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Abstract

In this paper we propose an affine scaling interior algorithm via conjugate gradient path
for solving nonlinear equality systems subject to bounds on variables. By employing the
affine scaling conjugate gradient path search strategy, we obtain an iterative direction by
solving the linearize model. By using the line search technique, we will find an acceptable
trial step length along this direction which is strictly feasible and makes the objective func-
tion nonmonotonically decreasing. The global convergence and fast local convergence rate
of the proposed algorithm are established under some reasonable conditions. Furthermore,
the numerical results of the proposed algorithm indicate to be effective.
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1. Introduction

In this paper we use an affine scaling interior conjugate gradient path method to analyze
the solution of nonlinear systems subject to the bound constraints on variable:

Fz)=0, zeQ={z|l<z<ul}l, (1.1)

where F : X — R" is a given continuously differentiable mapping and X C R™ is an open
set containing the n-dimensional box constraint Q. The vector [ € (R U {—o00})"” and u €
(R U {+00})™ are specified lower and upper bounds on the variables such that

int(Q)déf{x |[i<z<u}

is nonempty, where | < u. The problem (1.1) arises naturally in systems of equations modeling
real-life problems when not all the solutions of the model have physical meaning. For example,
cross-sectional properties of structural elements, dimensions of mechanical linkages, concen-
trations of chemical species, etc., are modeled by nonlinear equations where € is the positive
orthant of ™ or a closed box constraint. In the classical methods for solving the unconstrained
nonlinear equations (1.1) when the function F(z) is a continuously differentiable function, the
Newton method or quasi-Newton method can be used. These methods by using the Jacobian
or version of Newton’s method often solve the unconstrained problem (1.1), which is known to
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have locally very rapid convergence (see, e.g., [3, 4]). However, the Newton methods used for
smooth systems (1.1) does not ensure global convergence, that is, the convergence is only local.
Other methods for solving (1.1) can be found in, e.g., [11, 14].

Many papers about affine-scaling algorithm for solving problems appeared during the last
few years. Sun in [9] gave a convergence proof for an affine-scaling algorithm for convex
quadratic programming without nondegeneracy assumptions, and Ye [12] introduced affine scal-
ing algorithm for nonconvex quadratic programming. Classical trust-region Newton method for
solving the nonlinear system (1.1) and the affine scaling double trust-region approach for solv-
ing the bounded constrained optimization problems are given in [2]. Recently, Bellavia et al.
in [1] further extended the idea and presented an affine scaling trust-region approach for solv-
ing the bounded-constrained smooth nonlinear systems (1.1). However, the search direction
generated in trust-region subproblem must satisfy strict interior feasibility which results in
computational difficulties. In this paper, we introduce an affine scaling interior algorithm via
conjugate gradient path to solve the bound-constrained nonlinear systems (1.1).

In order to describe and design the affine scaling interior conjugate gradient path algorithm
for solving the bound-constrained smooth equations (1.1), we first introduce the squared Eu-
clidean norm of linearize model of the unconstrained systems (1.1) and the augmented quadratic
affine scaling model, and state the affine scaling conjugate gradient path with backtracking inte-
rior point technique for the bound-constrained nonlinear equations in Section 2. In Section 3, we
prove the global convergence of the proposed algorithm. We discuss some further convergence
properties such as strong global convergence and characterize the order of local convergence of
the Newton method in terms of the rates of the relative residuals in Section 4. Finally, the
results of numerical experiments of the proposed algorithm are reported in Section 5.

2. Algorithm

In this section we describe and design the affine scaling conjugate gradient strategy in
association with nonmonotonic interior point backtracking technique for solving the bound-
constrained nonlinear minimization transformed by the bound-constrained systems (1.1) and
present an interior point backtracking technique which enforces the variable generating strictly
feasible interior point approximations to solution of the bound-constrained nonlinear minimiza-
tion.

Bellavia et al. in [1] presented the affine scaling trust-region approach scheme. The basic
idea is based on the trust region subproblem at the kth iteration

. def 1 ’ 1 ’ 1 ’ ’
min gy, (d)= 5 I Erd + Fi|? = §||Fk||2 + Fy Fpd + §dT(FkTFk)d
st |Dud] < Ay, (21)

where F’ is the Jacobi matrix of F', Ay is the trust region radius and ¢ (d) is trusted to be an
adequate representation of the merit function

def 1 ||2

F@) S IF @)

The scaling matrix Dy = D(xy) arises naturally from examining the first-order necessary condi-
tions for the bound-constrained nonlinear minimization transformed by the bound-constrained

(2.2)

problem (1.1), where D(z) is the diagonal scaling matrix such that

D(x) = diag{|v! (z)| %, -, |v"(z)| "2} (2.3)
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and the ith component of vector v(z) is defined componentwise as follows

' —ut,  if ¢* <0, and u’ < 400,

iodef ) xt =18 if g¢ >0, and I* > —oo0,
= . . 2.4
vi(@) -1, if ¢ <0, and u* = 400, (24)

1, if ¢ >0, and I' = —o0,

here g(x)dﬁfF' (z)TF(x) and g¢° is the ith component of vector g(z). We remark that, even
though D(x) may be undefined on the boundary of 2, D(x)~! can be extended continuously
to it. We will denote this extension as a convention by D(z)~! for all x € Q.

The following nondegenerate property is essential for convergence of the affine scaling double
trust-region approach given in [2].

