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Abstract

In this paper we propose an affine scaling interior algorithm via conjugate gradient path

for solving nonlinear equality systems subject to bounds on variables. By employing the

affine scaling conjugate gradient path search strategy, we obtain an iterative direction by

solving the linearize model. By using the line search technique, we will find an acceptable

trial step length along this direction which is strictly feasible and makes the objective func-

tion nonmonotonically decreasing. The global convergence and fast local convergence rate

of the proposed algorithm are established under some reasonable conditions. Furthermore,

the numerical results of the proposed algorithm indicate to be effective.
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1. Introduction

In this paper we use an affine scaling interior conjugate gradient path method to analyze

the solution of nonlinear systems subject to the bound constraints on variable:

F (x) = 0, x ∈ Ω = { x | l ≤ x ≤ u }, (1.1)

where F : X → ℜn is a given continuously differentiable mapping and X ⊆ ℜn is an open

set containing the n-dimensional box constraint Ω. The vector l ∈ (ℜ ∪ {−∞})n and u ∈

(ℜ ∪ {+∞})n are specified lower and upper bounds on the variables such that

int(Ω)
def
= { x | l < x < u }

is nonempty, where l < u. The problem (1.1) arises naturally in systems of equations modeling

real-life problems when not all the solutions of the model have physical meaning. For example,

cross-sectional properties of structural elements, dimensions of mechanical linkages, concen-

trations of chemical species, etc., are modeled by nonlinear equations where Ω is the positive

orthant of ℜn or a closed box constraint. In the classical methods for solving the unconstrained

nonlinear equations (1.1) when the function F (x) is a continuously differentiable function, the

Newton method or quasi-Newton method can be used. These methods by using the Jacobian

or version of Newton’s method often solve the unconstrained problem (1.1), which is known to
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have locally very rapid convergence (see, e.g., [3, 4]). However, the Newton methods used for

smooth systems (1.1) does not ensure global convergence, that is, the convergence is only local.

Other methods for solving (1.1) can be found in, e.g., [11, 14].

Many papers about affine-scaling algorithm for solving problems appeared during the last

few years. Sun in [9] gave a convergence proof for an affine-scaling algorithm for convex

quadratic programming without nondegeneracy assumptions, and Ye [12] introduced affine scal-

ing algorithm for nonconvex quadratic programming. Classical trust-region Newton method for

solving the nonlinear system (1.1) and the affine scaling double trust-region approach for solv-

ing the bounded constrained optimization problems are given in [2]. Recently, Bellavia et al.

in [1] further extended the idea and presented an affine scaling trust-region approach for solv-

ing the bounded-constrained smooth nonlinear systems (1.1). However, the search direction

generated in trust-region subproblem must satisfy strict interior feasibility which results in

computational difficulties. In this paper, we introduce an affine scaling interior algorithm via

conjugate gradient path to solve the bound-constrained nonlinear systems (1.1).

In order to describe and design the affine scaling interior conjugate gradient path algorithm

for solving the bound-constrained smooth equations (1.1), we first introduce the squared Eu-

clidean norm of linearize model of the unconstrained systems (1.1) and the augmented quadratic

affine scaling model, and state the affine scaling conjugate gradient path with backtracking inte-

rior point technique for the bound-constrained nonlinear equations in Section 2. In Section 3, we

prove the global convergence of the proposed algorithm. We discuss some further convergence

properties such as strong global convergence and characterize the order of local convergence of

the Newton method in terms of the rates of the relative residuals in Section 4. Finally, the

results of numerical experiments of the proposed algorithm are reported in Section 5.

2. Algorithm

In this section we describe and design the affine scaling conjugate gradient strategy in

association with nonmonotonic interior point backtracking technique for solving the bound-

constrained nonlinear minimization transformed by the bound-constrained systems (1.1) and

present an interior point backtracking technique which enforces the variable generating strictly

feasible interior point approximations to solution of the bound-constrained nonlinear minimiza-

tion.

