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Abstract

We develop a finite element method with rectangular perfectly matched layers (PMLs)

for the wave scattering from two-dimensional cavities. The unbounded computational

domain is truncated to a bounded one by using of a rectangular perfectly matched layer at

the open aperture. The PML parameters such as the thickness of the layer and the fictitious

medium property are determined through sharp a posteriori error estimates. Numerical

experiments are carried out to illustrate the competitive behavior of the proposed method.
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1. Introduction

Consider a time-harmonic electromagnetic plane wave incident on a shaped open cavity em-
bedded in an infinite ground plane. The ground plane and the walls of the open cavity are per-
fect electric conductors (PEC), and the interior of the open cavity is filled with a non-magnetic
inhomogeneous material. The half-space above the ground plane is filled with a homogeneous,
linear, isotropic medium characterized by its permittivity ε0 and permeability µ0. In the TM
and TE polarization, we study the diffraction problem by a finite element method with rectan-
gular perfectly matched absorbing layers. Several computational experiments indicate that the
method is efficient.

The study of the wave scattering by a 2-D cavity-backed aperture in the infinite ground plane
has been of great importance in aircraft industries. There has been a considerable interest in
computation and design of cavities, see, e.g., [4, 12, 16]. However, there has not been much
studied on the analysis of the problem. Recently, in [1, 2], Ammari and Bao developed a
variational approach for solving the cavity problems in two- and three-dimensional media,
and studied the well-posedness of the problem. They also investigated the problem by an
integral equation method in [3]. In [18], we introduced a perfectly matched layer in curvilinear
coordinates to study the locally perturbed half plane problems (including the cavity problems),
and presented several numerical results.

The purpose of this paper is to develop efficient numerical methods for solving the cavity
scattering problems. The main difficulty is to truncate the infinite domain into a bounded
computational domain. The method studied in [1, 2] is based on a variational formulation in
the cavity with a transparent boundary condition at the open aperture. The boundary operators
are nonlocal, which yields some difficulties in practical computations. In [18], we overcome the

* Received September 6, 2008 / Accepted April 3, 2009 /



Rectangular PML for Cavity Scattering 813

difficulty by introducing the PML in curvilinear coordinates. However, for wide open cavities
it will lead to large computational costs.

The purpose of this paper is twofold: First we explore the possibility of introducing a
rectangular perfectly matched layer to deal with the difficulty in truncating the unbounded
domain. Second we explore the possibility of using an error analysis to determine the PML
parameters such as the thickness of the PML region and the medium property inside the region.
We hope the ideas developed in this paper will be useful for solving other locally perturbed half
plane problems.

The basic idea of the PML technique is to surround the computational domain by a finite
thickness layer of the specially designed model medium that would attenuate outgoing waves
propagating from the computational domain. Since Berenger proposed the PML method for
the time dependent Maxwell equations in [6], various constructions of PML absorbing layers
have been proposed and studied in the literature. In [8], for the wave scattering by bounded
obstacles, Collino and Monk derived the perfectly matched layer in curvilinear coordinates.
Subsequently, Chen and Liu [7] established the convergence theory of the PML method to the
solution of the original problem. We refer to Turkel and Yefet [13] for a review on various
proposed models, and Lassas and Somersalo [10] for some study of mathematical properties of
the PML equations.

The layout of the paper is as follows. In the next section, we state the model problem
and derive the variational formulations. The well-posedness of the variational problems is
also studied. In Section 3, we introduce our PML formulations, and establish the existence,
uniqueness and convergence of the PML formulations. In Section 4, we present several numerical
examples to illustrate the competitive behavior of the method.

2. Two-dimensional Cavity Problem

Consider a two-dimensional cavity D of arbitrary cross section embedded in a perfectly
conducting medium (see Fig 2.1). Above the line {x2 = 0}, the medium is homogeneous with
a positive dielectric coefficient ε0. The medium inside D is inhomogeneous with dielectric
coefficient ε(x1, x2). We assume that Re ε(x1, x2) > 0 and Im ε(x1, x2) ≥ 0. In this paper, the
media are assumed to be non-magnetic, and the magnetic permeability µ0 is constant. We are
interested in the scattering of an incident plane wave by the cavity.

We denote by Γ the cavity aperture, and S the cavity walls. Let R2
+ = {x ∈ R2 : x =

(x1, x2), x2 > 0} be the region above the ground plane, and Γc = ∂R2
+\Γ. Let n be the unit

outward normal to ∂D. Denote in the whole space

k2(x) =

{
ω2ε0µ0 in R2

+,

ω2ε(x)µ0 in D.

With the perfectly electric conducting boundary condition in mind, we investigate the TM and
TE cases separately.

2.1. TM Polarization

In this case, the incident electric field and the total electric field are parallel to the invariant
dimension, i.e., EI = (0, 0, ui) and E = (0, 0, u). By the field continuity conditions, u vanishes
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Fig. 2.1. The geometry for the cavity problem

on S and Γc, and is continuous over Γ. Moreover, since the media is nonmagnetic, ∂u
∂n is also

continuous over Γ. Therefore, u satisfies

(∆ + k2)u = 0 in D ∪ R2
+, (2.1a)

u = 0 on Γc ∪ S, (2.1b)

u,
∂u

∂n
are continuous on Γ. (2.1c)

Along with the radiation condition,

lim
r→∞

√
r

(
∂us

∂η
− ik0u

s

)
= 0, (2.2)

where us is the scattered field, r = |x|, η = x/|x| and k0 = ω2ε0µ0.
Assume the incident field ui = eiαx1−iβx2 . Here α = k0 sin θ, β = k0 cos θ, and −π/2 < θ <

π/2 is the incident angle. Denote v = u−ui +uρ, where uρ = eiαx1+iβx2 . Hence, the scattering
problem is to find v such that

(∆ + k2)v = g in D ∪ R2
+, (2.3a)

v = h on Γc ∪ S, (2.3b)

lim
r→∞

√
r
(

∂v
∂η − ik0v

)
= 0, (2.3c)

where g = (k2 − k2
0)(u

ρ − ui), h = uρ − ui. It is clear that g = 0 in R2
+, and h = 0 on Γc.

By the radiation condition and the boundary condition, we see that in R2
+ the field v can

be expressed as

v(x) = 2
∫

Γ

∂G(x, y)
∂n(y)

v(y)ds(y),

where
G(x, y) =

i
4
H1

0

(
k0

√
(x1 − y1)2 + (x2 − y2)2

)

is the fundamental solution of the Helmholtz equation with wavenumber k0, and H
(1)
0 is the

Hankel function of the first kind with order zero. Therefore, we know that

∂v

∂n

∣∣∣∣
x2=0+

= 2
∂

∂n(x)

∫

Γ

∂G(x, y)
∂n(y)

v(y)ds(y) x ∈ Γ. (2.4)
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We introduce the space

H̃1/2(Γ) =
{

w ∈ H1/2(R); suppw ⊂ Γ
}

.

From (2.4), we define the Dirichlet-Neumann mapping T : H̃1/2(Γ) → H−1/2(Γ) by

T (φ)(x) = 2
∂

∂n(x)

∫

Γ

∂G(x, y)
∂n(y)

φ(y)ds(y).

