ Wm,p(Ω) : φ |∂Ω= 0}. In particular, we write

Hm(Ω) = Wm,2(Ω) (Hm
0 (Ω) = Wm,2

0 (Ω)) and ‖ · ‖m,Ω = ‖ · ‖m,p,Ω (‖ · ‖Hm
0 (Ω) = ‖ · ‖W m,p

0 (Ω)),
| · |m,Ω=| · |m,p,Ω (| · |Hm

0 (Ω)=| · |W m,p
0 (Ω)) for p = 2. Besides, c or C denotes a general positive

constant independent of h.
In this paper, we adopt the same recovery operators mentioned in [26] to solve general convex

optimal control problems. We get the superconvergence property of finite element solutions, by
which recovery a posteriori error estimates are obtained. The control variable is approximated
by piecewise constant functions, and both the state y and the co-state p by piecewise linear
finite element functions. We prove the superconvergence error estimate in L2-norm between
the approximated solution and the L2-projection of the control, and superconvergence error
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estimates in H1-norm between the approximated solutions and the elliptic projections of the
state and co-state. By using the superconvergence results, recovery a posteriori error estimators
are obtained, which are the bases to judge whether further refinement of meshes is necessary
in adaptive grid methods. Another important issue is that different adaptive meshes should be
used for the control and the states, as generally they are of very different natures of singularities.
In our experiments, because different meshes are used for the approximation of the state and
the control, we must look for a suitable preconditioning for the projection algorithm. It is
observed that the preconditioning used in [26] is inefficient for our new model. To overcome
this difficulty, we adopt an interpolation function as a preconditioning, which is found efficient
for our present model and quadratic convex optimal control problems. Numerical examples are
also shown that the estimators are simple to implement and applicable to 3-dimension space.
In other words, method we will use satisfies the three features above.

The paper is organized as follows. In Section 2, we formulate the finite element approx-
imation for general convex optimal control problems. In Section 3, we concentrate on the
superconvergence analysis for the control problem. Recovery a posteriori error estimators for
the L2-error in discrete solutions are considered in Section 4. Numerical examples are provided
in Section 5 to verify the theoretical results. We conclude with some further comments in
Section 6.

2. Finite Element Methods for Optimal Control Problems

Let the state space

V = H1
0 (Ω), (2.1)

and the control space

U = L2(ΩU ). (2.2)

We denote

H = L2(Ω). (2.3)

Let the observation space Y = L2(Ω). We further assume that g and h are continuously
differentiable and bounded below on the observation space Y . Let

K = {v ∈ U : v > 0}. (2.4)

To consider the finite element approximation of the general convex optimal control problem,
we need a weak formulation for the state equation. Let

a(y, v) =
∫

Ω

(A∇y) · ∇v + a0yv, ∀y, v ∈ V.

By the assumptions on A, there are positive constants c and C such that ∀ y, v ∈ V ,

a(y, y) ≥ c‖y‖21,Ω, | a(y, v) |≤ C‖y‖1,Ω‖v‖1,Ω. (2.5)

We recast (1.1)-(1.3) in the following weak form, find (y, u) ∈ V × U such that: (CCP)

min
u∈K⊂U

{g(y) + h(u)} (2.6)

a(y(u), v) = (f + Bu, v), ∀v ∈ V = H1
0 (Ω), (2.7)
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where the inner product in L2(Ω) is denoted by (·, ·). It is well known (see, e.g., [27]) that
the convex control problem (CCP) (2.6)-(2.7) has a unique solution (y, u), and that a pair
(y, u) ∈ V × U is the solution of (CCP) (2.6)-(2.7) if and only if there is a co-state p ∈ V such
that the triplet (y, p, u) satisfies the following optimal conditions: (CCP-OPT)

a(y, v) = (f + Bu, v), (2.8)

a(q, p) = (g′(y), q), (2.9)

(h′(u) + B∗p, ũ− u)U ≥ 0, (2.10)

for all v ∈ V, q ∈ V , and ũ ∈ K, where B∗ is the adjoint operator of B, and g′, h′ are the
deviratives of g, h, respectively. The inner product in L2(ΩU ) is denoted by (·, ·)U .

Also we note that for any (y, u) ∈ V × U , g′(y) and h′(u) are in Y = Y ′ = L2(Ω) and
U ′ = U = L2(ΩU ) respectively. Therefore, they can be viewed as functions in Y = L2(Ω) and
U = L2(ΩU ) respectively, from the well-known representation theorem in a Hilbert space.