Definition 2.1 (see [2]). A point x € Q is nondegenerate, if for each index i,
g'(x) =0 = "< 2" <. (2.5)
A transformed problem (1.1) is nondegenerate if (2.5) holds for every x € Q.

In order to maintain the strict interior feasibility, a step-back tracking along the solution py of
the following augmented quadratic affine scaling subproblem (S) in this algorithm, rather than
the solution of the subproblem (2.2), could be required to satisfy the strict interior feasibility.
Following the suggestion in [2], we can make some modifications on the trust region subproblem
(2.1) for solving the nonlinear problem (1.1). The basic idea in the proposed algorithm can be
summarized as follows: assume that zj € int(£2), we define the diagonal matrix suggested by
Coleman and Li in [2],

def ;. v
Cy, = diag{gr}Jy, (2.6)
where JY(z) € R"*™ is the Jacobian matrix of |v(z)| whenever |v(z)| is differentiable and

diag{gk}d:efdiag{g,ﬁ, -+, g}, here gi is the ith component of gx. Each diagonal component of
the diagonal matrix J” equals zero or 1. The augmented affine scaling trust region subproblem
at the kth iteration is defined as follows

. def ’
min  (p)= || Fyp + Fill? + 3pT DiCr Dip
(Sk) = f(zx) + gfp+ 3p" Hip
S.t. ||kaH < Ak,

where

def ./ def ./ ’
g = F, Fy, H,=F,"F, + DyCy, Dy,

Ay is the trust region radius. For solving subproblem (S ), we first introduce the affine conju-
gate gradient path 'y (7).

2.1. Affine scaling conjugate gradient path

Starting from v1 = 0, 11 = Viog(v1) = gg, s1 = M,;lgk, di = —s1, then we generate
a sequence of points vy, v2, - ,vq41, and a sequence of conjugate directions dy,da, - ,dg+1,
which satisfy

MySit1 = Tit1, 1=1,2,--- ,q, (2.7)
div1 = —Sit1+ fidi, 1=1,2,--- g, (2.8)
Vit1 = v; + A\id;, i=1,2,---,q, (2.9)
dl Hyd; > 0, i=1,2,---,q. (2.10)
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where
T T
def T T Si 31‘+1de1'
M DT D, N = >0, g = 2Tk g
PR TR dT Hyd; b dT Hyd;
Tig1 = VU (Vig1) = Hpvipr + ge = 75 + N\ Hyd;. (2.11)

The procedure stops either because 1,11 = 0 or r;41 # 0 (dix1 # 0), but diT+1dez'+1 < 0.
In the former case v;y1 is a critical point of 1y; in the latter d;1 is a (descent) direction of
negative curvature. We define the conjugate gradient path by

q

Lu(r) = S0 ti(r)ds =ty (D (2.12)
ti(7) :min{)\i,maX{O,T—i)\j}}, (2.13)

where the conjugate direction d; and A; are defined by (2.8) and (2.11), respectively. In this
formula we take Z;;ll A;j =0 fori=1.
2.2. Properties of the conjugate gradient method

In this section, we give some properties of the conjugate gradient method.

Lemma 2.1. Suppose that the directions d; are generated by (2.7)-(2.9), 1 <i,j <1< q+1,
the following properties hold:

rid; =0, 1<j<i<l<q+1, (2.14)
d} Hyd; = 0, i# 7, (2.15)
i My lry =0, i#, (2.16)
diri=—r] M vy,  i=1,2,--,q+1, (2.17)
d} Myd; > 0, i # j. (2.18)
Proof. The proof is done by induction. Noting d; = — k_lgk = - k_lrl, we have dl'r; =

—rT M 'ry, that is, (2.17) holds for i = 1. By (2.7), (2.8) and (2.11), we can get

dngdl = (—82 + ﬁldl)Tdel = —Sngdl + ﬁld{del =0,

TgM;l’l“l = (7“1 + Aldel)T(—dl) = —T{dl — Ald{del = 0,

7"2le = TQT(fMl;lrl) = frng;lrl =0,

dy Mydy = (—s2 + frd1)" Mydy = — (M, o) Mydy + Brdf Mydy = B1df Mydy > 0,
that is, (2.14)-(2.18) hold for I = 2.

Assuming now that these four expressions are true for some ! (the induction hypothesis),
we now show that they continue to hold for [ + 1. Noting

riv1 = Hyvipr + g = Hi(vp + Nidy) + gr = r + N Hidy, (2.19)
we have that

ridj = (r + NHpd)"dj = vl dj + \d] Hid;. (2.20)
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Because of the induction hypothesis, we have from (2.14) and (2.15) that 7/, ;d; = 0 for 1 <
j <1—1, by applying (2.7), (2.11) and (2.19), we find that
TlTsl
dl' Hyd,
therefore, the relation (2.14) continues to hold when [ is replaced by I + 1, as claimed.
By applying (2.7), (2.8) and (2.19), we find that
i Myt = (4 N Hd))T M g
= r{ M 'y + Ndi Hy(—di + Bi—1di—1)
= r{ M 'y — Ndi Hydi + N Bi—1d] Hyd;—y. (2.22)

T T
/r‘l+1dl = ’I“l dl -

ledel = TITCll — T?Ml;l’rl =0, (2.21)

By combining (2.22) with the induction hypothesis for (2.15) and (2.16), we conclude that
rlT_HM,;lri =0for 1 <i<I[l-1, noting
rio M =l My — Nd] Hydy + N B d] Hdi—y
rls,
dl' Hyd