Hence, we have the following boundary condition:

∂v

∂n
= T (v) on Γ. (2.5)

We present some important properties of the boundary operator T (see [15]).

Lemma 2.1. (i) The mapping T : H̃1/2(Γ) → H−1/2(Γ) is continuous. (ii) There exists a
constant γ > 0 and a compact mapping K0 from H̃1/2(Γ) into H−1/2(Γ), such that for all
φ ∈ H̃1/2(Γ)

Re((−T + K0)φ, φ)L2(Γ) ≥ γ ‖ φ ‖2
H̃1/2(Γ)

.

By combining (2.3a) and (2.5), the scattering problem (2.1a)-(2.2) can be reformulated as
follows: to find v such that

(∆ + k2)v = g in D, (2.6a)

v = h on S, (2.6b)
∂v

∂n
− T (v) = 0 on Γ. (2.6c)

Now, we introduce the following equivalent variational formulation of (2.6a): Given g and h as
above, find v ∈ H1(D) such that v = h on S, v ∈ H̃1/2(Γ), and

a(v, ψ) = −
∫

D

g ψ̄ dx ∀ψ ∈ H̃1
0 (D), (2.7)

where

a(ϕ,ψ) =
∫

D

(∇ϕ · ∇ψ̄ − k2ϕψ̄
)
dx−

∫

Γ

(Tϕ)ψ̄ ds,

H̃1
0 (D) =

{
w ∈ H1(D) : w = 0 on S, w ∈ H̃1/2(Γ)

}
.

The following theorem is our main result on the existence and uniqueness of a solution to the
variational problem (2.7).

Theorem 2.1. The variational problem (2.7) admits a unique solution v in H1(D).

Proof. From Lemma 2.1, we see that the Fredholm Alternative Theorem can be applied
to (2.7).

Next, we prove the uniqueness. It is sufficient to show that if g = 0 and h = 0, then the
solution v must vanish in D. Suppose g = 0 and h = 0. Let v be a solution of (2.7), i.e.,
a(v, ψ) = 0 for all ψ ∈ H̃1

0 (D). Hence, Im a(v, v) = 0. Further, from Imε ≥ 0, we get

Im
∫

Γ

(Tv)v̄ ds ≤ 0. (2.8)
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Let

w(x) = 2
∫

Γ

∂G(x, y)
∂n(y)

v(y)ds(y), x ∈ R2
+.

Then, it can be verified that w satisfies

(∆ + k2
0)w = 0 in R2

+,

w = 0 on Γc,

w = v, ∂w
∂n = Tv on Γ,

lim
r→∞

√
r

(
∂w

∂η
− ik0w

)
= 0.

From (2.8), we know that

Im
∫

Γ

∂w

∂n
w̄ ds ≤ 0.

Following the proof of Rellich Lemma (see [9]), we conclude that w = 0 in R2
+. We also notice

that ∂v
∂n = Tv = 0 on Γ. A unique continuation result in [11] concludes that v = 0 in D. This

completes the proof. 2

The general theory in Babuška and Aziz [5] implies that there exists a constant χ > 0 such
that the following inf-sup condition holds:

sup
0 6=ψ∈H̃1

0 (D)

|a(ϕ,ψ)|
||ψ||H1(D)

≥ χ ||ϕ||H1(D), ∀ ϕ ∈ H̃1
0 (D). (2.9)

2.2. TE Polarization

For this case, the incident magnetic field and the total magnetic field are parallel to the
invariant dimension, i.e., HI = (0, 0, ui) and H = (0, 0, u). As in the TM case, we assume
that ui = eiαx1−iβx2 . By the perfectly electric conducting boundary conditions and the field
continuity conditions, ∂u

∂ñ vanishes on S and Γc, and u, 1
k2(x)

∂u
∂n are continuous over Γ. Here, ñ

is the unit outward normal to D ∪ R2
+. Therefore, u satisfies

∇ ·
(

1
k2(x)∇u

)
+ u = 0 in D ∪ R2

+,

∂u
∂ñ = 0 on Γc ∪ S,

(2.10)

and along with the radiation condition

lim
r→∞

√
r

(
∂us

∂η
− ik0u

s

)
= 0. (2.11)

Set v = u−ui−uρ. Then v satisfies (2.10) in the upper half plane with the boundary condition
∂v
∂ñ = 0 on Γc. By the definition of v, solving the scattering problem is equivalent to finding
the function v. By the radiation condition and the boundary condition, we see that in R2

+ the
field v can be expressed as

v(x) = −2
∫

Γ

G(x, y)
∂v

∂n
(y)ds(y).
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Denote by H̃−1/2(Γ) the dual space of H1/2(Γ), and define the operator K:H̃−1/2(Γ) → H1/2(Γ)
by

K(ψ)(x) = −2
∫

Γ

G(x, y)ψ(y)ds(y).

From [15], we present some important properties of the boundary operator K.

Lemma 2.2. (i) The mapping K:H̃−1/2(Γ) → H1/2(Γ) is continuous. (ii) There exists a
constant γ > 0 and a compact mapping K0 from H̃−1/2(Γ) into H1/2(Γ), such that for all
ψ ∈ H̃−1/2(Γ)

Re((−K + K0)ψ,ψ)L2(Γ) ≥ γ ‖ ψ ‖2
H̃−1/2(Γ)

.

From the transparent boundary condition for u and ∂u
∂n over Γ, the scattering problem

(2.10)-(2.11) can be stated as

∇ ·
(

1
k2(x)

∇v

)
+ v = g in D, (2.12a)

∂v

∂n
=

∂h

∂n
on S, (2.12b)

v = K

(
ε0

εΓ

∂v

∂n

)
on Γ, (2.12c)

where

h = −ui − uρ, g = ∇ ·
(

1
k2(x)

∇h

)
+ h, εΓ = ε(x)|Γ .

By using the Green’s formula, we find that

b1(v, ψ)− 〈λ, ψ〉 = F (ψ) ∀ψ ∈ H1(D),

where

λ =
∂v

∂n

∣∣∣∣
Γ

, b1(ϕ,ψ) =
∫

D

(
1

k2(x)
∇ϕ · ∇ψ̄ − ϕψ̄

)
dx,

〈λ, ψ〉 =
∫

Γ

1
k2(x)

λψ̄ds, F (ψ) = −
∫

D

g ψ̄ dx +
∫

S

1
k2(x)

∂h

∂n
ψ̄ ds.

Moreover, we have that

b2(λ, µ) + 〈µ, v〉 = 0 ∀µ ∈ H̃−1/2(Γ),

where

b2(λ, µ) = −
∫

Γ

1
k2(x)

µK

(
ε0

εΓ
λ

)
ds.

Denote vλ = (v, λ) and ψµ = (ψ, µ). We introduce the following equivalent variational formu-
lation of (2.12a): Given g and h, find vλ ∈ W = H1(D)× H̃−1/2(Γ) such that

b(vλ, ψµ) = F (ψ) ∀ψµ ∈ W, (2.13)

where

b(ϕη, ψµ) = b1(ϕ,ψ)− 〈η, ψ〉+ 〈µ, ϕ〉+ b2(η, µ).