For ease of exposition we will assume that Ω and ΩU are both polygons. Let Ωh and Ωh
U be

two polygonal approximations to Ω and ΩU , so that Ωh = Ω and Ωh
U = ΩU . Let Th and Th

U be
two partitioning of Ωh and Ωh

U into disjoint regular n-simplices τ and τU . So that Ω̄h = ∪τ∈T h τ̄ ,
Ω̄h

U = ∪τU∈T h
U
τ̄U . We assume that τ̄ (τ̄U ) and τ̄ ′ (τ̄ ′U ) have either only one common vertex or a

whole edge or face or are disjoint if τ (τU ) and τ ′ (τ ′U ) ∈ Th (Th
U ). Moreover, we set

Uh = {u ∈ U : u |τU is constant on all τU ∈ Th
U}, (2.11)

V h = {yh ∈ V : yh ∈ P1, ∀τ ∈ Th}. (2.12)

Let hτ (hτU ) denote the maximum diameter of the element τ (τU ) in Th (Th
U ). Let h =

maxτ∈T h{hτ} and hU = maxτU∈T h
U
{hτU }. In computations, the element sizes in Th are required

to be larger than those in Th
U . Therefore, we assume that (hU/h) ≤ C in this paper.

The finite element approximation of (CCP) (2.6)-(2.7) is to find (yh, uh) ∈ V h × Uh such
that: (CCP)h

min
uh∈Kh⊂Uh

{g(yh) + h(uh)} (2.13)

a(yh, vh) = (f + Buh, vh), ∀vh ∈ V h, (2.14)

where Kh is a closed convex set in Uh. The control problem (CCP)h (2.13)-(2.14) has a unique
solution (yh, uh), and a pair (yh, uh) ∈ V h × Uh is the solution of (CCP)h (2.13)-(2.14) if and
only if there is a co-state ph ∈ V h, such that the triplet (yh, ph, uh) satisfies the following
discretized optimality conditions: (CCP-OPT)h

a(yh, vh) = (f + Buh, vh), (2.15)

a(qh, ph) = (g′(yh), qh), (2.16)

(h′(uh) + B∗ph, ũh − uh)U ≥ 0, (2.17)

for all vh ∈ V h, qh ∈ V h, and ũh ∈ Kh.
It is well known that for the problem (2.8)-(2.10) and its finite element approximation

(2.15)-(2.17), the following error estimate hold:

‖u− uh‖0,Ω + ‖y − yh‖1,Ω + ‖p− ph‖1,Ω ≤ C(hU + h), (2.18)

if y, p ∈ H2(Ω), and u ∈ H1(ΩU ).
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Remark 2.1. Falk [16] noticed that u ∈ H1(ΩU ) needs some further data regularity. In this
paper, take h(u) = 1

2 ||u||20,Ω, B = I for example, we know that if the solution of the optimal
control u for this problem is given by u = max(0,−p), then we have u ∈ H1(ΩU ).

We further make the following assumptions:

• g′ is Lipshitz continuous;

• There is a constant c > 0 such that

(h′(u)− h′(ũ), u− ũ)U ≥ c‖u− ũ‖20,ΩU
, ∀ u, ũ ∈ U, (2.19)

the convex functional g also has such a property as h;

• Let h(u) =
∫
ΩU

j(u). Then (h′(u), v) = (j′(u), v), where j(·) is a smooth and convex
function such that j′′(u) ∈ W 1,∞(ΩU ) and j′′′(·) ∈ L∞(R);

• Let

Ω+
U = {∪τU : τU ⊂ ΩU , u|τU > 0},

Ω0
U = {∪τU : τU ⊂ ΩU , u|τU

= 0}, Ωb
U = ΩU \ (Ω+

U ∪ Ω0
U ).

In this paper, we assume that u and τh are regular such that meas (Ωb
U ) ≤ ChU .

3. Superconvergence Analysis

In this section, we provide the superconvergence results for general convex optimal control
problems (1.1). Firstly, let us prove the following superconvergence property between πcu and
uh which are the L2-projection and the approximated solution of u, respectively.

Definition 3.1. Let πcu ∈ Kh be the L2-projection of u, such that

πcu|τU =

∫
τU

u∫
τU

1
. (3.1)

By the definition of πcu, we have the following orthogonal property (see, e.g., [26, 39]):

(u− πcu, uh)U = 0, ∀uh ∈ Uh. (3.2)

Theorem 3.1. Let u and uh be the solution of (2.10) and (2.17), respectively. Assume that
h′(u) + B∗p ∈ W 1,∞(ΩU ), and Ω is convex. Then,

‖uh − πcu‖0,ΩU ≤ C
(
h

3
2
U + h2

)
. (3.3)

Proof. Note that uh, πcu ∈ Kh ⊂ K. From (2.10) and (2.17), by inserting ũ = uh and
ũh = πcu respectively, we have