= vl M vy —rf M =0,

=rf M 'y — d} Hy.dy

we have that (2.16) holds when [ is replaced by [ + 1.
To prove (2.15) holds as well, we use (2.7), (2.8), (2.19) and the induction hypothesis for
(2.15) and (2.16) to deduce that

Al Hydi = (—si41 + Bidi)" Hyds

T Titl — T T
= =51+ + Gid; Hyd,;

Ad
T —T;
- —rlTHM,;l—HT + BydT Hyd;
= — (rf M Y — il M ) /N + Bidi Hyd; = 0. (2.23)

From (2.8) and (2.11), we can get
d’llj‘t-ldel = (=541 + Bidy)) T Hyd

T
Si1 Hrdi

= _Slijldel + W

d}l Hyd; = 0,

so the induction argument holds for (2.15) also.
Noting (2.8) and (2.14), we show that (2.17) continues to hold when k is replaced by k + 1
by the following argument:
diripr = (=sip1 + Bid) " rign = —sl g = =l M g
Finally, by applying (2.7), (2.8), (2.14) and the induction hypothesis for (2.18), we obtain
that
df\ Myd; = (—s141 + Budi)" Myd;
= —r{y M Myd; + Bid] Myd;
= —r}1d; + Bid] Myd;
= Bidf Myd; > 0,
so that df Myd; > 0 when i # j, as claimed. This completes the proof of the lemma. O
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2.3. Nonmonotonic affine scaling interior conjugate gradient path algorithm

Now, we describe an affine scaling conjugate gradient path algorithm with nonmonotonic
strick interior feasible backtracking line search technique for solving the bound-constrained
systems (1.1).

Algorithm 1.

Initialization step

Choose parameters 3 € (O,%
parameter. Let m(0) = 0 and ¢ € (0,1), give a starting strict feasibility interior point
xo € int(2) C R™. Set k =0, go to the main step.

), w € (0,1), € > 0 and positive integer M as nonmonotonic

Main step

1. Evaluate

i = PSS F@OI?, e g = Vi)™ () By

and Dy, given in (2.3).
2. If | Dy tgr|| = || Dy L (Fy,) T Fi|| < €, stop with the approximate solution z.
3. Form the affine scaling conjugate gradient path T'y(7), set pr(7) = T'x(7), choose

7 =o00,w ", w ™V ... until the following inequality is satisfied
Fw) = Flan+pr(r) = €[ £ n) —vulpu(r)] - (2.24)
4. Choose ap = 1,w,w?,--- , until the following inequality is satisfied:

f@r+ arpe(e)) < (@) + arBgi pe(ti),
with zx + agpr(7i) € int(), (2.25)

where f (1)) = maxo<j<mk) 1. (Tr—j5)}-

5. Set
Th41 = Tk + QpPk- (2.26)

6. Take the nonmonotone control parameter m(k + 1) = min{m(k) + 1, M}. Then set
k +— k+ 1 and go to Step 1.

Remark 2.1. The scalar ay given in (2.25) of Step 4 denotes the step size along the direction
pi to the boundary on the variables | < xx 4+ arpr < u, that is,
I g ub— i
azd:dmin{max{—ixk,u ,L.Ik},izl,--- ,n}, (2.27)
Dy Pr

where oy, = Oai, 0y € (6;,1], for some 0 < 6; < 1 and 6, — 1 = O(||px(7x)|]), 1%, u’, 2% and p},
are the ith components of I, u, xx and py, respectively.

Remark 2.2. In fact, we will sequentially compute the conjugate directions di,ds, - - -, dg, dg+1
in Step 3, which satisfies (2.24). In practical, we can sequentially compute the conjugate
gradient path (1) = Y7, Xi(7)d; until (2.24) is satisfied, if Ty (1) = 232—11 i (7)d; does not
satisfy (2.24). So we compute 7 given in (2.13) such that (2.24) holds.
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3. Global Convergence Analysis

Throughout this section we assume that F' : X C R" — R™ is continuously differentiable
and bounded from below. Given ¢ € int(2) C R”, the algorithm generates a sequence {z} C
Q C R™. In our analysis, we denote the level set of f by

The following assumption is commonly used in convergence analysis of most methods for the
box constrained systems.

Assumption 1. Sequence {z} generated by the algorithm is contained in a compact set £(x¢)
on R".

Assumption 2. There exist some positive constants x4 and xp such that
IF™" (@) F(2)|| < xg [1D(@) 7} < xp, for all & € L(xo).
In order to discuss the properties of the gradient path in detail, we will summarize as follows.