Now, we have the following existence and uniqueness result.
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Theorem 2.2. The variational problem (2.13) admits a unique solution vλ in W .

Proof. First, we introduce the continuous sesquilinear forms

B, L : W ×W → R,

and the corresponding continuous linear mappings

B,L : W → W ′,

defined by

B(ϕη, ψµ) ≡ [Bϕη, ψµ] ≡ b(ϕη, ψµ)− L(ϕη, ψµ),

L(ϕη, ψµ) ≡ [Lϕη, ψµ] ≡ −2
∫

D

ϕηψ̄µdx−
∫

Γ

1
k2(x)

µK0

(
ε0

εΓ
η

)
ds,

where [·, ·] denotes the duality between W and W ′. By lemma 2.2, we see that

|B(ψµ, ψµ)| ≥ C‖ψµ‖2W ∀ψµ ∈ W,

where ‖ · ‖W denotes the norm in W , i.e.,

‖ψµ‖W =
(
‖ψ‖2H1(D) + ‖µ‖2

H̃−1/2(Γ)

)1/2

.

By the theorem of Lax and Milgram, the mapping B : W → W ′ is an isomorphism. Further,
from the compactness of K0 and the compact embedding of H1(D) into L2(D) it is easily shown
that the mapping L : W → W ′ is compact. Therefore, the Fredholm alternative is applicable
to (2.13).

Next, we prove the uniqueness. It is sufficient to show that if g = 0 and h = 0, then
the solution vλ must vanish. Suppose g = 0 and h = 0. Let vλ be a solution of (2.13), i.e.,
b(vλ, ψµ) = 0 for all ψµ ∈ W . Hence, Im b(vλ, vλ) = 0. From Imε ≥ 0, we know

Im
∫

Γ

1
k2(x)

λK

(
ε0

εΓ
λ

)
ds ≤ 0. (2.14)

Let

w(x) = −2
∫

Γ

G(x, y)
ε0

εΓ
λ(y)ds(y), x ∈ R2

+.

Then, it is easy to see that w satisfies
(
∆ + k2

0

)
w = 0 in R2

+, (2.15a)
∂w

∂n
= 0 on Γc, (2.15b)

w = K

(
ε0

εΓ
λ

)
,
∂w

∂n
=

ε0

εΓ
λ on Γ, (2.15c)

lim
r→∞

√
r
(

∂w
∂η − ik0w

)
= 0. (2.15d)

From (2.14), we know that

Im
∫

Γ

∂w

∂n
w̄ ds ≤ 0.
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By a similar proof to the TM case, we get that w = 0 in R2
+. Since v = K

(
ε0
εΓ

∂v
∂n

)
, we obtain

v = 0 on Γ. By the unique continuation result in [11], we conclude that v = 0 in D. This
completes the proof. 2

Similarly, there exists a constant χ > 0 such that the following inf-sup condition holds:

sup
0 6=ψµ∈W

|b(ϕη, ψµ)|
‖ψµ‖W

≥ χ ‖ϕη‖W ∀ ϕη ∈ W. (2.16)

3. The PML Formulation

In this section we shall introduce variational formulations for the scattering problem using
the PML technique. We shall study the TM polarization first, and then the TE polarization.

3.1. TM Polarization

We set a PML layer ΩPML = {(x1, x2) : a1 − δ1 ≤ x1 ≤ a2 + δ1, 0 ≤ x2 ≤ δ2} at the open
aperture of the cavity (see Fig 3.1). Let

s1(x1) = 1 + iσ1(x1)/ω and s2(x2) = 1 + iσ2(x2)/ω

be the model medium property which satisfy σ1, σ2 ∈ C(R), σ1, σ2 ≥ 0, and

σ1(x1) = 0 for a1 ≤ x1 ≤ a2, σ2(x2) = 0 for x2 ≤ 0.

We introduce the PML equation

∂

∂x1

(
s2(x2)
s1(x1)

∂v

∂x1

)
+

∂

∂x2

(
s1(x1)
s2(x2)

∂v

∂x2

)
+ s1(x1)s2(x2)k2

0v = 0 in ΩPML.

From [8], the Green function for this equation is given by

Ĝ(x1, x2) =
i
4
H1

0

(
k0

√
x̃2

1 + x̃2
2

)
,

where
x̃1 = x1 +

i
ω

∫ x1

0

σ1(s)ds, x̃2 = x2 +
i
ω

∫ x2

0

σ2(s)ds.

Fig. 3.1. Setting of the scattering problem with the PML layer
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The PML solution v̂ in Ω = D ∪ ΩPML is defined as the solution of the following system

∂

∂x1

(
s2(x2)
s1(x1)

∂v̂

∂x1

)
+

∂

∂x2

(
s1(x1)
s2(x2)

∂v̂

∂x2

)
+ s1(x1)s2(x2)k2v̂ = ĝ in Ω, (3.1)

v̂ = h on S, v̂ = 0 on ∂Ω\S. (3.2)

Here, ĝ = g in D, ĝ = 0 in ΩPML, and k = k0 in ΩPML.
This problem can be reformulated in the bounded domain D by imposing the boundary

condition

∂v̂

∂n

∣∣∣∣
Γ

= T̂ v̂,

where the operator T̂ : H̃1/2(Γ) → H−1/2(Γ) is defined as follows: given f ∈ H̃1/2(Γ),

T̂ f =
∂ζ

∂n

∣∣∣∣
Γ

,

where ζ ∈ H1(ΩPML) satisfies

∂

∂x1

(
s2(x2)
s1(x1)

∂ζ

∂x1

)
+

∂

∂x2

(
s1(x1)
s2(x2)

∂ζ

∂x2

)
+ s1(x1)s2(x2)k2

0ζ = 0 in ΩPML, (3.3)

ζ = f on Γ, ζ = 0 on ΓPML, (3.4)

where ΓPML = ∂ΩPML\Γ. The existence and uniqueness of the solutions of the PML problem
(3.3)-(3.4) will be studied in the Section 3.1.1.

Based on the operator T̂ , we introduce the sesquilinear form

â(ϕ,ψ) =
∫

D

(∇ϕ · ∇ψ̄ − k2ϕψ̄)dx−
∫

Γ

(T̂ϕ)ψ̄ ds.

Then the weak formulation for (3.1)-(3.2) is: Given g and h, find v̂ ∈ H1(D) such that v̂ = h

on S, v̂ ∈ H̃1/2(Γ), and

â(v̂, ψ) = −
∫

D

g ψ̄ dx, ∀ψ ∈ H̃1
0 (D). (3.5)

The well-posedness of the PML problem (3.5) and the convergence of its solution to the solution
of the original scattering problem (2.7) will be studied in the Section 3.1.2.

