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Abstract

We consider solving linear ill-posed operator equations. Based on a multi-scale decom-

position for the solution space, we propose a multi-parameter regularization for solving the

equations. We establish weak and strong convergence theorems for the multi-parameter

regularization solution. In particular, based on the eigenfunction decomposition, we de-

velop a posteriori choice strategy for multi-parameters which gives a regularization solution

with the optimal error bound. Several practical choices of multi-parameters are proposed.

We also present numerical experiments to demonstrate the outperformance of the multi-

parameter regularization over the single parameter regularization.

Mathematics subject classification: 47A52.
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1. Introduction

The classical regularization method for solving ill-posed problems, which was proposed in-

dependently by Phillips [18] and Tikhonov [22], has been proved to be an excellent idea to

overcome the difficulty caused by the ill-posedness, see [9, 12, 19, 23]. This regularization

method turns an ill-posed problem to a well-posed problem which can be efficiently solved by

standard numerical methods (cf. [1]). Such a method using a single parameter regularization is

based on the hypothesis that noise effect to an ill-posed problem is uniformly distributed in all

frequency bands of the solution. The single parameter regularization method adds a uniform

penalty to every frequency band of the solution or the high-frequency band of the solution. The

first case may result in solutions that are too smooth to preserve certain features of the original

data. In the second case, the regularization solutions may be affected by low-frequency noise.

In practice, we observe different circumstances which lead us to consider multi-parameter

regularization. Often, noise distributes differently in different parts of the physical domain.

There is a case when noise distributes differently in different frequency bands. Sometimes noise

has different effects to different frequency bands (scales) of the solution even though the noise

is uniformly distributed. These circumstances suggest an introduction of multi-parameters to
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the regularization method. Multi-parameter regularization has been used in treating systems of

linear equations in a few different contexts. A choice of multiple parameters was proposed in [2]

by using the generalized L-curve method. A multi-parameter regularization algorithm for the

solution of over-determined, ill-conditioned linear systems was proposed in [3], where numerical

examples were presented to demonstrate that the proposed algorithm is stable and robust. In

[8], the authors used a multi-parameter regularization method for atmospheric remote sensing.

A multi-parameter regularization was used in [13] for solving a deconvolution problem in signal

analysis when a wavelet transform was used to represent the system. The paper [14] proposed

to use multi-parameter regularization methods based on biorthogonal wavelets and tight frame

filter banks arising from the blurring kernel for treating the ill-posed problem related to high-

resolution image reconstruction.

It is the main purpose of this paper to present convergence analysis for the multi-parameter

regularization method for solving ill-posed operator equations when the solution space has a

multi-scale decomposition (cf. [6, 10]). This paper will be based on the hypotheses that the

function space and operators have a multi-scale structure and that noise has a different effect to

a different frequency band of the solution due to the multi-scale structure of the solution, even

though the noise is uniformly distributed. The proposed multi-parameter regularization will add

different penalty parameters to different scales of the solution so that the ill-posedness is treated

efficiently. At this point, we would like to point out that the multi-parameter regularization

is more effective than single parameter regularization only if more information on the operator

and the noise such as multi-scale decomposition is available.

The paper is organized into four sections. We describe in Section 2 the multi-parameter

regularization method. Section 3 is devoted to the development of weak and strong conver-

gence for the multi-parameter regularization solution. We also present an error estimate for

the regularization solution and obtain a special result for regularization using the eigenfunction

decomposition. In Section 4, we suggest a posteriori strategy for the choice of multi-parameters

which gives a regularization solution with the optimal error bound when the eigenfunction

decomposition is used. A numerical example is presented to illustrate the efficiency of this

strategy. We also propose in Section 4 several practical strategies for the choice of the multiple

parameters for the finite dimensional case, and present three numerical experiments in signal

deconvolution and denoising using the multi-parameter regularization method. These exper-

iments demonstrate the outperformance of the multi-parameter regularization over the single

parameter regularization.

2. Multi-parameter Regularization Methods

We introduce in this section the multi-parameter regularization method for solving linear

ill-posed operator equations based on a multi-scale decomposition of the solution space.

We first describe the linear ill-posed problem that we consider in this paper and recall the

classical Tikhonov regularization method. Let X and Y be two Hilbert spaces. We will use

(·, ·) for the inner product and ‖ · ‖ for the norm in both spaces without distinguishing them.

Suppose that K : X → Y is a linear compact operator. For a function f ∈ Y, we consider the

operator equation of the first kind

Ku = f. (2.1)

We assume that the range R(K) of operator K is of infinite dimension and thus, the solution of

(2.1) does not continuously depend on the right-hand side f , that is, equation (2.1) is ill-posed
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[12]. In this paper, without loss of generality we assume that f ∈ R(K) and the operator K is

injective, which means the nullspace N(K) = {0}.
In practice, the exact data f ∈ Y may not be available. Instead, one may have a noisy

data f δ ∈ Y with a known error level δ > 0, i.e., ‖f δ − f‖ ≤ δ. Actually, we have to solve the

perturbed equation

Kuδ = f δ. (2.2)

Since its solution does not continuously depend on the right-hand side data f δ, regulariza-

tion is necessary. The Tikhonov regularization method for equation (2.2) is to seek a stable

approximate solution from the following equation for an appropriate positive parameter α

(αI + K∗K)uδ
α = K∗f δ, (2.3)

where K∗ is the adjoint operator of K. The parameter α is called the regularization parameter.

This is the classical single parameter regularization which imposes a uniform penalty parameter.

It works well when the operator K and the given data f have only single scale representations.