Bellavia et al. in [1] presented the affine scaling trust-region approach scheme. The basic

idea is based on the trust region subproblem at the kth iteration

min qk(d)
def
=

1

2
‖F

′

kd+ Fk‖
2 =

1

2
‖Fk‖

2 + FT
k F

′

kd+
1

2
dT (F

′T
k F

′

k)d

s.t. ‖Dkd‖ ≤ ∆k, (2.1)

where F ′ is the Jacobi matrix of F , ∆k is the trust region radius and qk(d) is trusted to be an

adequate representation of the merit function

f(x)
def
=

1

2
‖F (x)‖2. (2.2)

The scaling matrix Dk = D(xk) arises naturally from examining the first-order necessary condi-

tions for the bound-constrained nonlinear minimization transformed by the bound-constrained

problem (1.1), where D(x) is the diagonal scaling matrix such that

D(x)
def
=diag{|v1(x)|−

1

2 , · · · , |vn(x)|−
1

2 } (2.3)
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and the ith component of vector v(x) is defined componentwise as follows

vi(x)
def
=















xi − ui, if gi < 0, and ui < +∞,

xi − li, if gi ≥ 0, and li > −∞,

−1, if gi < 0, and ui = +∞,

1, if gi ≥ 0, and li = −∞,

(2.4)

here g(x)
def
=F

′

(x)TF (x) and gi is the ith component of vector g(x). We remark that, even

though D(x) may be undefined on the boundary of Ω, D(x)−1 can be extended continuously

to it. We will denote this extension as a convention by D(x)−1 for all x ∈ Ω.

The following nondegenerate property is essential for convergence of the affine scaling double

trust-region approach given in [2].

Definition 2.1 (see [2]). A point x ∈ Ω is nondegenerate, if for each index i,

gi(x) = 0 =⇒ li < xi < ui. (2.5)

A transformed problem (1.1) is nondegenerate if (2.5) holds for every x ∈ Ω.

In order to maintain the strict interior feasibility, a step-back tracking along the solution pk of

the following augmented quadratic affine scaling subproblem (Sk) in this algorithm, rather than

the solution of the subproblem (2.2), could be required to satisfy the strict interior feasibility.

Following the suggestion in [2], we can make some modifications on the trust region subproblem

(2.1) for solving the nonlinear problem (1.1). The basic idea in the proposed algorithm can be

summarized as follows: assume that xk ∈ int(Ω), we define the diagonal matrix suggested by

Coleman and Li in [2],

Ck
def
=diag{gk}J

ν
k , (2.6)

where Jν(x) ∈ ℜn×n is the Jacobian matrix of |ν(x)| whenever |ν(x)| is differentiable and

diag{gk}
def
=diag{g1

k, · · · , g
n
k }, here gi

k is the ith component of gk. Each diagonal component of

the diagonal matrix Jν equals zero or ±1. The augmented affine scaling trust region subproblem

at the kth iteration is defined as follows

(Sk)











min ψk(p)
def
= 1

2‖F
′

kp+ Fk‖
2 + 1

2p
TDkCkDkp

= f(xk) + gT
k p+ 1

2p
THkp

s.t. ‖Dkp‖ ≤ ∆k,

where

gk
def
=F

′T
k Fk, Hk

def
=F

′T
k F

′

k +DkCkDk,

∆k is the trust region radius. For solving subproblem (Sk), we first introduce the affine conju-

gate gradient path Γk(τ).

2.1. Affine scaling conjugate gradient path

Starting from v1 = 0, r1 = ∇ψk(v1) = gk, s1 = M−1
k gk, d1 = −s1, then we generate

a sequence of points v1, v2, · · · , vq+1, and a sequence of conjugate directions d1, d2, · · · , dq+1,

which satisfy

Mksi+1 = ri+1, i = 1, 2, · · · , q, (2.7)

di+1 = −si+1 + βidi, i = 1, 2, · · · , q, (2.8)

vi+1 = vi + λidi, i = 1, 2, · · · , q, (2.9)

dT
i Hkdi > 0, i = 1, 2, · · · , q. (2.10)
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where

Mk
def
=DT

k Dk, λi =
rT
i si

dT
i Hkdi

> 0, βi =
sT

i+1Hkdi

dT
i Hkdi

> 0,

ri+1 = ∇ψk(vi+1) = Hkvi+1 + gk = ri + λiHkdi. (2.11)

The procedure stops either because ri+1 = 0 or ri+1 6= 0 (di+1 6= 0), but dT
i+1Hkdi+1 ≤ 0.