3.1.1. The PML equation in the layer

In this subsection we consider the Dirichlet problem

∂

∂x1

(
s2(x2)
s1(x1)

∂w

∂x1

)
+

∂

∂x2

(
s1(x1)
s2(x2)

∂w

∂x2

)
+ s1(x1)s2(x2)k2

0w = 0 in ΩPML, (3.6)

w = 0 on Γ, w = q on ΓPML, (3.7)

where q ∈ H̃1/2(ΓPML). Let âPML : H1(ΩPML)×H1(ΩPML) → C be the sesquilinear form:

âPML(ϕ,ψ) =
∫

ΩPML

(
s2(x2)
s1(x1)

∂ϕ

∂x1

∂ψ̄

∂x1
+

s1(x1)
s2(x2)

∂ϕ

∂x2

∂ψ̄

∂x2
− s1(x1)s2(x2)k2

0ϕψ̄

)
dx.
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Then the weak formulation for (3.6)-(3.7) is as follows: Given q ∈ H̃1/2(ΓPML), find w ∈
H1(ΩPML) such that w = 0 on Γ, w = q on ΓPML, and

âPML(w,ψ) = 0 ∀ψ ∈ H1
0 (ΩPML). (3.8)

In this paper, we make some general assumptions on the medium property σ1 and σ2:

σ1(x1) =





σ0

(
a1−x1

δ1

)m

a1 − δ1 ≤ x1 ≤ a1,

0 a1 ≤ x1 ≤ a2,

σ0

(
x1−a2

δ1

)m

a2 ≤ x1 ≤ a2 + δ1,

(3.9a)

σ2(x2) =

{
σ0

(
x2
δ2

)m

0 ≤ x2 ≤ δ2,

0 x2 ≤ 0,
(3.9b)

where the constant σ0 > 1 and the integer m ≥ 2. From (3.9a) and definition of s1 and s2, we
have

Re
(

s2

s1

)
=

1 + σ1σ2
ω2

1 + σ2
1

ω2

, Re
(

s1

s2

)
=

1 + σ1σ2
ω2

1 + σ2
2

ω2

, Re(s1s2) = 1− σ1σ2

ω2
,

1 + σ1σ2
ω2

1 + σ2
1

ω2

≥ 1

1 + σ2
1

ω2

≥ |s0|−2,
1 + σ1σ2

ω2

1 + σ2
2

ω2

≥ 1

1 + σ2
2

ω2

≥ |s0|−2,

where s0 = 1 + iσ0/ω. Hence,

Re [âPML(ϕ,ϕ)] =
∫

ΩPML

[
1 + σ1σ2

ω2

1 + σ2
1

ω2

∣∣∣∣
∂ϕ

∂x1

∣∣∣∣
2

+
1 + σ1σ2

ω2

1 + σ2
2

ω2

∣∣∣∣
∂ϕ

∂x2

∣∣∣∣
2

+
(σ1σ2

ω2
− 1

)
k2
0|ϕ|2

]
dx

≥ |s0|−2‖∇ϕ‖2L2(ΩPML) − k2
0‖ϕ‖2L2(ΩPML).

By using the analytic Fredholm alternative theorem we know that the PML problem (3.8)
admits a unique solution for all but possibly a discrete set of values of k (see, e.g., the argument
in [8, Theorem 2]). We will not elaborate on this issue and simply assume that there exists
a unique solution to the PML problem (3.8). Then the general theory in Babuška and Aziz
[5, Chapter 5] implies that there exists a positive constant Ĉ such that the following inf-sup
condition holds:

sup
0 6=ψ∈H1

0 (ΩPML)

|âPML(ϕ,ψ)|
||ψ||H1(ΩPML)

≥ Ĉ ||ϕ||H1(ΩPML) ∀ ϕ ∈ H1
0 (ΩPML). (3.10)

Without loss of generality we assume Ĉ ≤ 1.

Remark 3.1. Generally, the coercivity constant Ĉ depends on σ0. We make the technical
assumption that Ĉ−1 < pl(σ0), where pl is some polynomial of degree l. The assumption will
make sense in the convergence of the PML problem, and the numerical experiments indicate
that the assumption is reasonable. We make the same assumption on Ĉ in (3.29).

We lay out the following main result of this subsection.
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Theorem 3.1. There exists a constant C > 0 independent of k0 and σ0 such that the following
estimates are satisfied

‖w‖H1(ΩPML) ≤ CĈ−1|s0|
(
1 + k2

0|s0|
)||q||H1/2(ΓPML), (3.11)∥∥∥∥

∂w

∂n

∥∥∥∥
H−1/2(Γ)

≤ CĈ−1|s0|2
(
1 + k2

0|s0|
)2||q||H1/2(ΓPML). (3.12)

Proof. From (3.9a), we know that 1 ≤ |s1|, |s2| ≤ |s0|. Therefore, we have

|âPML(ϕ,ψ)| ≤
(∫

ΩPML
|s2|

∣∣∣∣
∂ϕ

∂x1

∣∣∣∣
2

dx

)1/2 (∫

ΩPML
|s2|

∣∣∣∣
∂ψ

∂x1

∣∣∣∣
2

dx

)1/2

+

(∫

ΩPML
|s1|

∣∣∣∣
∂ϕ

∂x2

∣∣∣∣
2

dx

)1/2 (∫

ΩPML
|s1|

∣∣∣∣
∂ϕ

∂x2

∣∣∣∣
2

dx

)1/2

+
(∫

ΩPML
k2
0|s1|2|ϕ|2dx

)1/2 (∫

ΩPML
k2
0|s2|2|ψ|2dx

)1/2

≤|s0|
(
1 + k2

0|s0|
)||ϕ||H1(ΩPML)||ψ||H1(ΩPML).

Now we turn to the proof the estimate (3.11). Let R : H1/2(∂ΩPML) → H1(ΩPML) denote a
right inverse of the trace mapping υ 7→ υ|∂ΩPML and $ = R(q̃), where q̃ = 0 on Γ and q̃ = q on
ΓPML. It is obvious that the function w −$ ∈ H1

0 (ΩPML), and for any ψ ∈ H1
0 (ΩPML)

|âPML(w −$, ψ)| = |âPML($, ψ)|
≤|s0|

(
1 + k2

0|s0|
)||$||H1(ΩPML)||ψ||H1(ΩPML).

From the inf-sup condition (3.10), we have

‖w‖H1(ΩPML) ≤
(
1 + Ĉ−1|s0|

(
1 + k2

0|s0|
)) ||$||H1(ΩPML),

which implies (3.11).
Take any p ∈ H̃1/2(Γ) and denote φp = R(p̃), where p̃ = p on Γ and p̃ = 0 on ΓPML. To

show (3.12), we multiply the equation (3.6) by φp and integrate over ΩPML to obtain

∣∣∣∣
∫

Γ

∂w

∂n
p ds

∣∣∣∣ = |âPML(w, φ̄p)|

≤|s0|
(
1 + k2

0|s0|
)||w||H1(ΩPML)||φp||H1(ΩPML).

Further, from (3.11) we have

∣∣∣∣
∫

Γ

∂w

∂n
p ds

∣∣∣∣ ≤ CĈ−1|s0|2
(
1 + k2

0|s0|
)2||q||H1/2(ΓPML)||p||H1/2(Γ).