When multi-scale representations of the operator K and the given data f are available, one

should make use of the multi-scale structure to impose different penalty parameters for different

scales aiming at a better regularization. Such a method is called a multi-parameter regularization

method, which we formulate precisely below. Let N0 := {0, 1, · · · } and for A,B ⊆ X, let A⊕⊥ B

denote the direct sum of subspaces A and B with A⊥B. Suppose that the space X has a

multi-scale decomposition, that is,

X :=
⊕

i∈N0

⊥
Wi. (2.4)

The spaces Wi could be generated by wavelet functions, by other orthogonal systems or by

eigenfunctions of the operator K∗K. See [7] for a general reference on wavelet analysis and

see [16, 17] for construction of wavelets on bounded domains which are particularly useful for

solving integral equations.

Let Qi denote the orthogonal projection from X onto Wi, i ∈ N0. As a result, the identity

operator I can be written as I :=
∑

i∈N0
Qi. Using these notations, we have two ways to

express a vector v ∈ X either as v :=
∑

i∈N0
Qiv ∈ W0⊕⊥W1⊕⊥ · · · , or v := [Q0v,Q1v, · · · ]T ∈

W0×W1×· · · . Following [4, 5], the operator K∗K : X → X can then be identified in the matrix

notation as

K∗K =



















Q0K∗KQ0 Q0K∗KQ1 · · · Q0K∗KQk · · ·
Q1K∗KQ0 Q1K∗KQ1 · · · Q1K∗KQk · · ·

...
...

. . .
...

QkK∗KQ0 QkK∗KQ1 · · · QkK∗KQk · · ·
...

...
...

. . .



















. (2.5)

For nonnegative numbers λi, i ∈ N0, let Λ be an operator from X to X defined by

Λ :=
∑

i∈N0

λiQi, (2.6)

which has the matrix form

Λ =







λ0Q0 0 · · ·
0 λ1Q1 · · ·
...

...
. . .






. (2.7)
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We call equations

(Λ + K∗K)uΛ = K∗f (2.8)

and

(Λ + K∗K)uδ
Λ = K∗f δ (2.9)

the multi-parameter regularization method for equations (2.1) and (2.2), respectively, and call

[λi : i ∈ N0]
T the regularization parameter vector. This method allows us to choose different

parameters according to the multi-scale behavior of the operators and the perturbations of the

data in different scales. Here we consider an infinitely dimensional regularization parameter

vector for theoretical interest in order to better understand the insight of this method, while, in

practice, only finite dimensional regularization parameter vector will be used. We will discuss

this later in the next section. Introducing λ− := inf{λi : i ∈ N0} and λ+ := sup{λi : i ∈ N0},
when λ− = λ+ = α > 0, the multi-parameter regularization scheme (2.9) reduces to the single

parameter regularization scheme (2.3).

We say that Λ has property (A) if there exists a positive constant cΛ such that for all x ∈ X

((Λ + K∗K)x, x) ≥ cΛ‖x‖2. (2.10)

If Λ has property (A), then the inverse operator (Λ + K∗K)−1 exists and has the estimate

‖(Λ + K∗K)−1‖ ≤ 1/cΛ. (2.11)

We remark that if λ− > 0, then Λ has property (A) with cΛ := λ−. Moreover, for any

f ∈ Y, (2.8) has unique solution uΛ := RΛf, which depends continuously on f , where RΛ :=

(Λ + K∗K)−1K∗. It can be proved that for any f ∈ Y, uΛ ∈ X is the solution of (2.8) if and

only if uΛ is the minimizer of the functional

F (u) := ‖Ku− f‖2 +
∑

i∈N0

λi‖Qiu‖2, u ∈ X. (2.12)

Note that if λi is chosen as zero it means that we do not impose a regularization penalty in the

scale corresponding to i and if λi is chosen as +∞ it means Qiu = 0. In the latter case, the

component of the regularization solution corresponding to scale i is equal to zero.

3. Convergence Analysis

In this section, we present convergence results and error estimates for the regularization

methods (2.8) and (2.9) for solving equation (2.1). The first result is a weak convergence of

the regularization method (2.8) with the infinite number of regularization parameters λi. This

result also prepares us for proving the main result of this section, the strong convergence of the

regularization method (2.8) with a finite number of regularization parameters Λ. As we pointed

out in Section 1 and as we will demonstrate in numerical experiments, the case of using only

finite number of parameters is the most important one in applications. When the regularization

operator Λ is a self-adjoint bounded and positive semi-definite linear operator not necessarily

in the form (2.7) we establish an error estimate of the regularization solution if Λ commutes

with K. We also present error expressions of the regularization solution when the multi-scale

decomposition of space X is given by the eigenfunctions of K∗K.

We now present a weak convergence theorem.
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Theorem 3.1. Suppose that K : X → Y is a linear injective compact operator and Λ : X → X

is defined by (2.6) having property (A). Let u∗ be the solution of (2.1) and uΛ the solution of

(2.8). If λ+/cΛ = O(1) as λ+ → 0, then uΛ converges weakly to u∗, that is, uΛ ⇀ u∗, as

λ+ → 0, in the sense that (uΛ, x) → (u∗, x), as λ+ → 0, for all x ∈ X.

Proof. We denote by eΛ the error of the regularization solution, that is, eΛ := u∗ − uΛ. It

follows from property (A) that the inverse (Λ + K∗K)−1 exits and thus by (2.8) we have that

eΛ = u∗ − (Λ + K∗K)−1K∗f = (Λ + K∗K)−1Λu∗. (3.1)

Therefore, by (2.11) and the hypotheses of this theorem, there exists a positive constant c

independent of Λ such that

‖eΛ‖ = ‖(Λ + K∗K)−1Λu∗‖ ≤ λ+/cΛ‖u∗‖ ≤ c‖u∗‖. (3.2)

This ensures that there exist a subsequence Λj of Λ converging to 0 and some v ∈ X such that

eΛj
converges weakly to v, that is,

eΛj
⇀ v, as j → ∞. (3.3)

Since for each positive integers j, (Λj + K∗K)eΛj
= Λju∗, we have that

((Λj + K∗K)eΛj
, eΛj

) = (Λju∗, eΛj
), (3.4)

which together with (3.2) and the fact that (ΛjeΛj
, eΛj

) ≥ 0 yields

‖KeΛj
‖2 ≤ (Λju∗, eΛj

) ≤ c‖u∗‖2‖Λj‖. (3.5)

Letting j → ∞ in (3.5) we find that

lim
j→∞

‖KeΛj
‖ = 0. (3.6)

Noticing that a compact linear operator maps a weak convergence sequence to a strong conver-

gence sequence, since K is a compact linear operator, it follows from (3.3) that

lim
j→∞

‖KeΛj
−Kv‖ = 0.