(h′(u) + B∗p, uh − u)U ≥ 0, (3.4)

(h′(uh) + B∗ph, πcu− uh)U ≥ 0. (3.5)
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By means of (2.19), (3.4), and (3.5), we have

c‖uh − πcu‖20,ΩU
≤ (h′(uh)− h′(πcu), uh − πcu)U

≤ (−B∗ph, uh − πcu)U − (h′(πcu), uh − πcu)U

= (B∗p, u− uh)U + (B∗p, πcu− u)U

+ (B∗(p− ph), uh − πcu)U + (h′(πcu), πcu− uh)U

≤ (h′(πcu)− h′(u), πcu− uh)U + (h′(u) + B∗p, πcu− u)U

+ (B∗(p− p(uh)), u− πcu)U + (B∗(p− p(uh)), uh − u)U

+ (B∗(p(uh)− ph), uh − πcu)U , (3.6)

where p(uh) is the solution of the auxiliary equations:

a(y(uh), v) = (f + Buh, v), ∀v ∈ V = H1
0 (Ω), (3.7)

a(q, p(uh)) = (g′(y(uh)), q), ∀q ∈ V = H1
0 (Ω). (3.8)

Note that Ω is convex. We have that p ∈ H2(Ω) ∩W 1,∞(Ω), and u ∈ W 1,∞(ΩU ).
From (3.2) and Taylor’s expansion of the function j(·), there exists a positive constant

0 ≤ θ ≤ 1 such that

(h′(πcu)− h′(u), πcu− uh)U

=(j′′(u)(πcu− u) +
1
2
j′′′(u + θ(πcu− u))(πcu− u)2, πcu− uh)U

=((j′′(u)− πc(j′′(u)))(πcu− u), πcu− uh)U +
1
2
(j′′′(u + θ(πcu− u))(πcu− u)2, πcu− uh)U

≤ChU‖j′′(u) ‖1,∞,ΩU
·‖πcu− u‖0,ΩU

· ‖πcu− uh‖0,ΩU

+ C
1
2
‖j′′′(·) ‖0,∞ ·‖πcu− u‖20,4,ΩU

· ‖πcu− uh‖0,ΩU

≤Ch2
U‖πcu− uh‖0,ΩU

. (3.9)

Similar to [26], we can get that

(B∗(p− p(uh)), u− πcu)U ≤ Ch2
U (hU + ‖uh − πcu‖0,ΩU ), (3.10)

(B∗(p− p(uh)), uh − u)U = (g′(y)− g′(y(uh)), y(uh)− y) ≤ 0, (3.11)

where we used the fact that g(·) is a convex functional. Using Schwarz inequality and Young’s
inequality with ε, we have

(B∗(p(uh)− ph), uh − πcu)U ≤ C‖B∗(p(uh)− ph)‖0,ΩU
‖uh − πcu‖0,ΩU

≤ C(ε)‖p(uh)− ph‖20,Ω + Cε‖uh − πcu‖20,ΩU
, (3.12)

where ε is an arbitrary small positive constant and C(ε) is a constant dependent on ε. In [26],
it has been proved that

‖p(uh)− ph‖0,Ω ≤ Ch2. (3.13)

Then, it follows from (3.6)-(3.13) that

c‖uh − πcu‖20,ΩU

≤Ch2
U‖uh − πcu‖0,ΩU

+ (h′(u) + B∗p, πcu− u)U

+ Ch2
U (hU + ‖uh − πcu‖0,ΩU ) + Ch4 + ε‖uh − πcu‖20,ΩU

≤(h′(u) + B∗p, πcu− u)U + Ch3
U + Ch4 + Cε‖uh − πcu‖20,ΩU

, (3.14)
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where we used Ch2
U ||uh − πcu||0,ΩU

≤ C(ε)h4
U + Cε||uh − πcu||20,ΩU

. Thus,

‖uh − πcu‖20,ΩU
≤ C(h′(u) + B∗p, πcu− u)U + Ch3

U + Ch4. (3.15)

Note that

(h′(u) + B∗p, πcu− u)U

=
∫

Ω+
U

(h′(u) + B∗p)(πcu− u) +
∫

Ω0
U

(h′(u) + B∗p)(πcu− u) +
∫

Ωb
U

(h′(u) + B∗p)(πcu− u),

and (πcu − u)|Ω0
U

= 0. From (2.10), we have pointwise a.e. h′(u) + B∗p ≥ 0. In (2.10), we
choose ũ|Ω+

U
= 0 and u|ΩU\Ω+

U
= u, so that

(h′(u) + B∗p, u)Ω+
U
≤ 0.

Therefore,
(h′(u) + B∗p)|Ω+

U
= 0.