Lemma 3.1. Let the step pr(7) = Ty (7) be obtained from the affine scaling conjugate gradient
path. We have

(1) The norm function of the path ||px(7)|ar, s monotonically increasing for 7 € (0,+00),
where ||z||pr, = (2T Myz)2, Vo € R";

(2) The quadratic function Y (px(T)) is monotonically decreasing for T € (0,400);

(3) If Hy, is positive definite, then

lim py(r) = =D, (D 'HxDy ') "' Dy g (3.1)

T—00

Proof. (1) By the definition of || - || p,,, we have
k() [ar, = (C(7)" MiT(7))?

and

dTe (Dl _ 1 d(Tk(r)" MLk (7))
dr N QFk (T)TMka (T) dr
1 dly (1)
T AT ()T MLy (7) [( dr
1 T dly(T)

“mmmane

)TMka (T) + Fk (T)TMk %’,@}

Noting dt;(7)/dr = 1 or 0, t;(7) > 0, and the definition of the conjugate gradient, we have
d||T(7)||/dm > 0, the conclusion (1) holds.
(2) From (2.13), we have that

TN i =i,
t(r) =14 A if 1<, (3.2)
0 if i<l<gq,
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for Z;;ll Aj <1< Z;Zl Aj (i <q)and ¢(1) =N for 7 > 231:1 Aj. Therefore,

i1 i1 i1 i
Sndi 4 (r=D N )di i YA <T< Y N
Ti(r) =4 7=t i=1 i=1 i=1 (3.3)

q q
Z)\jdj if 7 Z Z)\] .
Jj=1 j=1

Noting that ¢y, (Tx(7)) = f(2x) + 9f Tk () + 3T%(7)T Hy Tk (1), we have

dyp(T(7)) (dwk(Fk(T)) )Tdi

dr dFk
i—1 i—1 T
= g;{di + [Z)\jdj + (r— Z)\j)d’} Hyd;
j=1 j=1

i—1
= gTd; + (T -3 Aj)diTdei < Td; + M\dT Hyd;

j=1

T T T T -1 T T
=ridi+r;is;=ridi+r; M r=rd; —r;d;

i—1 T 1—1
—Td; — (r1 +3 Aijdj) di =~ Ndl Hyd; =0, (3.4)
j=1 j=1

for Z;;ll Aj <1< Z;zl Aj (i < q) and dy(Ty(7))/dr =0 for 7 > Z?Zl)\j. So the quadratic
function ¢y (I (7)) is monotonically decreasing for T € (0, 4+00).
(3) If Hy is positive definite, by the termination condition, we have 711 = 0. Noting

Hyvgi1 + gk = 1g+1 = 0, then vy = —H, 'gi. By Agy1 = Tav18qr1/(di Hydgi1), we get
)\q+1 = 0, lim tq+1(7’) =0.
T—00

By (2.9) and (3.3), we have

q
Tim Ty (r) = Z)‘jdﬂ‘ = Vg1 = —H; 'gr = —Di {(D;, 'Hy D;; V) "' Dy gy
j=1
So the conclusion (3) holds. This completes the proof of this lemma. ]

The following lemma shows the relation between the gradient g; = F,;TF;€ of the objective
function and the step pi generated by the proposed algorithm. We can see from the lemma
that the direction of the trial step is a sufficiently descent direction.

Lemma 3.2. Let the step pr(7) = T'x(7) be obtained from the affine scaling conjugate gradient
path. Then:

(1) The function @y (1) = gf pi(1) is monotonically decreasing for T € (0,+00).

(2) For 7 € (0,400), the function ®k(T) satisfies the following sufficient descent condition:

1

T — e —— HD_lng2- (3-5)
HDle’@Dle} g

ngpk(T) < —min {T



586 C.X. JIA AND D.T. ZHU

Proof. (1) By Lemma 3.1, if Z;;IIAJ <7< Z;Zl Aj (i < q), then

i—1 i—1
D4(7) = g/ T(7) = 91?(2 Njdj + (1= Aj)di)
j=1 j=1
i—1 i—1
j=1 j=1
Noting d; = — ,;lgk and diTMkdj > (0, we can get
O, () = gFd; = —d¥ Myd; < 0. (3.6)
(2) If 0 < 7 < A1, where
risy 1D " gkI?

At

- dTHpdy  (Dy'gx)T(Dy'HyD;')(Dytgr)
then
GiT(7) = gf (rd1) = —1gf M ' gi = —79F D ' Dy g = —7|| Dy, g ||

Noting @ (7) is monotonically decreasing for 7 € (0, +00), we have Oy (7) < @ (A1) for 7 > Ay,
that is,

gk Tr() < gi Te(h) = =M || D gl |?
1

I Ry — 1 1 ||D1;19k|‘4
(Dk k) (Dk Hy D), )(Dk gr)
1
<—————— Dy gkl?,
HDk 1Hka1H g
which gives (3.5). O

Lemma 3.3. Let the step pr(1) = T'x(7) be obtained from the affine scaling conjugate gradient
path. Then the predicted reduction satisfy the estimate:

1 1 _
@) = lpe(r) 2 g min {5 HIDE ol (3.7)

for all E,, F},, Cy, Dy, and 7.
Proof. We consider first the case of 0 < 7 < A;. Here, we have

f(@r) = Yre(Ti(7)) = f(z1) — Yr(rdr)

1 B i
=—71gfd, — 5TleTdel (dy = —M; ‘g, = =D, 'D; ' gr)
1 _ _ IR
=—71gFd, — 572(Dk Yo) ' D, He D Y (D) hge) (1< M)
r \D gkl 7o 1 . 1 _
> — vy~ AL = 20 > G mingr D
k k

and so (3.7) certainly holds.
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For the next case, consider 7 > A;. Noting the quadratic function ¢ (I'x (7)) is monotonically
decreasing for T € (0, +00), we obtain that

f(@r) = ¥r(T(7) > f(2r) — r(Tr(M))