This with (3.6) yields

Kv = 0. (3.7)

Because of the injectivity of K we conclude from (3.7) that v = 0. Thus, it follows from (3.3)

that eΛj
⇀ 0, as j → ∞.

We next show by contradiction that we in fact have the result

eΛ ⇀ 0, as λ+ → 0. (3.8)

If equation (3.8) does not hold, there must be a subsequence eΛj
of eΛ which converges weakly

to a limit different from zero as Λj converges to 0. This subsequence is also bounded and thus,

by repeating the proof above, we can prove that itself has a subsequence that converges weakly

to zero. This is a contradiction and completes the proof of this theorem.

We now consider the regularization operator having only finite number of parameters. In

practice, using only finite number of parameters is more interesting. For example, applications
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considered in [13, 14] use only finite number of parameters. Specifically, for a fixed positive

integer N we assume that the space X has the decomposition

X =
⊕

i∈ZN+1

⊥
Wi, (3.9)

where ZN+1 := {0, 1, · · · , N}. In this setting, there are two possibilities. The space X is a

finite dimensional space or the space WN may be of infinite dimension. In the second case,

the space WN combines all subspaces Wi in (2.4) with indices i ≥ N . Corresponding to the

decomposition (3.9), operators K∗K and Λ become

K∗K =











Q0K∗KQ0 Q0K∗KQ1 · · · Q0K∗KQN

Q1K∗KQ0 Q1K∗KQ1 · · · Q1K∗KQN

...
...

. . .
...

QNK∗KQ0 QNK∗KQ1 · · · QNK∗KQN











, (3.10)

and

Λ =
∑

i∈ZN+1

λiQi =











λ0Q0 0 · · · 0

0 λ1Q1 · · · 0
...

...
. . .

...

0 0 · · · λNQN .











, (3.11)

respectively. In this setting, we prove the next strong convergence result.

Theorem 3.2. Suppose that K : X → Y is a linear injective compact operator, and Λ : X → X

is an operator defined by (3.11) and having property (A). Let u∗ be the solution of (2.1) and uΛ

the solution of (2.8). If λ+/cΛ = O(1) as λ+ → 0, then uΛ converges strongly to u∗, that is,

‖uΛ − u∗‖ → 0, as λ+ → 0.

Proof. It follows from Theorem 3.1 that the error of the regularization solution eΛ := u∗−uΛ

converges weakly to zero as λ+ → 0. We prove that in this case the convergence is strong. In

fact, it follows from (2.1) and (2.8) that

(Λ + K∗K)eΛ = Λu∗.

By property (A), the above equation and (3.11), we obtain the inequality

cΛ‖eΛ‖2 ≤ ((Λ + K∗K)eΛ, eΛ) = (Λu∗, eΛ) =
∑

j∈ZN+1

λj(Qju∗, eΛ),

which leads to the estimate

‖eΛ‖2 ≤ 1

cΛ

∑

j∈ZN+1

λj(Qju∗, eΛ).

Since 0 ≤ λj ≤ λ+, for all j ∈ ZN+1, we conclude that

‖eΛ‖2 ≤ λ+

cΛ

∑

j∈ZN+1

|(Qju∗, eΛ)|. (3.12)
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Noting that the integer N is fixed, in (3.12) letting λ+ → 0, using the hypothesis on the ratio of

λ+ and cΛ, and employing the weak convergence proved in Theorem 3.1, we see that ‖eΛ‖ → 0

as λ+ → 0.

We now turn to establishing a convergence result for the regularization methods (2.8) and

(2.9) when X = Y and Λ has an additional property which we define next. Operator Λ is said

to have property (B) if it is a self-adjoint bounded and positive semi-definite linear operator

and it commutes with K, i.e., ΛK = KΛ. An example of such operators is Λ := f(K), where

f(x) is a polynomial in x. However, the regularization operator Λ in this case is not necessarily

in the form (2.7).

Lemma 3.1. Suppose that K is a linear injective compact operator from X to X, and Λ : X → X

is an operator having properties (A) and (B). Then

‖(Λ + K∗K)−1Λ‖ ≤ 1, (3.13)

‖(Λ + K∗K)−1K∗K‖ ≤ 1 (3.14)

and

‖(Λ + K∗K)−1K∗‖ ≤ 1/
√
cΛ. (3.15)

Proof. By using the property (B), we have that

‖(Λ + K∗K)x‖2 = ‖Λx‖2 + ‖K∗Kx‖2 + 2(Λx,K∗Kx)
= ‖Λx‖2 + ‖K∗Kx‖2 + 2(ΛKx,Kx).

The positive semi-definiteness of Λ ensures that

‖(Λ + K∗K)x‖ ≥ ‖Λx‖ and ‖(Λ + K∗K)x‖ ≥ ‖K∗Kx‖.

It follows from property (A) that (Λ + K∗K)−1 exists. Thus, the above two inequalities imply

that

‖Λ(Λ + K∗K)−1‖ ≤ 1 and ‖K∗K(Λ + K∗K)−1‖ ≤ 1. (3.16)

From property (B) we have that

(Λ + K∗K)−1Λ = Λ(Λ + KK∗)−1 and (Λ + K∗K)−1K∗K = K∗K(Λ + KK∗)−1.