In the former case vi+1 is a critical point of ψk; in the latter di+1 is a (descent) direction of

negative curvature. We define the conjugate gradient path by

Γk(τ) =

q
∑

i=1

ti(τ)di − tq+1(τ)dq+1, (2.12)

ti(τ) = min
{

λi,max{0, τ −
i−1
∑

j=1

λj}
}

, (2.13)

where the conjugate direction di and λi are defined by (2.8) and (2.11), respectively. In this

formula we take
∑i−1

j=1 λj = 0 for i = 1.

2.2. Properties of the conjugate gradient method

In this section, we give some properties of the conjugate gradient method.

Lemma 2.1. Suppose that the directions di are generated by (2.7)-(2.9), 1 ≤ i, j ≤ l ≤ q + 1,

the following properties hold:

rT
i dj = 0, 1 ≤ j < i ≤ l ≤ q + 1, (2.14)

dT
i Hkdj = 0, i 6= j, (2.15)

rT
i M

−1
k rj = 0, i 6= j, (2.16)

dT
i ri = −rT

i M
−1
k ri, i = 1, 2, · · · , q + 1, (2.17)

dT
i Mkdj > 0, i 6= j. (2.18)

Proof. The proof is done by induction. Noting d1 = −M−1
k gk = −M−1

k r1, we have dT
1 r1 =

−rT
1 M

−1
k r1, that is, (2.17) holds for i = 1. By (2.7), (2.8) and (2.11), we can get

dT
2Hkd1 = (−s2 + β1d1)

THkd1 = −sT
2Hkd1 + β1d

T
1Hkd1 = 0,

rT
2 M

−1
k r1 = (r1 + λ1Hkd1)

T (−d1) = −rT
1 d1 − λ1d

T
1Hkd1 = 0,

rT
2 d1 = rT

2 (−M−1
k r1) = −r2M

−1
k r1 = 0,

dT
2Mkd1 = (−s2 + β1d1)

TMkd1 = −(M−1
k r2)

TMkd1 + β1d
T
1Mkd1 = β1d

T
1Mkd1 > 0,

that is, (2.14)-(2.18) hold for l = 2.

Assuming now that these four expressions are true for some l (the induction hypothesis),

we now show that they continue to hold for l + 1. Noting

rl+1 = Hkvl+1 + gk = Hk(vl + λldl) + gk = rl + λlHkdl, (2.19)

we have that

rT
l+1dj = (rl + λlHkdl)

T dj = rT
l dj + λld

T
l Hkdj . (2.20)
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Because of the induction hypothesis, we have from (2.14) and (2.15) that rT
l+1dj = 0 for 1 ≤

j ≤ l− 1, by applying (2.7), (2.11) and (2.19), we find that

rT
l+1dl = rT

l dl −
rT
l sl

dT
l Hkdl

dT
l Hkdl = rT

l dl − r
T
l M

−1
k rl = 0, (2.21)

therefore, the relation (2.14) continues to hold when l is replaced by l + 1, as claimed.

By applying (2.7), (2.8) and (2.19), we find that

rT
l+1M

−1
k ri = (rl + λlHkdl)

TM−1
k ri

= rT
l M

−1
k ri + λld

T
l Hk(−di + βi−1di−1)

= rT
l M

−1
k ri − λld

T
l Hkdi + λlβi−1d

T
l Hkdi−1. (2.22)

By combining (2.22) with the induction hypothesis for (2.15) and (2.16), we conclude that

rT
l+1M

−1
k ri = 0 for 1 ≤ i ≤ l − 1, noting

rT
l+1M

−1
k rl = rT

l M
−1
k rl − λld

T
l Hkdl + λlβl−1d

T
l Hkdl−1

= rT
l M

−1
k rl −

rT
l sl

dT
l Hkdl

dT
l Hkdl

= rT
l M

−1
k rl − r

T
l M

−1
k rl = 0,

we have that (2.16) holds when l is replaced by l + 1.