This completes the proof of the theorem. 2
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3.1.2. Convergence of the PML problem

In this subsection we consider the convergence of the PML problem (3.5) to the original
scattering problem (2.7). For any function f ∈ H̃1/2(Γ), introduce the following propagation
operator P : H̃1/2(Γ) → H̃1/2(ΓPML):

P (f)(x) = 2
∫

Γ

∂G(x̃, y)
∂n(y)

f(y)ds(y) x ∈ ΓPML,

where x̃ = (x̃1, x̃2). To investigate the operator, we study the H1-norm of the following function
in some domain Ω0:

V (f)(x) = 2
∫

Γ

∂G(x̃, y)
∂n(y)

f(y)ds(y).

Here Ω0 = Ω1 ∪ Ω2 ∪ Ω3, where

Ω1 =
{
(x1, x2) : a1 − δ1 ≤ x1 ≤ a1 − ε1, 0 ≤ x2 ≤ δ2

}
,

Ω2 =
{
(x1, x2) : a2 + ε1 ≤ x1 ≤ a2 + δ1, 0 ≤ x2 ≤ δ2

}
,

Ω3 =
{
(x1, x2) : a1 − ε1 ≤ x1 ≤ a2 + ε1, ε2 ≤ x2 ≤ δ2

}

with
ε1
δ1

=
ε2
δ2

= c0 and 0 < c0 < 1.

It is clear that Ω0 ⊂ ΩPML and ΓPML\Γc ⊂ ∂Ω0. We need the following properties of Hankel
functions ([14]):

• For z ∈ C, m ∈ Z and m ≥ 1,

dH
(1)
m (z)
dz

= H
(1)
m−1(z)− m

z
H(1)

m (z). (3.13)

• For z ∈ C,

∣∣∣H(1)
ν (z)

∣∣∣ ≤ γ0

∣∣∣∣∣
(

2
πz

) 1
2

ei(z− ν
2 π− 1

4 π)
∣∣∣∣∣ , (3.14)

where

γ0 =





(
1− ν− 1

2
2|z|

)−ν− 1
2

ν > 1
2 , 2|z| > ν − 1

2 ,
(
1− ν+ 3

2
2|z|

)−ν− 5
2

(
1 + 2ν+2

|z|
)

0 ≤ ν < 1
2 , 2|z| > ν + 3

2 .
(3.15)

We also need the lemmas below.

Lemma 3.1. For x ∈ Ω0, a1 ≤ y1 ≤ a2 and σ0 ≥ Λ,

∣∣(x̃1 − y1)2 + (x̃2)2
∣∣ 1
2 ≥ σ0δ

θ0c
m+1
0

ω(m + 1)
, (3.16)

where 0 < θ0 < 1 and

Λ = (1− θ2
0)
− 1

2 ω(m + 1)c−m−1
0

(
a2 − a1 + δ1 + δ2

δ

)
.
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Proof. In fact, from (3.9a) we know that

x̃1 =





x1 − iσ0
ω

δ1
m+1

(
a1−x1

δ1

)m+1

a1 − δ1 ≤ x1 ≤ a1,

x1 a1 ≤ x1 ≤ a2,

x1 + iσ0
ω

δ1
m+1

(
x1−a2

δ1

)m+1

a2 ≤ x1 ≤ a2 + δ1,

x̃2 =

{
x2 + iσ0

ω
δ2

m+1

(
x2
δ2

)m+1

0 ≤ x2 ≤ δ2,

x2 x2 ≤ 0.

(i) x ∈ Ω1. In this case, we have

(x̃1 − y1)2 + (x̃2)2

=

[
(x1 − y1)2 −

(
σ0

ω

δ1

m + 1

)2 (
a1 − x1

δ1

)2m+2

+ x2
2 −

(
σ0

ω

δ2

m + 1

)2 (
x2

δ2

)2m+2
]

+ i

[
2(y1 − x1)

σ0

ω

δ1

m + 1

(
a1 − x1

δ1

)m+1

+ 2x2
σ0

ω

δ2

m + 1

(
x2

δ2

)m+1
]

.

Since ε1 ≤ y1 − x1 ≤ a2 − a1 + δ1 and ε1 ≤ a1 − x1 ≤ δ1, we deduce that for

σ0 ≥ (1− θ2
0)
− 1

2 ω(m + 1)c−m−1
0

(
a2 − a1 + δ1 + δ2

δ1

)

and 0 < θ0 < 1,

Re
[
(x̃1 − y1)2 + (x̃2)2

] ≤ (x1 − y1)2 + x2
2 −

(
σ0

ω

δ1

m + 1

)2 (
a1 − x1

δ1

)2m+2

< (a2 − a1 + δ1 + δ2)2 −
(

σ0

ω

δ1

m + 1

)2 (
ε1
δ1

)2m+2

≤ −θ2
0

(
σ0

ω

δ1

m + 1

)2

c2m+2
0 .

Hence,

∣∣(x̃1 − y1)2 + (x̃2)2
∣∣ ≥ |Re

[
(x̃1 − y1)2 + (x̃2)2

] | ≥ θ2
0

(
σ0

ω

δ1

m + 1

)2

c2m+2
0 .

(ii) x ∈ Ω2. The proof is similar to (i).
(iii) x ∈ Ω3. Similarly, for

σ0 ≥ (1− θ2
0)
− 1

2 ω(m + 1)c−m−1
0

(
a2 − a1 + δ1 + δ2

δ2

)
,

we have

Re
[
(x̃1 − y1)2 + (x̃2)2

] ≤ (x1 − y1)2 + x2
2 −

(
σ0

ω

δ2

m + 1

)2 (
x2

δ2

)2m+2

< (a2 − a1 + δ1 + δ2)2 −
(

σ0

ω

δ2

m + 1

)2 (
ε2
δ2

)2m+2

≤ −θ2
0

(
σ0

ω

δ2

m + 1

)2

c2m+2
0 .
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Hence,

∣∣(x̃1 − y1)2 + (x̃2)2
∣∣ ≥ |Re

[
(x̃1 − y1)2 + (x̃2)2

] | ≥ θ2
0

(
σ0

ω

δ2

m + 1

)2

c2m+2
0 .

This completes the proof. 2

A direct inspection shows that

|x̃2| ≤ σ0δ2M, |x̃1 − y1| ≤ σ0(δ1 + a2 − a1)M, (3.17)

where M =
(
1 + ω−2

) 1
2 .

Lemma 3.2. For x ∈ Ω0, a1 ≤ y1 ≤ a2 and σ0 ≥ Λ,
π

2
< arg

(
(x̃1 − y1)2 + (x̃2)2

)
< π. (3.18)

Proof. (i) x ∈ Ω1 or x ∈ Ω2. From Lemma 3.1, we see that

Im
[
(x̃1 − y1)2 + (x̃2)2

] ≥ σ0
2ε1δ1

ω(m + 1)

(
ε1
δ1

)m+1

≥ σ0
2cm+2

0

ω(m + 1)
δ2.

(ii) x ∈ Ω3. Similarly, we have that

Im
[
(x̃1 − y1)2 + (x̃2)2

] ≥ σ0
2ε2δ2

ω(m + 1)

(
ε2
δ2

)m+1

≥ σ0
2cm+2

0

ω(m + 1)
δ2.