Inequalities (3.13) and (3.14) follows directly from estimates (3.16) and the above two equations.

It remains to prove the estimate (3.15). A way similar to the proof of the second estimate

in (3.16) leads to

‖KK∗(Λ + KK∗)−1‖ ≤ 1. (3.17)

From property (B) we also have that

(Λ + K∗K)−1K∗ = K∗(Λ + KK∗)−1.

This ensures that for any x ∈ X,

‖(Λ + K∗K)−1K∗x‖2 = (K∗(Λ + KK∗)−1x,K∗(Λ + KK∗)−1x)

= (KK∗(Λ + KK∗)−1x, (Λ + KK∗)−1x)

≤ ‖KK∗(Λ + KK∗)−1‖‖(Λ + KK∗)−1‖‖x‖2.
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Using (3.17) in the above inequality yields

‖(Λ + K∗K)−1K∗x‖2 ≤ ‖(Λ + KK∗)−1‖‖x‖2.

Combining this inequality with (2.11) gives the estimate (3.15).

The above lemma leads to the next convergence theorem.

Theorem 3.3. Suppose that K is a linear injective compact operator from X to X, and that Λ

is an operator having properties (A) and (B). Let u∗, uΛ and uδ
Λ be the solutions of (2.1), (2.8)

and (2.9), respectively. Then

‖u∗ − uΛ‖ → 0, as ‖Λ‖ → 0,

and

‖u∗ − uδ
Λ‖ → 0, as ‖Λ‖ → 0, δ → 0 and δ/

√
cΛ → 0.

Proof. It follows from the second inequality of Lemma 3.1 that

‖uΛ‖ = ‖(Λ + K∗K)−1K∗Ku∗‖ ≤ ‖u∗‖. (3.18)

Thus, there exist a subsequence uΛj
of uΛ and an element v ∈ X such that

uΛj
⇀ v, with ‖Λj‖ → 0, as j → ∞. (3.19)

From the equation (2.8), (3.19) and the injectivity of the operator K we conclude v = u∗. This

with (3.19) and (3.18) yields

‖u∗‖ ≤ lim inf
j→∞

‖uΛj
‖ ≤ lim sup

j→∞
‖uΛj

‖ ≤ ‖u∗‖,

which leads to lim‖Λ‖→0 ‖uΛ‖ = ‖u∗‖, from which with (3.19) we obtain the first desired

convergence result.

To prove the second convergence result, we use

‖u∗ − uδ
Λ‖ ≤ ‖u∗ − uΛ‖ + ‖uΛ − uδ

Λ‖. (3.20)

By applying the third inequality of Lemma 3.1, we find that

‖uΛ − uδ
Λ‖ = ‖(Λ + K∗K)−1K∗(f − f δ)‖ ≤ δ/

√
cΛ. (3.21)

The second convergence follows from inequality (3.20), this estimate and the first convergence

of this theorem.

The convergence established in the last theorem holds as ‖Λ‖ → 0. Although ‖Λ‖ might

be viewed as one “parameter”, the operator Λ can contain multiple parameters which encode

different noise scales. Hence, it significantly differs from the single parameter regularization.

Along this line, we present in the following theorem an error estimate for the regularization

solution uδ
Λ defined by (2.9) when Λ has property (B). To prepare for the proof of this error

estimate, we first recall in the next lemma an interpolation inequality for the positive semi-

definite operator A, which can be found in [19]. For convenience of the reader, we provide a

proof of this inequality.
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Lemma 3.2. If 0 ≤ ν ≤ 1, then there exists a positive constant c such that for all positive

semi-definite operators A and all x ∈ X,

‖Aνx‖ ≤ c‖Ax‖ν‖x‖1−ν .

Proof. It is clear that the inequality holds if ν = 0, 1 or x = 0. It remains to prove the

inequality when 0 < ν < 1 and x 6= 0. Note that

Aνx =
sinπν

π

∫ +∞

0

sν−1(sI + A)−1Axds.

We choose η := ‖Ax‖/‖x‖ and write

Aνx =
sinπν

π

∫ η

0

sν−1(sI + A)−1Axds+
sinπν

π

∫ +∞

η

sν−1(sI + A)−1Axds.

By using ‖(sI + A)−1A‖ ≤ 1 and ‖(sI + A)−1‖ ≤ 1/s, we obtain that

‖Aνx‖ ≤ | sinπν|
π

∫ η

0

sν−1ds‖x‖ +
| sinπν|

π

∫ +∞

η

sν−2ds‖Ax‖

≤
( | sinπν|

νπ
+

| sinπν|
(1 − ν)π

)

‖Ax‖ν‖x‖1−ν,

which proves the result of this lemma.

We are now ready to prove the theorem.

Theorem 3.4. Suppose that K is a linear injective compact operator from X to X, and Λ : X →
X has properties (A) and (B). Let u∗ and uδ

Λ be the solutions of (2.1) and (2.9), respectively.

If u∗ = (K∗K)νω with ω ∈ X, and 0 < ν ≤ 1, then there exists a constant c independent of Λ

and δ such that

‖u∗ − uδ
Λ‖ ≤ c‖ω‖‖Λ‖ν + δ/

√
cΛ.

Proof. Since u∗ = (K∗K)νω, we have that

u∗ − uΛ = (Λ + K∗K)−1Λ(K∗K)νω.

This with property (B) yields that

u∗ − uΛ = [(Λ + K∗K)−1Λ](1−ν)[(Λ + K∗K)−1K∗K]νΛνω.

By repeatedly using Lemma 3.2, we find that there exists a positive constant c such that for all

positive semi-definite operators Λ

‖u∗ − uΛ‖ ≤ c‖(Λ + K∗K)−1Λ‖(1−ν)‖(Λ + K∗K)−1K∗K‖ν‖Λ‖ν‖ω‖.