HD;ZlgkllggTd 1Dy gl
dTHydy 7*™ 2 dTHpdy
1 D; gt 1 1

5 -1 T” —k1 | 1 > smin{7, ——————
2(D;; gx)" (D), Hi.Dy)(Dygx) — 2 Dy HL.D; Y|

1
=— \igid, — §>\§lede1 =—

HID g1

for 7 > A;. This proves (3.7). O

Assumption 3. D,;l(F,;)TF,;D,;1 and C; are bounded, i.e., there exist some constants xz > 0
and x¢ > 0 such that

defy 1 /T ' 1= det
b= || Dy H(E) T Fe Dt < xpy and ey = (|G| < xos VK

Lemma 3.4. Assume that Assumptions 1-3 hold. If HD;lng # 0, then Algorithm 1 produces
an Tk in a finite number steps which satisfies

f(ae) = Flae +pe(7)) 2 &[f (2r) — i (pr(7))]-

Proof. Using the triagonal inequality, we have

f(@r) — f(2r + pr(7))
f(@r) = r(pe(T)) + k(e (7)) — f(2K + pi(7))
> flor) — Yu(pr(7)) = (e (r(T)) — 2k + pr(T))].

Using Taylor’s Theorem, we can get

[Un(pr(7)) — f(ok + pr(7))]

1 1 1
= [SIBIP + gL pe(r) + 5pu ()" Hipi(7) = 51 F (i + pi(r)IP|
1 1 1
=[S + g pu(r) + 5pu(1)T Hipn(r) = SIIFk + VE (@ + tp)pe(7)

1

< [IVEE Fi = VPG + toi ()T Fill + 5| VEL 9 B

— VF(2x + tpi(7))" VF (zx + tpi(7)) + DkCr Dy | - Hpk(T)H} lpr(7)]]
def
= e(xr, pr)lpe (7)1,

where
T T 1 T
6(1’k,pk) = HVFk Fk — VF (l‘k + tpk(T))FkH —+ §HVFI§ VFk
— VF(zp + tpe(1)) T VE (2 + tpr(1)) + DpCr Di|| - |lpk(7)]]-
We assume 0 < 7 < A;. Then

0 < [lpr(r)ll = ll7dsll = 7IM; gull = 71D grll < XD Xg- (3-8)
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If || D, 'gk | # 0, then there exists e > 0 such that || D; *gx|| > . Noting (3.8), we have that for
sufficiently small 7,

1

1 . _
Fwn) = vulpn(r)) 2 gmingr, o IDE el
1 1 g2
> g2y > = = .
2562 2X%Xgl\m(f)ll cllpr(7)]l; (3.9)

where ¢; = 3¢2/(x%X,). Furthermore,

f@r) = flae +pu(m) o [Wke(7)) — (@ + (7))l

Fn— deor() F(an) — dulpn(0)
oy o n @Ol | ()
erlon () &

Noting that VF(x) is continuous and (3.8), we can get €(zx, pr(7)) < ¢1/3 for 7 is small enough.
This completes the proof. O

Lemma 3.5. Assume that Assumptions 1-3 hold and the gradient of f satisfies
IVf(x) = VW2 <yllz = yll2, V 2,y € R,

where 7y is the Lipschitz constant. Let 3 € (0,1) and the step pi(7) = T'r(7) be obtained from
the affine scaling conjugate gradient path. If ||Dglgk|| %0, then Algorithm 1 produces an iterate
Tp+1 = Tk + appr in a finite number of backtracking steps in (77).

Proof. Using the mean value theorem, we have the equality:

fan + arpr(mr)) = f(ar) + oV f (@x + nearpr () or (7)),
where 0 < i, < 1. We rewrite the above equation as:
Fl@k + axpr(m)) = F(on) + arglpr(mi) + ar [V F (@ + neawp(me)) = V()] pilr)

= f(zk) + Bl pi(m) + an [(V f (ke + mrope(Ti)
— V[ (@) pe() + (1= B)V f () ()]

Note that

[V f(@r + meapr () — YV (26)] T pe() < ymwo||pe (7)1,

from Lemma 3.1 and the condition ||D; 'g(zy)| # 0. After a finite number of reductions, the
above formula will become negative and the corresponding ay, will be acceptable. That is, in a
finite number of backtracking steps, aj must satisfy

f(@r+ arpr(i)) < faw) + BarV f(zr) " pr(Ti),
equivalently,
flar) < flamy) + BV far) ().

Consequently, the conclusion of the lemma holds. O

We are now ready to state one of our main results of the proposed algorithm. Before doing
this, we need the following assumptions.
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Assumption 4. ||px(7x)| and Hj, are uniformly bounded, that is, there exist constants x,, xu
satisfy ||pk(7s)| < xp and | Hg|| < xu for all k.

Assumption 5. Assume

where v;(x) are defined by (2.4), wy, € (wy,1], 0 < w; <1 and wr —1 = O(||pxl|), 0 > 0is a
constant.

Assumption 6. The first-order optimality system associated to problem (1.1) has no noniso-
lated solutions and the nondegenerate property of the system (1.1) holds at any solutions of
systems (1.1).

Theorem 3.6. Assume that Assumptions 1-6 hold. Let {x} C R™ be a sequence generated by
the algorithm. If the nondegenerate property of the system (1.1) holds at any limit point, then

lim inf |D; AT Ry = 0. (3.10)
Proof. According to the acceptance rule of oy in step 4, we have

F@iwy) — flan + arpre(ti)) > —anBgi pr(Th).