Then, by (3.2) we have

(h′(u) + B∗p, πcu− u)U

=
∫

Ωb
U

(h′(u) + B∗p)(πcu− u)

=
∑

τU⊂Ωb
U

∫

τU

(h′(u) + B∗p− πc(h′(u) + B∗p))(πcu− u)

≤C
∑

τU⊂Ωb
U

h2
τU
|h′(u) + B∗p|1,τU |u|1,τU

≤Ch2
U‖h′(u) + B∗p‖1,Ωb‖u‖1,Ωb

≤Ch2
U‖h′(u) + B∗p‖1,∞,ΩU ‖u‖1,∞,ΩU meas(Ωb) ≤ Ch3

U . (3.16)

Finally, we combine (3.15) and (3.16) to derive (3.3). ¤

Similarly as [26], we have the following corollary.

Corollary 3.1. Let u and uh be the solutions of (2.10) and (2.17), respectively. Assume that
h′(u) + B∗p ∈ W 1,∞(ΩU ), and Ω is convex. Then

‖u− uh‖−1,ΩU ≤ C
(
h

3
2
U + h2

)
. (3.17)

Then, we will establish the following superconvergence property for the state y and the
co-state p by using the standard superconvergence results of Theorem 3.1 and Corollary 3.1.

Theorem 3.2. Let y, p be the solutions of (2.8) and (2.9), and yh, ph be the solutions of (2.15)
and (2.16). Let yI and pI be the piecewise linear Lagrange interpolations of y and p. Assume
that all the conditions in Theorem 3.1 are valid. Moreover, assume that the mesh Th is uniform,
and y, p ∈ H3(Ω). Then,

|yh − yI |1,Ω + |ph − pI |1,Ω ≤ C
(
h

3
2
U + h2

)
. (3.18)
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The proof is similar to that of [26]. Furthermore, we can also compare the approximated
solutions with the elliptic projection of the exact solutions. Given u, y the exact solutions,
define the elliptic projections ŷh, p̂h by the means of the following elliptic problems:

a(ŷh, vh) = (f + Bu, vh), (3.19)

a(qh, p̂h) = (g′(y), qh), (3.20)

for all vh ∈ Vh, qh ∈ Vh. Substracting (2.15)-(2.16) from (3.19)-(3.20), we have the following
error equations of the approximated solutions and the elliptic projections:

a(ŷh − yh, vh) = (B(u− uh), vh), (3.21)

a(qh, p̂h − ph) = (g′(y)− g′(yh), qh), (3.22)

for all vh ∈ Vh, qh ∈ Vh.
Thus, we can prove another superconvergence result between the elliptic projections and

the approximated solutions.

Theorem 3.3. Suppose that all the conditions of Theorems 3.1 and 3.2 are valid. Then,

‖ŷh − yh‖1,Ω + ‖p̂h − ph‖1,Ω ≤ C
(
h

3
2
U + h2

)
. (3.23)

Proof. Let vh = ŷh−yh. Here we assume the continuous linear operator B can be expressed
as B = α(x) ∈ W 1,∞(Ω). An application of Theorem 3.1 and (3.21) yields

c‖ŷh − yh‖21,Ω

≤a(ŷh − yh, vh) = (B(u− uh), vh)

=(B(u− πcu), vh) + (B(πcu− uh), vh)

=((α(x)− πcα(x))(u− πcu), vh) + ‖πcu− uh‖0,ΩU
‖B∗vh‖0,ΩU

≤Ch2
U‖u‖1,ΩU ‖vh‖0,Ω + C(h

3
2
U + h2)‖vh‖0,Ω

≤C(h
3
2
U + h2)‖vh‖1,Ω, (3.24)

which gives

‖ŷh − yh‖1,Ω ≤ C(h
3
2
U + h2). (3.25)

Similarly, let qh = p̂h − ph. By Schwarz inequality, Poincare inequality, Theorem 3.2, and the
interpolation theory in Sobolev space (see, e.g., [15]), we have

c‖p̂h − ph‖21,Ω ≤ a(qh, p̂h − ph)

=(g′(y)− g′(yh), qh) ≤ C‖y − yh‖0,Ω‖qh‖0,Ω

≤C(‖y − yI‖0,Ω+ | yI − yh |1,Ω)‖qh‖1,Ω

≤C(h2 | y |2,Ω +h
3
2
U + h2))‖qh‖1,Ω

≤C(h
3
2
U + h2)‖qh‖1,Ω, (3.26)

which yields

‖p̂h − ph‖1,Ω ≤ C(h
3
2
U + h2). (3.27)

Therefore, the desired inequality follows from (3.25) and (3.27). ¤
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4. Global L2 Superconvergence by Recovery

Theorem 3.1 shows that the error order of ‖uh − πcu‖0,ΩU
is one half order higher than the

optimal error for the piecewise constant finite element space. To provide the global supercon-
vergence for the control and state, we use the recovery techniques on uniform meshes.