By employing the first and second estimates of Lemma 3.1, we obtain that ‖u∗ − uΛ‖ ≤
c‖ω‖‖Λ‖ν. Combining (3.20), (3.21) and above inequality yields the desired estimate.

In the remainder of this section we present a special result when the space Wi, i ∈ N0, that

appear in (2.4) are chosen to be the eigenfunction spaces of the operator K∗K. Choosing the

spaces Wi, i ∈ N0, as the eigenfunction spaces of the operator K∗K is practical for computation

purpose only if the eigenvalues and eigenfunctions are available, which are possible in some
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cases. Nevertheless, they give intrinsic properties of the multi-parameter regularization for

ill-posed equations.

Suppose that K : X → Y is injective and {φi, ψi, µi : i ∈ N} is the singular system of

K. Thus, {φn : n ∈ N} is a complete orthonormal system of the space X. We remark that

the classical Picard theorem for single regularization solution can be extended to the multi-

parameter regularization solution in the form

uΛ =
∑

n∈N

µn(f, ψn)(Λ + µ2
nI)−1φn (3.22)

and

uδ
Λ =

∑

n∈N

µn(f δ, ψn)(Λ + µ2
nI)−1φn. (3.23)

For n ∈ N0, let W0
n := span{φn}, Q0

n be the orthogonal projection from X onto W0
n and Λ0 be

the regularization operator corresponding to Q0
n. In this setting, equation (2.8) becomes

(Λ0 + K∗K)uΛ0
= K∗f (3.24)

and equation (2.9) becomes

(Λ0 + K∗K)uδ
Λ0

= K∗f δ. (3.25)

To present the error of the regularization solution, in addition to the hypothesis ‖f − f δ‖ ≤ δ

for some δ > 0 as we always assume in the single parameter regularization, we suppose that

the noise in the given data f has the representation that

f − f δ =
∑

n∈N0

ηnψn, with |ηn| ≤ δn, δ =

(

∑

n∈N0

δ2n

)
1
2

, (3.26)

where ψ0 ∈ N(K∗), the null space of K∗, with ‖ψ0‖ = 1. As direct consequences of (3.22) and

(3.23), we have the next result.

Proposition 3.1. Suppose that K is a linear injective compact operator from X to Y and that

the operator Λ0 is chosen so that the inverse operator (Λ0 + K∗K)−1 exists. Let uΛ0
and uδ

Λ0

be the solution of equation (3.25) and (3.24), respectively. Then

‖u∗ − uΛ0
‖2 =

∑

n∈N

|(u∗, φn)|2
(

λn

λn + µ2
n

)2

, (3.27)

and

‖u∗ − uδ
Λ0
‖2 =

∑

n∈N

[

λn(u∗, φn) + ηnµn

λn + µ2
n

]2

. (3.28)

4. Parameter Choices and Numerical Experiments

A crucial and challenging issue for the regularization method is the choice of regularization

parameters. The general principle for the choice of parameters is to minimize the approximation

error while controlling the condition number of the resulting regularized operator or matrix.

The choices of parameters for the multi-parameter regularization method require further sub-

stantial study to provide sound theoretical results. However, in this section we discuss several
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practical parameter choice strategies for the matrix case, based on different a prior knowledge

of the original matrix. The ideas for these strategies are motivated by the single parameter

regularization (cf. [11, 15, 20, 21, 24, 25]). We point out that once multi-parameters are chosen

as suggested by a choice strategy, the computational cost for the multi-parameter regularization

is the same as that for the single parameter regularization. We also provide examples to com-

pare the numerical performance of the multi-parameter regularization via the single parameter

regularization. For convenience, we use only finite dimensional examples.

The first parameter choice strategy is for the special case when the eigenfunction spaces are

used for the decomposition of the space X and f δ satisfies (3.26). Equation (3.28) in Proposition

3.1 leads to the parameter choice strategy by minimizing the right hand side of (3.28) to obtain

parameters λn. Specifically, for n ∈ N, we define the function Φn(λ) :=
[

λ(u∗,φn)+ηnµn

λ+µ2
n

]2

and

choose λn := argmin
λ≥0

Φn(λ). This results in the following rule for choices of parameters.

Rule 1: For each n ∈ N choose λn as follows.

1. If (u∗, φn)ηn < 0, then λn := −ηnµn/(u∗, φn).

2. Suppose (u∗, φn)ηn > 0. If |(u∗, φn)|µn > |ηn|, then λn := 0; if |(u∗, φn)|µn < |ηn|,
then λn := +∞; if (u∗, φn)µn = ηn, then λn ≥ 0.

3. If (u∗, φn) = 0, then λn := +∞.

Note that Rule 1 is an ideal a priori parameter choice strategy which uses the information

on u∗. It can not be implemented in practice. For this reason, we modify Rule 1 to propose

an a posteriori parameter choice strategy. In fact, noting that |(u∗, φn)|µn = |(f, ψn)|, we

replace |(u∗, φn)|µn by |(f δ, ψn)|, which approximates |(f, ψn)| and is also computable. More-

over, we replace ηn by its bound δn which we assume to be available. This leads to the next

implementable rule for choices of parameters.

Rule 2: For each n ∈ N, choose λn as follows.

1. If |(f δ, ψn)| ≤ δn, then λn := +∞.

2. If |(f δ, ψn)| > δn, then λn := µ2
nδn/(|(f δ, ψn)| − δn).

We present the first numerical example.