It follows from Lemma 3.1, that for σ0 ≥ Λ,

Re
[
(x̃1 − y1)2 + (x̃2)2

]
< 0.

Hence,

π/2 < arg
(
(x̃1 − y1)2 + (x̃2)2

)
< π.

This completes the proof. 2

By Lemmas 3.1 and 3.2, we have the following result.

Lemma 3.3. The operator P : H̃1/2(Γ) → H̃1/2(ΓPML) is well-defined, and for any f ∈
H̃1/2(Γ) and sufficiently large σ0,

‖P (f)‖H1/2(ΓPML) ≤ C0σ
1
2
0 e−σ0δ

k0
2ω(m+1) ‖f‖H1/2(Γ), (3.19)

where the positive constant C0 is independent with σ0.

Proof. We give an estimate of the function V (f) in the H1-norm in the domain Ω0. For
convenience, we denote z̃ =

√
(x̃1 − y1)2 + (x̃2)2. Since z

1
2 = |z| 12 ei 1

2 arg(z) for z ∈ C, from
Lemmas 3.1 and 3.2 we know that for

√
2θ0c

m+1
0 ≥ 1 and σ0 ≥ Λ0,

Im(z̃) =
∣∣(x̃1 − y1)2 + (x̃2)2

∣∣ 1
2 sin

(
1
2

arg
(
(x̃1 − y1)2 + (x̃2)2

))

≥ σ0δ
1

2ω(m + 1)
,
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where
1√
2

< cm+1
0 , θ0 < 1 and Λ0 =

√
2θ2

0

1− θ2
0

ω(m + 1)
(

a2 − a1 + δ1 + δ2

δ

)
.

Therefore, by (3.14)-(3.18) and

V (f)(x) =
i
2
k0

∫ a2

a1

H
(1)
1 (k0z̃)

x̃2

z̃
f(y1)dy1,

we know that for σ0 ≥ max{Λ0,
3ω(m+1)√

2k0δ
},

|V (f)(x)| ≤ C1σ
− 1

2
0 e−σ0δ

k0
2ω(m+1) ||f ||L2(Γ),∣∣∣∣

∂V (f)
∂x1

(x)
∣∣∣∣ ≤

(
C2σ

1
2
0 + C3σ

− 1
2

0

)
e−σ0δ

k0
2ω(m+1) ||f ||L2(Γ),

∣∣∣∣
∂V (f)
∂x2

(x)
∣∣∣∣ ≤

(
C4σ

1
2
0 + C5σ

− 1
2

0

)
e−σ0δ

k0
2ω(m+1) ||f ||L2(Γ).

Hence, we deduce that for σ0 ≥ max{Λ0,
3ω(m+1)√

2k0δ
},

‖V (f)‖H1(Ω0) ≤ C6σ
1
2
0 e−σ0δ

k0
2ω(m+1) ||f ||L2(Γ).

Further, by the trace theorem and P (f) = 0 on Γc we know that

‖P (f)‖H1/2(ΓPML) ≤ C0σ
1
2
0 e−σ0δ

k0
2ω(m+1) ‖f‖H1/2(Γ).

This completes the proof. 2

Furthermore, we have the following estimate.

Lemma 3.4. For any f ∈ H̃1/2(Γ) and sufficiently large σ0,

‖Tf − T̂ f‖H−1/2(Γ) ≤ CĈ−1|s0| 52
(
1 + k2

0|s0|
)2

e−σ0δ
k0

2ω(m+1) ‖f‖H1/2(Γ),

where the positive constant C is independent with σ0.

Proof. For any f ∈ H̃1/2(Γ), we know that

Tf − T̂ f =
∂$

∂n

∣∣∣∣
Γ

,

where $ ∈ H1(ΩPML) satisfies

∂

∂x1

(
s2(x2)
s1(x1)

∂$

∂x1

)
+

∂

∂x2

(
s1(x1)
s2(x2)

∂$

∂x2

)
+ s1(x1)s2(x2)k2

0$ = 0 in ΩPML,

$ = 0 on Γ, $ = P (f) on ΓPML.

By (3.12) and (3.19) we deduce that
∥∥∥∥

∂$

∂n

∥∥∥∥
H−1/2(Γ)

≤ CĈ−1|s0|2
(
1 + k2

0|s0|
)2‖P (f)‖H1/2(ΓPML)

≤ CĈ−1|s0| 52
(
1 + k2

0|s0|
)2

e−σ0δ
k0

2ω(m+1) ‖f‖H1/2(Γ).

This completes the proof. 2

The following theorem is the main result of this section.
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Theorem 3.2. For sufficiently large σ0, the PML problem (3.5) has a unique solution v̂ ∈
H1(D). Moreover, we have the following estimate

‖v − v̂‖H1(D) ≤ CĈ−1|s0| 52
(
1 + k2

0|s0|
)2

e−σ0δ
k0

2ω(m+1) ‖v̂‖H1/2(Γ). (3.20)

Proof. The existence of a unique solution for (3.5) follows from Lemma 3.4 by using the
same argument as in [17, Theorem 5.1]. Next, by (2.7) and (3.5), we have

a(v − v̂, ψ) = â(v̂, ψ)− a(v̂, ψ) =
∫

Γ

(T v̂ − T̂ v̂)ψ̄ds ∀ψ ∈ H̃1
0 (D).

This completes the proof of the theorem upon using Lemma 3.4 and (2.9). 2

3.2. TE Polarization

In this subsection we state the corresponding results for problem (2.12a). The PML solution
v̂ in Ω = D ∪ ΩPML is defined as the solution of the following system

∂

∂x1

(
1

k2(x)
s2(x2)
s1(x1)

∂v

∂x1

)
+

∂

∂x2

(
1

k2(x)
s1(x1)
s2(x2)

∂v

∂x2

)
+ s1(x1)s2(x2)v = ĝ in Ω, (3.21)

∂v̂

∂n
=

∂h

∂n
on S,

∂v̂

∂n
= 0 on ∂Ω\S, (3.22)

where, ĝ = ∇ ·
(

1
k2(x)∇h

)
+ h in D, ĝ = 0 in ΩPML, h = −ui − uρ and k = k0 in ΩPML.

This problem can be reformulated in the bounded domain D by imposing the boundary
condition

v̂ = K̂

(
ε0

εΓ

∂v̂

∂n

∣∣∣∣
Γ

)
,

where the operator K̂ : H̃−1/2(Γ) → H1/2(Γ) is defined as follows: given f ∈ H̃−1/2(Γ),

K̂f = ξ|Γ .

Here ξ ∈ H1(ΩPML) satisfies

∂

∂x1

(
1
k2
0

s2(x2)
s1(x1)

∂ξ

∂x1

)
+

∂

∂x2

(
1
k2
0

s1(x1)
s2(x2)

∂ξ

∂x2

)
+ s1(x1)s2(x2)ξ = 0 in ΩPML, (3.23)

∂ξ

∂n
= f on Γ,

∂ξ

∂n
= 0 on ΓPML. (3.24)

The existence and uniqueness of the solutions of the PML problem (3.23)-(3.24) will be studied
in the subsection 3.2.1.