Taking into account that m(k + 1) < m(k) 4+ 1 and f(zr41) < f(z1(k)), we get

f(@ier)) = Ogjlgngéﬂ)f(fﬂmuj)
< )= )= ,
> Ogjrgnrg();)Jrl f(@ht1-5) Ogg'%ari((k) f(xr—j3) = f(zyr))

This means { f(2;x))} is nonincreasing for all £ and hence f(x;)) is convergent.
If the conclusion of the theorem is not true, there exists some € > 0 such that

ID; gell = 1 Dy " T Fi| > e.
From (??) and Lemma 3.2, we obtain

f@iay) = f@imy—1 + Qg —10im) -1 (Tiry—1))
T
< Ogjggg%k)fl) (@ —1—5)) + ﬁal(k)flgl(k)flpl(k)—l

1
< flx _1)) — Bayy— min{T _,7}62. 3.11
F(@am—1)) — Bauy—1 Ww—10 (3.11)

Since limy—, 1 o0 f (1)) exists, we can conclude that
kli)l{.lo Ak)—1Ti(k)—1 = 0; (312)
moreover, from (3.12) we can deduce
li _ _1]| =0. 3.13
o (k) 11Picr) -1l ( )
Similar to the proof of a theorem in [6], we have

Tim f(z) = D i) (3.14)
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According to the acceptance rule (?7?), we have

@) — f(@r + arpr (i) > —anBgi pr(Ti)
1

1 _ .
T HID; Mgwll? > o fe® min{m,, ———} > 0

> Oékﬂmin T e e ——— =
{ | D, ' Hy D, XF + Xe

Noting (3.14) and the above formula, we obtain limy_, .7 = 0, which implies that either

lim inf 1, =0, (3.15)
k—o0
or
lim ay = 0. (3.16)
k—o0

If (3.15) holds, from the acceptance rule of 7, we have

Fax) = Flan+pr(2)) < €[ Flan) = vulpe( ).

T
w

which gives

I — &} [,Tz,l TEWT g z} 317

gk pr(Z) +olllpe(SD | < €| =gl pr(=) = 5 or(2) Hipr(). (3.17)
where

i) = llrda |l = 7 M grll = 71D gl < TXpxg for 0 <7 < Ar

From (3.17), we obtain

T
lim gkpk(Tk/W) -0,
k—oo [|pr(Tk/w)|

which contradicts

— mi 1 -1 2

g%pk(Tk/w) < lim mln{Tk‘/w) HD;IH;CD;IH}HDk gk‘”
k=00 [|pr (T /w)| T koo Zldall
Dl 1

koo [ DD gl T xo

_ €
1D grll < TS
As a result (3.16) holds. If «y is determined by (?7), we have
a a a

fn+ —pr(m)) > flaug) + = Bokpr(ne) > flax) + 7 Bgk pr (7).

which gives
187 Ok ,
flze + Upk('rk)) = f(@e) > L Pr(Tk)- (3.18)
On the other hand,
a
fan 4+ pr(m)) = fn)

1
« Q Q
= Lol p(m) + = / 9@y + t—pr(1.) — g(x1)) o (7 )dt
w w Jo w

IN

o 1 «
=gl o) + 57 (T ok ()|, (3.19)
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where + is the Lipschitz constant. From (3.18) and (3.19), we have

(677 1 (677 Qe
Uggpk(ﬂc) + 57(7)2Hpk(m)||2 > ﬁ;ggpk(ﬂc)-
Therefore,
2&4}(6* ) T 2“}(67 ) T
g > ———gl () > ———g{ pr(7k)
e 29T 2
2w(l — 1
> 2D i {7 g
TXp | Dy, " He Dy ||
2w(1 —
> ‘*’(725) min {Tk, 7}62 > 0. (3.20)
PYXp XF +Xc

From (3.20), we can conclude that limy_,oo7x = 0, which contradicts limy_, inf 7, # 0.
If oy, is determined by (2.25), let x, be a limit point of {x;}. Then there exists a subset
K, C {k} satisfies:

im oy =0, lim  xp = ..
k—oo,k€e K, k—oo,ke K1

From the expression of aj, we know there exists an index j such that

V—al w -2l

max{ T 7 } =0,
D D

so we can get a subset Ko C K7 such that:

) 1 —gd w —od
lim max{ i k77j k}:O.
k—o0,k€ Ko pk pk

Without loss of generality, assume 2% — [ = 0. If pi > 0, by pi < |lpx|l < xp, we get that for
sufficiently large k,

V- ujf:ci}_ujfmf€ uj—xi_uj—lj>0
7, 2Xp 2Xp

7 7

max {
If pi < 0, by nondegeneration, we get gi > 0; by the optimization condition, we get
pl>0, vl=0, gl=pl—vl>0,

so when k is large enough, gi > 0. By the definition of D(z), we know

J_ o i d J_ J
V-, u :ck}:l A (4

vi(z)=a -1, max{ , , =
P P Pi IA

By Assumption 5, we get

7
il 5 e 5 @,
Ipi.] — olgrl — oxg

which contradicts

) P —ad w— !
lim max{il€ 7’“} =0,

k—o00,k€E K> pi ’ pi

so limg_oar # 0. Similarly, when 2l — ol = 0, we get limg_. o # 0, which contradicts
(3.17). Hence the conclusion of the theorem is true. O
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4. Properties of the Local Convergence

Theorem 3.6 indicates that at least one limit point of {z;} is a stationary point. In this
section we shall first extend this theorem to a stronger result and then prove a local convergence
rate.