Example 1. Consider solving the linear system

Ku = f, where K =









10 7 8 7

7 5 6 5

8 6 10 9

7 5 9 10









, f =









32

23

33

31









. (4.1)

The exact solution of equation (4.1) is given by u∗ = [1, 1, 1, 1]T . The matrix K has the singular

value decomposition K = U diag(µi)V
T , where U = (u1, u2, u3, u4), V = (v1, v2, v3, v4), µ1 =

30.29, µ2 = 3.86, µ3 = 0.84, µ4 = 0.010. We then find that the condition number of matrix K is

cond(K) := µ1

µ4
= 2984.09. Hence the linear system is ill-conditioned. In fact, if the right hand

side f is perturbed by noise to the vector

f δ := (32.1343, 23.0039, 33.1249, 30.9204)T ,
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then the solution of the corresponding equation is

uδ = K−1f δ = (5.9234,−7.1591, 3.1397,−0.3005)T.

Since the error of this approximate solution is ‖uδ − u∗‖ = 9.8529, it is not an acceptable

approximate solution. Thus, we have to apply a regularization method to solve it.

To use the above multi-parameter regularization method we assume that f−f δ =
∑4

j=1 ηjuj

and ‖f − f δ‖ ≤ δ, with |ηn| ≤ δn, n = 1, 2, 3, 4, where ‖ · ‖ is the Euclidean norm, and

δ2 =
∑4

j=1 δ
2
j . The regularization solution has the form

uδ
Λ0

=

4
∑

i=1

uT
i f

δ µi

λi + µ2
i

vi. (4.2)

In the numerical results presented below we choose noise δ = 0.2 with different decomposi-

tions η := (η1, η2, η3, η4) and δ := (δ1, δ2, δ3, δ4) which satisfy δn = |ηn| for n = 1, 2, 3, 4:

Case 1 : η = (0.1, 0.1, 0.1, 0.1); Case 2 : η = (0.1, 0.1, 0.1,−0.1);

Case 3 : η = (0.1, 0.1,−0.1,−0.1); Case 4 : η = (−0.1,−0.1, 0.1, 0.1);

Case 5 : η = (−0.1, 0.1,−0.1, 0.1); Case 6 : η = (
√

0.2,
√

0.2, 0, 0);

Case 7 : η = (−
√

0.2,
√

0.2, 0, 0); Case 8 : η = (0,
√

0.2,
√

0.2, 0);

Case 9 : η = (0, 0,
√

0.2,
√

0.2); Case 10 : η = (0, 0,
√

0.2,−
√

0.2).

For comparison, we present a numerical result for the single parameter regularization with

optimal parameter α0 := arg min
α>0

‖uδ
α − u∗‖. In Table 4.1, we list the parameters Λ0 and Λ′

0

obtained by Rules 1 and 2, respectively, and in Table 4.2, we present the computed errors of

the regularization solutions corresponding to these choices. These numerical results show that

the multi-parameter regularization provides more accurate regularization solutions than the

single parameter regularization and the a posteriori parameter choice strategy (Rule 2) works

as well as Rule 1. We also observe that the regularization parameters are sensitive to the noise

decomposition and thus, they affect the result of regularization.

Next we present three practical choices of multi-parameters.

Strategy one is based on the assumption that spectrums of matrix K∗K have a decay trend

along its diagonal blocks in a multi-scale representation. We aim at reducing the condition

number of the resulting regularized matrix by choosing appropriate parameters. To this end,

we balance the distribution of the spectrums along the scales. Specifically, for each i ∈ ZN+1 we

compute the spectrums of QiK∗KQi and their mean value σi. We then set σmax := max{σi :

i ∈ ZN+1}, and choose λi := σmax − σi, for i ∈ ZN+1. Since by hypothesis, the absolute

values of entries decay quickly along the diagonal blocks, by the Weyl theorem, this choice of

parameters λi will result in a regularized matrix having condition number close to 1. This

choice was used in [13] in a numerical experiment for signal processing which gives satisfactory

results.

Strategy two uses a priori knowledge on the solution and noise. Recall that in the single

parameter case, following [15] a natural choice of regularization parameter is the noise-solution

ratio, that is, α := ‖f − f δ‖2/‖u‖2. We now extend this idea to the multiple parameter setting.

For given numbers δ and q := (q1, q2, · · · , qN ), we call u∗ ∈ X a generalized quasi-solution of

the equation (2.1) if it satisfies

‖Ku∗ − f‖ ≤ δ, ‖Qiu∗‖ ≤ qi, i ∈ ZN+1. (4.3)
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Table 4.1: Parameter choices.

Case α0 Λ0 = (λ1, λ2, λ3, λ4) Λ′

0 = (λ′

1, λ
′

2, λ
′

3, λ
′

4)

1 5.150 (1.528, 3.379, +∞, +∞) (1.528, 3.379, +∞, +∞)

2 4.155E-3 (1.528, 3.379, +∞, 4.159E-3) (1.528, 3.379, +∞, 4.159E-3)

3 4.156E-3 (1.528, 3.379, 5.381, 4.159E-3) (1.528, 3.379, 5.381, 4.159E-3)

4 3.196 (0, 0, +∞, +∞) (1.534, 6.190, +∞, +∞)

5 3.833 (0, 3.379, 5.381, +∞) (1.534, 3.379, 5.381, +∞)

6 0 (6.835, 1.511E+1, 0, 0) (6.835, 1.511E+1, 0, 0)

7 0 (0, 1.511E+1, 0, 0) (6.939, 1.511E+1, 0, 0)

8 1.475E+1 (0, 1.511E+1, +∞, 0) (0, 1.511E+1, +∞, 0)

9 9.975 (0, 0, +∞, +∞) (0, 0, +∞,+∞)

10 9.465 (0, 0, +∞, 1.86E-2) (0, 0, +∞, 1.86E-2)

Table 4.2: Computed error estimates.