In this section, we use the recovery operators Rh and Gh in [26] and [39]. Without zero
boundary constraint, let Rhv ∈ V h be a continuous piecewise linear function. Similar to the
Z-Z patch recovery (see, e.g., [43, 44]), the values of Rhv on the nodes are defined by least-
squares argument on an element patches surrounding the nodes. For example, let z be a node,
ωz = ∪z∈τ̄U

τU , and Vz be the space of linear functions on ωz. Set Rhvz = σz(z), where

E(σz) = min
w∈Vz

E(w), with E(w) =
∑

τU⊂ωz

(∫

τU

w −
∫

τU

v

)2

.

When z ∈ ∂ΩU , we should add a few extra neighbor elements to ωz such that ωz contains more
than three elements. For the regular mesh and the suitable choice of ωz, we can conclude that
for any v ∈ L2(Ω), Rhv exists. Moreover, for any domain D ⊂ Ω, Rhv = v on D if v is a linear
function on D̂, where D̂ = {∪τU : τ̄U ∩ D̄ 6= ∅}.

We construct the gradient recovery operator Ghv = (Rhvx, Rhvy) for the gradient of y and
p. In the piecewise linear case, it is noted that Gh is the same as the Z-Z gradient recovery
(see, e.g., [43, 44]).

As in [26], we can prove the following superconvergence results by recovery.

Lemma 4.1. Suppose that all the conditions of Theorem 3.1 are valid. Then

‖Rhu− u‖0,ΩU
≤ Ch

3
2
U . (4.1)

Theorem 4.1. Suppose that all the conditions of Theorem 3.1 are valid. Then,

‖Rhuh − u‖0,ΩU ≤ C
(
h

3
2
U + h2

)
. (4.2)

Proof. By using Theorem 3.1 and Lemma 4.1, we obtain Theorem 4.1 (see, [26]). ¤

Theorem 4.2. Suppose that all the conditions of Theorems 3.1 and 3.2 are valid. Then,

‖Ghyh −∇y‖0,Ω + ‖Ghph −∇p‖0,Ω ≤ C(h
3
2
U + h2). (4.3)

Proof. Theorem 4.2 follows from Theorem 3.2 and the standard interpolation error estimate
technique (see, e.g., [27]), and the details can be found in [26]. ¤

It is of great importance for a finite element method to have a computable a posteriori error
estimator by which we can evaluate the accuracy of the finite element solutions in applications.
One way to construct error estimators is to employ certain superconvergence properties of the
finite element solutions. Thus, according to above global superconvergence, we can obtain the
following recovery a posteriori error estimates for the general convex optimal control problems.

Theorem 4.3. Suppose that all the conditions of Theorem 3.1 are valid. Then,

‖Rhuh − uh‖0,ΩU
= ‖u− uh‖0,ΩU

+O(h
3
2
U + h2), (4.4)

‖Ghyh −∇yh‖0,Ω = ‖∇(y − yh)‖0,Ω +O(h
3
2
U + h2), (4.5)

‖Ghph −∇ph‖0,Ω = ‖∇(p− ph)‖0,Ω +O(h
3
2
U + h2). (4.6)
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Furthermore, there hold

lim
h→0

‖Rhuh − uh‖0,ΩU

‖u− uh‖0,ΩU

= 1, (4.7)

lim
h→0

‖Ghyh −∇yh‖0,Ω

‖∇(y − yh)‖0,Ω
= 1, (4.8)

lim
h→0

‖Ghph −∇ph‖0,Ω

‖∇(p− ph)‖0,Ω
= 1. (4.9)

Proof. The above results can be obtained by combining Lemma 4.1, and Theorems 4.1 and
4.2. ¤

Therefore, the recovery type a posteriori error estimators defined above are asymptotically
exact under some regularity conditions.