Based on the operator K̂, we introduce the sesquilinear form

b̂(ϕη, ψµ) = b1(ϕ,ψ)− 〈η, ψ〉+ 〈µ, ϕ〉+ b̂2(η, µ),

where

b̂2(η, µ) = −
∫

Γ

1
k2(x)

µK̂

(
ε0

εΓ
η

)
ds.

Then the weak formulation for (3.21)-(3.22) is: Given g and h, find v̂λ̂ ∈ W such that

b̂(v̂λ̂, ψµ) = F (ψ) ∀ψµ ∈ W. (3.25)

The well-posedness of the PML problem (3.25) and the convergence of its solution to the solution
of the original scattering problem (2.13) will be studied in the section 3.2.2.
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3.2.1. The PML equation in the layer

In this subsection we consider the boundary value problem

∂

∂x1

(
1
k2
0

s2(x2)
s1(x1)

∂w

∂x1

)
+

∂

∂x2

(
1
k2
0

s1(x1)
s2(x2)

∂w

∂x2

)
+ s1(x1)s2(x2)w = 0 in ΩPML, (3.26)

∂w

∂n
= 0 on Γ,

∂w

∂n
= q on ΓPML, (3.27)

where q ∈ H̃−1/2(ΓPML). Let b̂PML : H1(ΩPML)×H1(ΩPML) → C be the sesquilinear form

b̂PML(ϕ, ψ) =
∫

ΩPML

(
1
k2
0

s2(x2)
s1(x1)

∂ϕ

∂x1

∂ψ̄

∂x1
+

1
k2
0

s1(x1)
s2(x2)

∂ϕ

∂x2

∂ψ̄

∂x2
− s1(x1)s2(x2)ϕψ̄

)
dx.

Then the weak formulation for (3.26)-(3.27) is as follows: Given q ∈ H̃−1/2(ΓPML), find w ∈
H1(ΩPML) such that

b̂PML(w,ψ) =
1
k2
0

∫

ΓPML
q ψ̄ds ∀ψ ∈ H1(ΩPML). (3.28)

By using the same argument as in Section 3.1.1 we know that the PML problem (3.28) admits
a unique solution for all but possibly a discrete set of values of k. We also assume that there
exists a unique solution to the PML problem (3.28). Then the general theory in Babuška
and Aziz [5, Chapter 5] implies that there exists a constant Ĉ such that the following inf-sup
condition holds:

sup
0 6=ψ∈H1(ΩPML)

|b̂PML(ϕ,ψ)|
||ψ||H1(ΩPML)

≥ Ĉ ||ϕ||H1(ΩPML) ∀ ϕ ∈ H1(ΩPML). (3.29)

Without loss of generality we assume Ĉ ≤ 1.
We have the following main result of this subsection.

Theorem 3.3. There exists a constant C > 0 independent of σ0 such that the following esti-
mates are satisfied:

‖w‖H1/2(Γ) ≤ CĈ−1||q||H̃−1/2(ΓPML). (3.30)

Proof. From (3.28), we have

|b̂PML(w, ψ)| ≤ 1
k2
0

‖q‖H̃−1/2(ΓPML)‖ψ‖H1/2(ΓPML).

This completes the proof of the theorem upon using the trace theorem and (3.29). 2

3.2.2. Convergence of the PML problem

In this subsection we consider the convergence of the PML problem (3.25) to the original
scattering problem (2.13). For any function f ∈ H̃−1/2(Γ), introduce the following propagation
operator Q : H̃−1/2(Γ) → H̃−1/2(ΓPML):

Q(f)(x) = −2
∫

Γ

∂G(x̃, y)
∂n(x)

f(y)ds(y) x ∈ ΓPML,

where x̃ = (x̃1, x̃2). We have the following result.
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Lemma 3.5. The operator Q : H̃−1/2(Γ) → H̃−1/2(ΓPML) is well-defined, and for any f ∈
H̃−1/2(Γ) and sufficiently large σ0,

‖Q(f)‖H̃−1/2(ΓPML) ≤ C0|s0| 12 e−σ0δ
k0

2ω(m+1) ‖f‖H̃−1/2(Γ), (3.31)

where the positive constant C0 is independent with σ0.

Proof. Let Γ̃ = ΓPML\Γc. It is readily to see that

‖Q(f)‖H−1/2(ΓPML) ≤ ‖Q(f)‖L2(ΓPML) ≤ (a2 − a1 + 2δ1 + 2δ2)
1
2 ‖Q(f)‖L∞(Γ̃),

and

|Q(f)(x)| ≤ 2
∥∥∥∥

∂G(x̃, ·)
∂n(x)

∥∥∥∥
H1/2(Γ)

‖f‖H̃−1/2(Γ) ≤ 2
∥∥∥∥

∂G(x̃, ·)
∂n(x)

∥∥∥∥
H1(Γ)

‖f‖H̃−1/2(Γ).

From Lemma 3.1 and 3.2 we know that for x ∈ Γ̃ and σ0 ≥ Λ,

Im(z̃) ≥ σ0δ
1

2ω(m + 1)
.

Here Λ =
√

2ω(m + 1)
(

a2−a1+δ1+δ2
δ

)
. Therefore, by (3.14)-(3.18) and

∂G(x̃, y)
∂n(x)

= − i
4
k0H

(1)
1 (k0z̃)

(s1(x1)(x̃1 − y1), s2(x2)x̃2)
z̃

· n(x),

for σ0 ≥ max{Λ, ω(m+1)√
2k0δ

}, we have,

∣∣∣∣
∂G(x̃, y)
∂n(x)

∣∣∣∣ ≤ C1|s0| 12 e−σ0δ
k0

2ω(m+1) ,

∣∣∣∣
∂

∂y1

(
∂G(x̃, y)
∂n(x)

)∣∣∣∣ ≤ C2|s0| 12 e−σ0δ
k0

2ω(m+1) ,

where C1 and C2 are independent of σ0. Hence, we deduce that
∥∥∥∥

∂G(x̃, ·)
∂n(x)

∥∥∥∥
H1(Γ)

≤ C3|s0| 12 e−σ0δ
k0

2ω(m+1) .

This completes the proof of the lemma. 2

Furthermore, we have the following estimate.

Lemma 3.6. For any f ∈ H̃−1/2(Γ) and sufficiently large σ0,

‖Kf − K̂f‖H1/2(Γ) ≤ CĈ−1|s0| 12 e−σ0δ
k0

2ω(m+1) ‖f‖H̃−1/2(Γ),

where the positive constant C is independent with σ0.

Proof. For any f ∈ H̃−1/2(Γ), we know that

Kf − K̂f = $|Γ ,
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where $ ∈ H1(ΩPML) satisfies

∂

∂x1

(
1
k2
0

s2(x2)
s1(x1)

∂$

∂x1

)
+

∂

∂x2

(
1
k2
0

s1(x1)
s2(x2)

∂$

∂x2

)
+ s1(x1)s2(x2)$ = 0 in ΩPML,

∂$

∂n
= 0 on Γ,

∂$

∂n
= Q(f) on ΓPML.