Case ‖uδ
α0

− u‖ ‖uδ

Λ0
− u‖ ‖uδ

Λ′

0
− u‖ Case ‖uδ

α0
− u‖ ‖uδ

Λ0
− u‖ ‖uδ

Λ′

0
− u‖

1 2.462E-1 2.445E-1 2.445E-1 6 1.169E-1 6.205E-14 6.205E-14

2 1.209E-1 1.567E-2 1.567E-2 7 1.169E-1 1.477E-2 2.953E-2

3 1.207E-1 4.682E-14 4.682E-14 8 2.492E-1 1.567E-2 1.567E-2

4 2.504E-1 2.459E-1 2.500E-1 9 2.546E-1 2.445E-1 2.445E-1

5 2.446E-1 2.440E-1 2.441E-1 10 2.537E-1 1.567E-2 1.567E-2

We assume that problem (4.3) is stable in the sense that

S(δ,q) := sup{‖u‖ : u ∈ X, ‖Ku‖ ≤ δ and ‖Qiu‖ ≤ qi for i ∈ ZN+1} → 0, as δ → 0.

We also assume that the noise distribution on different scales is known, that is, there is a vector

(δ0, δ1, · · · , δN ) such that

∑

i∈ZN+1

δ2i = δ2, ‖Qi(f − f δ)‖ ≤ δi, i ∈ ZN+1.

Note that δi is an upper bound to control the noise in scale space Wi. We choose λ :=

(λ0, λ1, · · · , λN ) with

λi = δ2i /q
2
i , i ∈ ZN+1. (4.4)

From (2.12), solving the multi-parameter regularization equation is equivalent to minimizing

the functional F (u). It can be shown that if λi, i ∈ ZN+1, are chosen as in (4.4) and if u ∈ X

satisfies the condition

‖Ku− f‖2 +
∑

i∈ZN+1

λi‖Qiu‖2 ≤ 2δ2,

then it is a nice approximation of the generalized quasi-solution u∗ that satisfies (4.3).

In the next result we present the condition number of the regularized operator defined

by KΛ := K∗K +
∑

i∈ZN+1
λiQi, using the choice of parameters. We define δ and δ to be the

minimum and maximum values of the components of δ, respectively, and define q and q likewise.

If λi, i ∈ ZN+1, are chosen as in (4.4) and if Qi are orthogonal projections, then

cond (KΛ) ≤ [(qq‖K‖)2 + (qδ)2]/δ2.

Strategy three is proposed for regularization of an n × n matrix K which has a special

structure in which an orthonormal basis of the null space N(K) of K is easy to obtain. In
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particular, when K is of the Γ-type in the sense that the matrix can be partitioned into four

blocks, where the lower right block is the zero square matrix and its order is much larger than

that of the upper left block, the matrix has the above structure. The (compressed) matrix

representation for an integral operator with a smooth kernel in a multi-scale basis is of the

Γ-type. Let Bt be the matrix whose column vectors form an orthonormal basis of the null

space N(K). Set m = dimN(K) and let S denote the orthogonal complement of N(K) in Rn.

Then the dimension of S is n−m. We denote by J the matrix representation of the orthogonal

projection from Rn onto S. It can be shown that N(K) = N(KtK). Let σi, i = 1, 2, · · · , n−m,

denote the nonzero eigenvalues of KtK. Let σ and σ be the maximal and minimal eigenvalue

of KtK, respectively. We choose

λ0 = σ/2 − σ, λi = σ/2, i = 1, 2, · · · , N. (4.5)

We define a block diagonal matrix Λ := diag(λ0I0, λ1I1, · · · , λN IN ), where Ii are identity

matrices and the order of I1 is equal to n−m, the dimension of S. We propose a regularization

method by
(

KtK + (J t, Bt)Λ(J t, Bt)t
)

uΛ = Ktf.

Note that in this method we choose the regularization matrix as (J t, Bt)Λ(J t, Bt)t which is not

necessarily a diagonal matrix. It can be proved that if λi, i ∈ ZN+1, are chosen as in (4.5), the

condition number of the matrix KtK + (J t, Bt)Λ(J t, Bt)t is bounded above by 3.

In the following, we present three numerical experiments in signal processing. The first

experiment deals with noise uniformly distributed in the frequency domain, the second considers

noise not uniformly distributed in the frequency domain and the third treats noise piecewise

distributed in the time domain. All of these examples demonstrate that the multi-parameter

regularization performs better than the single parameter regularization.

Example 2. Consider solving the linear system

Fu = h, (4.6)

where F is a singular symmetric toeplitz matrix. Setting K̃ := FTF and f := F th, using the

least squares method, the linear system becomes

K̃u = f. (4.7)

We suppose that the data f contains the Gaussian white noise which is assumed to be uniformly

distributed in the frequency domain. In order to obtain a multiscale representation for K̃, we

use the low-pass filter {a, b, c, d} and the high-pass filter {d,−c, b,−a}, with

a :=
1 +

√
3

4
√

2
, b :=

3 +
√

3

4
√

2
, c :=

3 −
√

3

4
√

2
, d :=

1 −
√

3

4
√

2
,

to form the wavelet transform matrix Pl,n, where l indicates the number of high frequency levels

used and 2n denotes the length of data, see [13]. The transform converts K̃ into K := Pl,nK̃Pl,n

having a multiscale structure. For positive λi, i = 1, 2, · · · , ℓ+1, we introduce the regularization

matrix

Λ := diag (λ1I2n0 , λ2I2n0 , λ3I2n0+1 , · · · , λℓ+1I2n−1), (4.8)

where 2n0 denotes the size of the block corresponding to the coarsest level. The multi-parameter

regularization equation is then given by

(Λ +K)Pℓ,nuΛ = Pℓ,ng. (4.9)
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Table 4.3: The square norm of noise and data on each band.