5. Numerical Examples

In this section, we present three numerical experiments to illustrate the error estimators
shown in Theorem 4.3, which is crucial to refinement. To implement adaptive multi-mesh
schemes, it is known that the best choice is h-method. The general idea of the h-method is to
refine the meshes such that the error estimators are equally distributed over the computational
mesh. Assume that an a posteriori error estimator η has the form η2 =

∑
ei

η2
ei

, where ei is a
finite element. At first, we can calculate the average quantity of η2

ei
, which is then compared

by each of η2
ei

. The element ei is to be refined or coarsened if η2
ei

is larger or smaller than
the quantity. So η2

ei
reflects the distribution of the total approximation error over ei, which

guarantees that a higher density of nodes is distributed over the area where the error is larger.
In our numerical experiments, the following type of convex objective functionals governed

by elliptic state equations is used:

min
u∈K⊂L2(ΩU )

1
4

∫

Ω

(y − y0)4 +
1
4

∫

ΩU

(u− u0)4

where ΩU = Ω = [0, 1]n, n = 2, 3. Let Ωh and Ωh
U be partitioned into Th and Th

U as described
in Sect. 2. The discretization was already described in previous sections: The control function
u is discretized by piecewise constant functions, whereas the state y and the co-state p are
approximated by linear finite element functions. Different meshes are used for the approxima-
tion of the state and the control. In our experiments, we shall use ‖Rhuh − uh‖0,ΩU

as the
control mesh refinement indicator, and ‖Ghyh−∇yh‖0,Ω +‖Ghph−∇ph‖0,Ω for the state’s and
co-state’s (see [26]).

All of the optimization problems here are solved numerically with codes developed based on
AFEPack, which provides a general tool of mesh adaptation for multi-meshes. The package is
freely available and the details can be found in [24]. One of the key difficulties in implementing a
multi-mesh scheme is to efficiently handle numerical integrals, which involves the base functions
on different mesh spaces, and can easily consume much computational work. Another difficulty
is to interpolate a finite element function into the other finite element space when their meshes
are different. In fact, AFEPack has effectively overcome these difficulties by using the following
structured multi-meshes: two elements τ , τU always have the relationship either τ̄ ⊂ τ̄U or
τ̄U ⊂ τ̄ provided τ ∩ τU 6= ∅, so that a tree structure for fast searching can be formed. When
an element is to be refined, it is refined into 2k smaller simplex elements as described in [23].
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In [26], the bilinear form b(·, ·) was used as the preconditioning for the projection algorithm.
However, we find that this kind of preconditioning is inefficient for our model. In order to
overcome this difficulty, we adopt the interpolation function p

(k)
I as a preconditioning for the

projection algorithm PK , see below:




a(y(k), w) = (f + Bu(k), w), y(k) ∈ V h, ∀w ∈ V h,

a(q, p(k)) = ((y(k) − y0)3, q), p(k) ∈ V h, ∀q ∈ V h,

p
(k)
I |τU

= (B∗p(k))(S), p
(k)
I ∈ Uh,

u(k+1) = PK(u0 − 3
√

p
(k)
I ),

(5.1)

where the subscript h have been omitted, k corresponds to the iterations (k = 0, 1, 2, · · · ), S is
the center point of the finite element τU , p

(k)
I is an interpolation function of p(k) in Uh, which

is a suitable preconditioning for the projection algorithm PK . In the experiments, we test this
kind of interpolate preconditioning and find that it is efficient for our model as well as the
quadratic convex optimal control problems. The main computational effort of this system is
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Fig. 5.1. Example 1: the profile of u.
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Fig. 5.2. Example 1: the mesh of u (left) and the mesh of y and p (right).
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to solve the two state equations, and to compute the projection PK(u0 − 3
√

p
(k)
I ). As in [26],

we also use a fast algebraic multigrid solver to solve the state equations in this paper. The
projection operator PK : Uh → Kh is defined: For given w ∈ Uh, find PKw ∈ Kh, such that

PKw|τU
= max(0, πcw)|τU

, (5.2)

where πcw is the L2-projection of w.

Example 1. The first example is to solve the following convex control problem

min
u≥0

1
4

∫

Ω

(y − y0)4dx +
1
4

∫

Ω

(u− u0)4dx

−∆y + y = f + u, (5.3)

where Ω = [0, 1]× [0, 1], and

z =
{

1.0, x1 + x2 > 1,

0.0, x1 + x2 ≤ 1,

y = sin(πx1)sin(πx2), p = sin(πx1)sin(πx2),

u0 = 2.0− sin
πx1

2
− sin

πx2

2
+ z,

u = max(u0 − 3
√

p, 0), f = −∆y + y − u,

y0 = y + 3
√

∆p− p . (5.4)

The dual equation of the state equation is

−∆p + p = (y − y0)3. (5.5)

Table 5.1: Numerical results for Example 1 on uniform meshes.