By (3.30) and (3.31) we deduce that

‖$‖H1/2(Γ) ≤ CĈ−1||Q(f)||H̃−1/2(ΓPML)

≤ CĈ−1|s0| 12 e−σ0δ
k0

2ω(m+1) ‖f‖H̃−1/2(Γ).

This completes the proof. 2

The following theorem is the main result of this subsection.

Theorem 3.4. For sufficiently large σ0, the PML problem (3.25) has a unique solution v̂λ̂ ∈ W .
Moreover, we have the estimate

‖v − v̂‖W ≤ CĈ−1|s0| 12 e−σ0δ
k0

2ω(m+1) ‖λ̂‖H̃−1/2(Γ), (3.32)

where the positive constant C is independent with σ0.

Proof. The existence of a unique solution for (3.25) follows from Lemma 3.6 by using the
same argument as in [17, Theorem 5.1]. Next, by (2.13) and (3.25), we have

b(vλ − v̂λ̂, ψµ) = b̂(v̂λ̂, ψµ)− b(v̂λ̂, ψµ)

=
∫

Γ

1
k2(x)

µ(K − K̂)
(

ε0

εΓ
λ̂

)
ds ∀ψµ ∈ W.

This completes the proof of the theorem upon using Lemma 3.6 and (2.16). 2

From the classical FEM theory, it is readily to achieve the convergence for the finite element
approximation of the PML problems. We omit the details here.

4. Numerical Examples

In this section, we present computational results for a set of test problems. In general, we
assume that µ0 = 1. We use the error estimate in Theorems 3.2 and 3.4 to determine the PML
parameters. In our implementation we choose δ1, δ2 and σ0 such that σ0 ≥ Λ0, and

e−σ0δ
k0

2ω(m+1) ≤ 10−8, (4.1)

Table 4.1: The PML parameters for Examples 4.1 and 4.2.

Example 4.1 Example 4.2

δ σ0 δ σ0

1 112 1 112

2 56 2 72

3 38 4 61

4 33
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Fig. 4.1. Geometry of the cavity in Example 4.1
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Fig. 4.2. Magnitude of the electric field at open aperture for Example 4.1 (TM).
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Fig. 4.3. Magnitude of the magnetic field at open aperture for Example 4.1 (TE).

which makes the PML error negligible compared with the finite element discretization errors.
In the following we report several numerical examples to demonstrate the competitive behav-

ior of the proposed algorithm. In the computations we first prescribe δ1, δ2 and then determine
σ0 according to (4.1).

We compute the magnitude of the electric field and magnetic field at the aperture of the
cavity for the TM case and the TE case, respectively. In the first two examples, we compare
the numerical results with those obtained by PML method in cylindrical coordinates (see [18]).
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Example 4.1. Consider the plane wave ui = eik0(x1 sin θ−x2 cos θ) incident at θ = π/4 on the
cavity as shown in Figure 4.1. Assume that the cavity is unfilled, that is, ε(x) = ε0 = 1.
Here we take ω = π. Table 4.1 shows the different choices of the PML parameters δ and σ0

determined by the relation (4.1). The results agree very well in both polarizations (see Figs.
4.2 and 4.3).

Example 4.2. A cavity with multi-layers is shown in Figure 4.4. We choose the parameters
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Fig. 4.4. Geometry of the cavity in Example 4.2
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Fig. 4.5. Magnitude of the electric field at open aperture for Example 4.2 (TM).

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
1

1.5

2

2.5

3

3.5

4

x

M
A

G
N

IT
U

D
E

δ=1
δ=2
δ=4
PML in polar coordinates

Fig. 4.6. Magnitude of the magnetic field at open aperture for Example 4.2 (TE).
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as follows: ε0 = 1, ε1 = 4.84, ε2 = 1.96, ε3 = 2.56 and ω = 6. The incident plane wave
is ui = eik0(x1 sin θ−x2 cos θ) with θ = π/6. The different choices of PML parameters δ and
σ0 determined by the relation (4.1) are shown in Table 4.1. The magnitude of the electric
and magnetic field at open aperture for both fundamental polarizations are compared with
those obtained by PML method in cylindrical coordinates (see Figs. 4.5 and 4.6). Again, the
numerical results agree very well with the theoretical predictions.
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Fig. 4.7. Geometry of the cavity in Example 4.3
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Fig. 4.8. Magnitude of the electric field at open aperture for Example 4.3 (TM).
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Fig. 4.9. Magnitude of the magnetic field at open aperture for Example 4.3 (TE).
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Example 4.3. Finally, we consider a large open cavity as shown in Figure 4.7. The parameters
are chosen as: ω = 2 and ε0 = 1. The incident plane wave is ui = eik0(x1 sin θ−x2 cos θ) with
θ = π/3. The magnitude of the electric field and magnetic field at open aperture are illustrated
in Figs. 4.8 and 4.9. It is observe that the numerical results seems reasonable.
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[5] I. Babuška and A. Aziz, Survey lectures on mathematical foundations of the finite element method,

The Mathematical Foundations of the Finite Element Method with Application to Partial Differ-

ential Equations, ed. by A. Aziz, New York, 1973, 5-359.

[6] J.P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput.

Phys., 114 (1994), 185-200.

[7] Z.M. Chen and X.Z. Liu, An adaptive perfectly mathed technique for time-harmonic scattering

problems, SIAM J. Numer. Anal., 43 (2005), 645-671.

[8] F. Collino and P. Monk, The perfectly matched layer in curvilinear coordinates, SIAM J. Sci.

Comput., 19 (1998), 2061-2090.

[9] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 2nd ed.,

Springer-Verlag, New York, 1998.

[10] M. Lassas and E. Somersalo, On the existence and convergence of the solution of PML equations,

Computing, 60 (1998) 229-241.

[11] D. Jerison and C. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger

operators, Ann. Math., 121 (1985), 463-488.

[12] T. Senior, K. Sarabandi and J. Natzke, Scattering by a narrow gap, IEEE T. Antenn. Propag.,

38 (1990), 1102-1110.

[13] E. Turkel and A. Yefet, Absorbing PML boundary layers for wave-like equations, Appl. Numer.

Math., 27 (1998), 533-557.

[14] G. N. Watson, A Treatise on The Theory of Bessel Functions, Cambridge, 1952.

[15] Wendland W. L. and Stephan E. P., A hypersingular boundary integral method for two-dimension

screen and crack problems, Arch. Ration. Mech. An., 112 (1990), 363-390.

[16] J. Wood and A. Wood, Development and numerical solution of integral equations for electro-

magnetic scattering from a trough in a ground plane, IEEE T. Antenn. Propag., 47:8 (1999),

1318-1322.

[17] D.Y. Zhang and F.M. Ma, Electromagnetic scattering by a chiral grating in a homogeneous chiral

environment and its finite element method with perfectly matched absorbing layers, Numerical

Mathematics A Journal of Chinese Universities (English Series), 15:2 (2006), 164-179.

[18] D.Y. Zhang and F.M. Ma, A finite element method with perfectly matched absorbing layers for

the wave scattering by cavities, Chinese Journal of Computational Physics, 25:3 (2008), 301-308.