Theorem 4.1. Assume that the Assumptions 1-6 hold. Let {x} be a sequence generated by
the proposed algorithm. If nondegenerate property of the system (1.1) holds at any limit point,
then

Jim (| D (F T = 0. (4.1)

Proof. Assume that the conclusion is not true. Then there is an €; € (0, 1) and a subsequence

{D, (F,,, )" Frn, } such that for all m;,i=1,2,---,
| Do (Fo )T En ]| = 1.
Theorem 3.6 guarantees the existence of another subsequence {Dl_il(Fl/i)TFl%} such that
HD;l(F;;)TFkH > €9, form; <k <l ”Dl_ll(Fz:)TFzH <

for an €3 € (0,€1). Similar to the proof of Theorem 3.6, we have

lim foyry) = lim flzg). (4.2)

According to the acceptance rule in step 4, we have

F@i) = f(@r + arpr (i) = —awBgy pr(Ti) > Brages min {le L} > 0.

XDXH
Similarly, we also get
lim apTe = 0.
k—oo,m;<k<l; wk
For simplicity, we rewrite the above formula as
lim QLT = 0. (43)
k—o0

Assume there exists K C {k}, such that limp_ o ke > 0. Then limg_, o0 recar = 0. If oy is
determined by (2.25), similar to the proof of Theorem 3.6, we have limg_,o0 rexcar > 0, s0 ag
is determined by (?7?). From the acceptance rule of ay, in (?7) and (3.20), we have

2w(l — 1
0= lim ap> lim Mmm {Tk, 7}53 > 0. (4.4)
k—o0,ke k—o00,ke YXp XF + Xe
Consequently,
li = 4.
et ™ =0 45)

which contradicts the assumption limy_,o rex 7% > 0. Therefore,

lim 75, = 0. (4.6)

k—oo
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By the definition of py(7%), we have
lim [px (75) || = 0. (4.7)
k—o0

Noting that

Fxy +pr(mr)) = f@n) + g pr + Olps(m)[1?)
< flziw) + Bai ok + (1= B)gi pr + O(|Ipe(7)[7)
for m; <k < l; and
(1= B)gi pr. + O(lpe (1) [1?)

1 . 1 _
_5(1 — ) min {le m}HDk 19k||2 + O(||pk(7'k)||2)
k k

IN

1 1
_5(1 — ) min {le m}ﬁg + c(XDXgTk)? <0

IN

for sufficiently large k, we have that zp41 = zx + pr(7). By (3.9), we know

f(@r) — Yr(pe(mi)) > cillpr () ll;

hence, by (2.24), we can get
f(@r) = (e +pr(re)) = E[f () — V(P (Tr))] = Eeallpr (i) || = callpr (i),

where ¢; = %e%/(xQDXg), co = &cq. From the above formula, we obtain

n.;fl n.;fl
2m, = @l < D Mwwsr —arl = Y sl
k=m; k=m;
1 1
<= [f(xr) = flar 4+ pe(i)] = —[f(@m,) — flan,)]. (4.8)
2 P C2

It follows from (4.8) and (3.14) that

lim ||@p,, — || = 0. (4.9)
71— 00

From (4.9) and
||FmiFmi - E,Ezll = va(mmz) - Vf(xl,)ll < 7||$mi - $Zi||7

we have
’ ’

”:L'mi - Ly S ve
for sufficiently large 3.
On the other hand, the level set L is compact, so g(z) is uniformly continuous. Furthermore,

we can get

< eq.

gm: — gu.
If there exists subsequence {I;} satisfy lim {x;,} = 2., then lim {z,,,} = .. By the definition
17— 00 1—00

of v(z), we have

g} =0, (4.10)

1
- |vli

lim {diag(|vm,
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and hence
_ _ . 1 1
1Dy = Dy Dl = lldiag(|vm, [2 = [vi,|#)gr, || < ea (4.11)
for sufficiently large i. Consequently,
&1 < 1D, (Fp) " Fo,
<DL E By — BB
< (xp7 + Xg + e,

+ 1D, = D IE TR+ 1D (F) TR,

which contradicts the assumption that ez € (0,€;1) can be arbitrarily small. O

We now discuss the convergence rate for the proposed algorithm. For this purpose, it is
shown that for large enough k, the step size ap = 1,limg_ o 0 = 1.

Assumption 7. D;'H,D_! satisfies the strong second-order sufficient condition, i.e., there
exists ¢ > 0 such that:

(D.q)" (D H.DZ1)(D1q) > ¢||D.qll?, Va. (4.12)

Assumption 8.
[[Br — V2 f (@) lpk (7)

lim =0. 4.13
N P (419)
Because Cy — C, = 0, by Assumption 8, we have
= 2|
k=00 P& (7)
o2
< i LBe = V2 @)l + [Comn(rll _ i
k=00 2w (72l
which implies that
() (V2 f (1) — Hi)pr (i) = o(llpe (7o) [1). (4.15)

Theorem 4.2. Assume that Assumptions 1-8 hold and {x} is a sequence produced by Algo-
rithm 1 which converges to x.. Then the convergence is superlinear. i.e.,
lim W =l (4.16)
k—oo ||£L'k — l‘*H
Proof. Since z* is a point at which the second-order sufficient optimality conditions are
satisfied, D71 H, D! is positive definite. It is not difficult to verify that D, 'H,D; ' is also
positive definite for large enough k. By Lemma 3.1 (3), we know pg(+00) = nglgk. Now we
prove that for large enough k, pi(+00) = — ,glgk satisfies (2.24)-(2.25) in the algorithm.
We first prove py(+00) satisfies (2.24) for sufficiently large k.
By Assumption 7 we get that