uniform 1 2 3 4 5
nodes 121 441 1681 6561 25921
‖u− uh‖L2 1.81758e-01 1.22801e-01 7.90325e-02 5.30981e-02 3.73144e-02

| y − yh |H1 3.46711e-01 1.74193e-01 8.72019e-02 4.36148e-02 2.18091e-02

| p− ph |H1 3.49164e-01 1.74511e-01 8.72524e-02 4.36231e-02 2.18105e-02

‖Rhuh − uh‖L2 1.40482e-01 1.01953e-01 6.38542e-02 4.18971e-02 3.00517e-02

‖Ghyh −∇yh‖L2 3.53011e-01 1.75876e-01 8.75720e-02 4.36976e-02 2.18283e-02

‖Ghph −∇ph‖L2 3.45485e-01 1.74906e-01 8.74528e-02 4.36831e-02 2.18266e-02

Table 5.2: Numerical results for Example 1 on adaptive meshes.

adaptive 1 2 3 4 5
nodes(u) 139 513 1649 2634 3471
nodes(y, p) 139 513 1773 1773 1773
‖u− uh‖L2 9.84953e-02 6.99288e-02 5.00637e-02 3.59728e-02 2.75903e-02

| y − yh |H1 2.46085e-01 1.23659e-01 6.43379e-02 6.43375e-02 6.43376e-02

| p− ph |H1 2.46936e-01 1.23793e-01 6.43583e-02 6.43526e-02 6.43522e-02

‖Rhuh − uh‖L2 1.22371e-01 8.34112e-02 5.59271e-02 4.15201e-02 3.21595e-02

‖Ghyh −∇yh‖L2 2.59330e-01 1.25796e-01 6.54861e-02 6.54935e-02 6.54939e-02

‖Ghph −∇ph‖L2 2.56654e-01 1.25469e-01 6.54375e-02 6.54443e-02 6.54449e-02
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Fig. 5.3. Example 2: the profile of u.
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Fig. 5.4. Example 2: The mesh of u (left) and the mesh of y and p (right).

In Figure 5.1, the profile of the control u for Example 1 is plotted. We can clearly see that the
control u is smooth everywhere except along the line x1 + x2 = 1, where u is discontinuous. It
is observed from Tables 5.1 and 5.2 that the adaptive meshes generated via the error indicators
can save substantial computational work compared with the uniform meshes, and verified that
the error indicators are asymptotically exact. In Figure 5.2, it is seen that the u-mesh adapts
very well to the neighborhood of the discontinuous line x1 + x2 = 1, and a higher density of
node points are indeed distributed along the line. Furthermore, the optimal meshes for the
control and the states are very different as seen in Figure 5.2.

Example 2. This is an example of nonlinear case

min
u≥0

1
4

∫

Ω

(y − y0)4dx +
1
4

∫

Ω

(u− u0)4dx

−∆y + y3 = f + u, (5.6)

The dual equation of the state equation is

−∆p + 3y2p = (y − y0)3. (5.7)
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where Ω = [0, 1]× [0, 1], and

z =
{

1.0, x1 + x2 > 1.0,

0.0, x1 + x2 ≤ 1.0,

y = sin(πx1)sin(5πx2), p = sin(5πx1)sin(πx2),

u0 = 1.0− sin
πx1

2
− sin

πx2

2
+ z,

u = max(u0 − 3
√

p, 0), f = −∆y + y3 − u,

y0 = y + 3
√

∆p− 3y2p . (5.8)

The numerical results for this test problem on both uniform and adaptive meshes are listed
in Tables 5.3 and 5.4, respectively. It is clearly observed that the adaptive mesh results are
better than those of the unform mesh results. The profile of the control u is plotted in Figure
5.3, and the meshes for u and for y and p are plotted in Figure 5.4.

With this example, it seems that we can use the error indicators in nonlinear cases. However,
to reach this conclusion further theoretical analysis and numerical tests are required.

Example 3. This is a 3D example on Ω = [0, 1]3, and the model is

min
u≥0

1
4

∫

Ω

(y − y0)4dx +
1
4

∫

Ω

(u− u0)4dx

−∆y = f + u, (5.9)

Table 5.3: Numerical results for Example 2 on uniform meshes.

uniform 1 2 3 4 5
nodes 121 441 1681 6561 25921
‖u− uh‖L2 1.75544e-01 1.16451e-01 7.28518e-02 4.78305e-02 3.24052e-02

| y − yh |H1 3.65326e+00 1.89533e+00 9.56588e-01 4.79421e-01 2.39851e-01

| p− ph |H1 3.67290e+00 1.89904e+00 9.57102e-01 4.79486e-01 2.39860e-01

‖Rhuh − uh‖L2 2.27792e-01 1.55201e-01 9.43446e-02 5.78430e-02 3.59519e-02

‖Ghyh −∇yh‖L2 4.19991e+00 2.04813e+00 9.80511e-01 4.82679e-01 2.40288e-01

‖Ghph −∇ph‖L2 4.21216e+00 2.04872e+00 9.80542e-01 4.82682e-01 2.40289e-01

Table 5.4: Numerical results for Example 2 on adaptive meshes.