Band 4 Band 3 Band 2 Band 1

The square norm of noise 7.8479 7.3132 11.5803 16.0512

The relative square norm of noise 0.3531 0.3290 0.5210 0.7221

The square norm of signal 405.5445 67.6911 32.9987 30.4510

The relative square norm of signal 0.9967 0.1664 0.0811 0.0748

SNR 0.0194 0.1080 0.3509 0.5271

In our simulation, we choose F to be the symmetric toeplitz singular matrix with the first

row given by [0.1467, 0.0962, 0.0267, 0.003, 0.0001, 0, · · · , 0] . The original “Piece-Regular” data

u in our experiment is taken from the WaveLab toolbox at “www.stat.stanford.edu/˜wavelab/”.

We choose the length of data as 512 and add to data h the Gaussian noise with zero mean and

variance σ = 1. We perform three times wavelet transforms on the noise and data, which

correspond to ℓ = 3 and decompose all functions to four frequency bands. In Table 4.3, we

report the square norm of noise and data on different bands and the corresponding signal-to-

noise ratio (SNR). From Table 4.3, we find that the Gaussian white noise has a scaling relation

among different bands, that is, δi ≈ 2−
i
2 δ, where δi is the square norm of noise at the i-th band

and δ is the square norm of noise. However, we do not find the same relation for a practical

data, which has a multi-scale structure but is not simply scaling.

We choose the regularization parameters λ1 = 0.0194, λ2 = 0.1080, λ3 = 0.3509, λ4 = 0.5271

according to strategy two. Clearly, they do not have the same scaling relation as the noise

components do, due to the non-scaling relation of the signal. We build the multi-parameter

regularization matrix Λ by (4.8) accordingly with ℓ := 3 and n0 := 6, and solve numerically the

multi-parameter regularization equation (4.9) with n := 9. In Fig. 4.1 we compare the restored

signals by using the multi-parameter regularization and the single parameter regularization. In

the single parameter regularization model we use the optimal parameter α = 0.08. Clearly, the

result obtained from using the multi-parameter regularization is significantly better than that

from using the single parameter regularization.

Example 3. Consider a denoising problem in petroleum industry. In petroleum drilling, an

electric detonator is used to detect the drilling curve. As a pre-process, one has to recover the

original data from noisy data, where the noise is mainly from a nearby electricity device. We

formulate the denoising problem as an ill-posed problem described by

f = Ku+ w, (4.10)

where f is the observed data, w is noise and K is the identity matrix. Since we already

know that the electric device adds a strong 50HZ noise to the recorded data, we propose a

regularization method according to this special situation.

In our numerical test, we fix the length of data as 1024. Because of the previous knowledge

of noise, we consider a decomposition of R1000 as

R
1000 =

1000
⊕

i=1

Wi,

where

Wi = span {ei}, with ei(j) = cos
π(2j − 1)(i− 1)

2 × 1000
, j = 1, 2, · · · , 1000.
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Fig. 4.1. (a) The original signal; (b) the blurred and noisy data; (c) the restored signal by the single

regularization method with α = 0.08; (d) the restored signal by the multi-parameter regularization

method.

Setting E := (e1, e2, · · · , e1000), we transform the original equation (4.10) to equation

KEu = Ef. (4.11)

We choose the regularization matrix Λ as a diagonal matrix with diagonal elements given by

λi = |(w,ei)|
|(u,ei)|

, i = 1, 2, · · · , 1000, according to strategy 2. In Fig. 4.2, we compare the recovered

signals by using the multi-parameter regularization and by the single parameter regularization,

where the optimal single parameter α = 0.1 is chosen. Again, the multi-parameter regularization

performs better than the single parameter regularization.

Example 4. Consider recovering a noisy signal from a piecewise uniformly distributed noise.

The original data is a piecewise constant function with a different noise magnification on dif-

ferent intervals. Consider solving the equation

f = Ku+ w, (4.12)

where f is the observed data, w is noise and K is the identity matrix.

In this experiment, we decompose the interval into three intervals and add piecewise uni-

form distribution noise with different intensity on the different intervals. We use the square

norm of first-order derivative of u as the penalty operator. The traditional single parameter
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Fig. 4.2. (a) The original signal; (b) the noisy signal; (c) the recovered signal by the single parameter

regularization with α = 0.1; (d) the recovered signal by the multi-parameter regularization.

regularization method is to solve equation

(α∆ +K)uα = f + w, (4.13)

where ∆ is the matrix representation of the Laplace operator as a symmetric toeplitz matrix

with the first row and second row as [−2, 1, 0, · · · , 0] and [1,−2, 1, 0, · · · , 0] .

We use three different regularization parameters, one for each interval. Suppose that we

have the decomposition

R
768 := W1 ⊕ W2 ⊕ W3,

where W1 = span {li : i = 1, · · · , 256}, W2 = span {li : i = 257, · · · , 512} and W3 =

span {li : i = 513, · · · , 768}, where li is the vector with the ith component 1 and zero elsewhere.

The multi-parameter regularization method is to solve the equation

(Λ∆ +K)uΛ = f + w, (4.14)

where Λ := diag(λ1I256, λ2I256, λ3I256) with λ1 = 0.1, λ2 = 10, λ3 = 8.

In our experiment, we use the Matlab commands “sig1 = makesignal(’Riemann’, 256)*10000-

40; sig2 = sin((1:256)*2*2*pi/156)*100; sig3 = sin((1:256)*3*2*pi/256)*80; sig = [sig1, sig2,

sig3];” to generate the original data u. We show the recovered signals in Fig. 4.3, where we

compare the recovered signal by using the multi-parameter regularization with one by using
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Fig. 4.3. (a) The original signal; (b) the noisy signal; (c) the recovered signal by the single parameter

regularization with α = 10; (d) the recovered signal by the multi-parameter regularization.

the single parameter regularization with the optimal parameter α. Fig. 4.3 shows that the

multi-parameter regularization performs much better than the single parameter regularization.
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