(Dip)" (D HeDy. ) Dep = C |1 Dip,
so we can deduce that ||(D, ' HiD; ')~ is bounded, by combining this result with

1D (D i DY) Dy gl < 1D NN Hie D) 7HILD g
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and (3.10), we have that

lim_{|py(+00)|l = Jim [|D; (D Hk D)™ Dy gi]| = 0. (4.17)

k—oo k—o0
By(4.15), we can get

[k (pr(+00)) — f(k + pr(+00))]
1
= lgi i (+00) + 5 pi(+00) " Hyepi (+00) = (g p(+00)

+ 5Ph(H00) V2 () (+00) + o i +00) )]

= I%pk(ﬂO)T(Hk = V2 f(x))pe(+00) — o([[pr(+00)|*)] = o(||pr(+00)||?). (4.18)

It follows from Assumption 7 that D,;lH kDgl is positive definite uniformly for sufficiently large
k. Hence,

£ (%) — 0 (pr(+00)) = —gFpi(+00) — =pi(+00)T Hypr(+00)

2
. "H >S$p 2 4.1
= L pu(+o0) Hips(+50) > S| Dip(+00)| (4.19)
Therefore,
fxr) = fzk + pr(+00))
f(@r) = qr(pr(400))
2 2
s AGoB) o ellol) 420)
f(xr) — qr(pr(+00)) 5[ Dkpr(+00)|
Since
Ikl = 1Dy Diprl| < 1Dy 1| Diprell < x ol Dl
we have ||pi||/||Depr]l < xp and hence
—olllpel®) o ollpel®) llpell?
lim ——— = lim . =0. 4.21
e L PR v 2
Combining (4.20) and (4.21), we deduce that py(+00) = —H, 'gj satisfies (2.24).
Next, we prove that pi(+00) satisfies (??). Let pkdéfpk(—i—oo) = —H, 'gi. Because f(wy) is

twice continuously differentiable, /3 € (0, %), gFpr = —pl Hipy. By (4.12) and (4.15), we have
that

1
flaw +pr) = flae) + glpe + gprQf(mk)Pk + o(|lpel?)
1 1
= f(xr) + Bgipe + (5 - 3 gi pr + 5(9;?1% + pi Hipr)

+3pE (921 @) ~ Helpi + ol )

< Flow) + Bal e — (5 — O Hip + olls]?)

< f(aex) + Bolpe — (5~ B)5 1 Dxell® + of el
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By (4.21), we deduce that f(xx +pk) < f(zk)+ By} pi for large enough k, i.e., py satisfies (?7).
Finally, we prove that (2.25) holds. By (4.17), limy_. p}(+00) = 0. Noting

lim [|Di gl =0, lim [|D; gill = DS ],
k—o0 k—o0
we can get ||D;'g.|| = 0 and hence g. = 0. By the definition of nodegeneration, we obtain

| <z <uand I° <2l <wu® (V1<i<n),so there exists some €y > 0 satisfying min{z? —
I',u" — 2'} > 2€p, which implies min{z} — I’,u’ — 2} } > €y for sufficiently large k. Therefore,

Ui i — g
lim max{ .xk, i } =0, (4.22)
k—o0 p}c p}c
which implies that «j, = 4+-00. Therefore, pi,(4+00) = — k_lgk satisfies (2.25).
From the above discussion, we obtain if Hj is positive definite, the new iterate step is
ZTpt1 = T + pr(+00). prp(+00) is a Newton or quasi-Newton step, so (4.16) holds. O

Theorem 4.2 means that the local convergence rate for the proposed algorithm depends
on the Hessian of the objective function at x* and the local convergence rate of the step. If
dr, becomes the Newton step, then the sequence {zy} generated by the algorithm converges
quadratically to x,.

5. Numerical Experiments

In this section we present some numerical results. In order to check the effectiveness of the
method, we select the parameters as follows: € = 1076, ¢ = 0.02, 8 = 0.4, w = 0.5.

Table 5.1: Numerical comparison.

Problem the optimal solution and the optimal value M=0 M=5
name reference results results of algorithm NG NF NG NF
SC229 z* = (1,17 z* = (1,17 21 25 20 20
ff=o0 f*=1.6934 x 10712

SC208 z* = (1,17 z* = (1,1)T 17 24 11 13
fr=0 f* =5.5417 x 1072

SC209 z* = (1,17 z* = (1,17 55 74 35 37
*=0 f* =6.8002 x 10~24

SC201 z* = (5,6)7 z* = (5,6)T 2 3 2 3
fr=o0 f* =17.8886 x 1073

Ferraris | «* = (0.5, 3.14159)7 z* = (0.5,3.1416)7 12 13 12 13

Tronconi fr=0 f* =1.6668 x 10715

Reklaitis z* = (3,2)7 z* = (3,2)7 10 11 10 11

Ragsdell ff=o0 f*=5.2577 x 10718

The experiments are carried out on 6 test problems which are quoted from [5] and [10]. NF
and NG stand for the numbers of function evaluations and gradient evaluations, respectively, M
denotes the nonmonotonic parameter. The results of the numerical experiments are reported
in Table 5.1 to show the effectiveness of the proposed algorithm.
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