adaptive 1 2 3 4 5
nodes(u) 139 473 1547 3178 4975
nodes(y, p) 139 513 1949 2199 2204
‖u− uh‖L2 2.07087e-01 1.44693e-01 7.66059e-02 4.98255e-02 3.45941e-02

| y − yh |H1 3.14318e+00 1.60448e+00 8.08421e-01 7.56503e-01 7.55581e-01

| p− ph |H1 3.21706e+00 1.64044e+00 8.26328e-01 7.77704e-01 7.77350e-01

‖Rhuh − uh‖L2 2.06393e-01 1.36739e-01 8.21328e-02 5.25178e-02 3.72725e-02

‖Ghyh −∇yh‖L2 3.64520e+00 1.71285e+00 8.24303e-01 7.75038e-01 7.73692e-01

‖Ghph −∇ph‖L2 3.75807e+00 1.75673e+00 8.43286e-01 7.96661e-01 7.96391e-01
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where

z =
{

2.0, x1 + x2 + x3 > 1.0,

0.0, x1 + x2 + x3 ≤ 1.0,

y = sin(πx1)sin(πx2)sin(πx3),

p = sin(πx1)sin(πx2)sin(πx3),

u0 = 1.0− sin
πx1

2
− sin

πx2

2
− sin

πx3

2
+ z,

u = max(u0 − 3
√

p, 0),

f = −∆y − u, y0 = y + 3
√

∆p . (5.10)

The dual equation of the state equation is

−∆p = (y − y0)3. (5.11)

From the numerical results summarized in Tables 5.5 and 5.6, we can easily find that the
error estimators are efficient and the adaptive multi-meshes can save computational work sub-
stantially in 3D space.

6. Conclusions and Discussions

The paper discussed the superconvergence analysis and recovery a posteriori error estimates
of the finite element approximation for general convex optimal control problems governed by
linear state equation. We obtained the superconvergence properties of finite element solutions.
Finally, numerical examples were shown to verify the theoretical results.

Our future work is to investigate the superconvergence for the general convex control prob-
lems subject to the nonlinear state equation:

−div(A∇y) + φ(y) = f + Bu, in Ω,

y = 0, on ∂Ω,

where φ is a nonlinear function.

Table 5.5: Numerical results for Example 3 on uniform meshes.

uniform 1 2 3
nodes 270 1813 13145

u, y, p edges 1543 11332 86616

mesh faces 2380 18368 144256

info elements 1106 8848 70784

Dofs of u 1106 8848 70784

Dofs of y, p 270 1813 13145

‖u− uh‖L2 1.94e-01 1.17e-01 7.40e-02

| y − yh |H1 1.11e+00 7.21e-01 4.87e-01

error | p− ph |H1 1.15e+00 7.39e-01 4.93e-01

‖Rhuh − uh‖L2 1.96e-01 1.26e-01 8.88e-02

‖Ghyh −∇yh‖L2 8.33e-01 5.64e-01 3.74e-01

‖Ghph −∇ph‖L2 8.33e-01 5.02e-01 3.52e-01
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Table 5.6: Numerical results for Example 3 on adaptive meshes.

adaptive 1 2 3 4 4 6
nodes 270 1799 4109 5687 6290 6488

u edges 1543 11234 24511 32968 36575 37840

mesh faces 2380 18200 38841 51537 57257 59325

info elements 1106 8764 18438 24255 26971 27972

Dofs of u 1106 8764 18438 24255 26971 27972

nodes 270 1777 2389 3061 3407 3517

y, p edges 1543 11098 14335 17971 19660 20165

mesh faces 2380 17981 22811 28295 30702 31405

info elements 1106 8659 10864 13384 14448 14756

Dofs of y, p 270 1777 2389 3061 3407 3517

‖u− uh‖L2 1.94e-01 1.17e-01 8.47e-02 8.24e-02 8.04e-02 7.87e-02

| y − yh |H1 1.11e+00 7.21e-01 5.56e-01 4.53e-01 3.97e-01 3.70e-01

error | p− ph |H1 1.15e+00 7.39e-01 5.66e-01 4.59e-01 4.01e-01 3.74e-01

‖Rhuh − uh‖L2 1.96e-01 1.26e-01 9.76e-02 9.02e-02 8.81e-02 8.64e-02

‖Ghyh −∇yh‖L2 8.33e-01 5.64e-01 4.62e-01 3.99e-01 3.64e-01 3.48e-01

‖Ghph −∇ph‖L2 6.62e-01 5.02e-01 4.32e-01 3.83e-01 3.53e-01 3.39e-01
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