To prove (2.15) holds as well, we use (2.7), (2.8), (2.19) and the induction hypothesis for

(2.15) and (2.16) to deduce that

dT
l+1Hkdi = (−sl+1 + βldl)

THkdi

= −sT
l+1

ri+1 − ri
λi

+ βld
T
l Hkdi

= −rT
l+1M

−1
k

ri+1 − ri
λi

+ βld
T
l Hkdi

= −
(

rT
l+1M

−1
k ri+1 − r

T
l+1M

−1
k ri

)

/λi + βld
T
l Hkdi = 0. (2.23)

From (2.8) and (2.11), we can get

dT
l+1Hkdl = (−sl+1 + βldl)

THkdl

= −sT
l+1Hkdl +

sT
l+1Hkdl

dT
l Hkdl

dT
l Hkdl = 0,

so the induction argument holds for (2.15) also.

Noting (2.8) and (2.14), we show that (2.17) continues to hold when k is replaced by k + 1

by the following argument:

dT
l+1rl+1 = (−sl+1 + βldl)

T rl+1 = −sT
l+1rl+1 = −rT

l+1M
−1
k rl+1.

Finally, by applying (2.7), (2.8), (2.14) and the induction hypothesis for (2.18), we obtain

that

dT
l+1Mkdi = (−sl+1 + βldl)

TMkdi

= −rT
l+1M

−1
k Mkdi + βld

T
l Mkdi

= −rT
l+1di + βld

T
l Mkdi

= βld
T
l Mkdi > 0,

so that dT
i Mkdj > 0 when i 6= j, as claimed. This completes the proof of the lemma. �
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2.3. Nonmonotonic affine scaling interior conjugate gradient path algorithm

Now, we describe an affine scaling conjugate gradient path algorithm with nonmonotonic

strick interior feasible backtracking line search technique for solving the bound-constrained

systems (1.1).

Algorithm 1.

Initialization step

Choose parameters β ∈ (0, 1
2 ), ω ∈ (0, 1), ε > 0 and positive integer M as nonmonotonic

parameter. Let m(0) = 0 and ξ ∈ (0, 1), give a starting strict feasibility interior point

x0 ∈ int(Ω) ⊆ ℜn. Set k = 0, go to the main step.

Main step

1. Evaluate

fk = f(xk)
def
=

1

2
‖F (xk)‖2, Ck, gk = ∇f(xk)

def
=(F

′

k)TFk

and Dk given in (2.3).

2. If ‖D−1
k gk‖ = ‖D−1

k (F
′

k)TFk‖ ≤ ε, stop with the approximate solution xk.

3. Form the affine scaling conjugate gradient path Γk(τ), set pk(τ) = Γk(τ), choose

τ =∞, ω−n, ω−(n−1), · · · , until the following inequality is satisfied

f(xk)− f(xk + pk(τ)) ≥ ξ
[

f(xk)− ψk(pk(τ))
]

. (2.24)

4. Choose αk = 1, ω, ω2, · · · , until the following inequality is satisfied:

f(xk + αkpk(τk)) ≤ f(xl(k)) + αkβg
T
k pk(τk),

with xk + αkpk(τk) ∈ int(Ω), (2.25)

where f(xl(k)) = max0≤j≤m(k){f(xk−j)}.

5. Set

xk+1 = xk + αkpk. (2.26)

6. Take the nonmonotone control parameter m(k + 1) = min{m(k) + 1,M}. Then set

k ← k + 1 and go to Step 1.

Remark 2.1. The scalar αk given in (2.25) of Step 4 denotes the step size along the direction

pk to the boundary on the variables l ≤ xk + αkpk ≤ u, that is,

α∗
k

def
= min

{

max{
li − xi

k

pi
k

,
ui − xi

k

pi
k

}, i = 1, · · · , n
}

, (2.27)

where αk = θkα
∗
k, θk ∈ (θl, 1], for some 0 < θl < 1 and θk − 1 = O(‖pk(τk)‖), li, ui, xi

k and pi
k

are the ith components of l, u, xk and pk, respectively.

Remark 2.2. In fact, we will sequentially compute the conjugate directions d1, d2, · · · , dq, dq+1

in Step 3, which satisfies (2.24). In practical, we can sequentially compute the conjugate

gradient path Γk(τ) =
∑q

i=1 λi(τ)di until (2.24) is satisfied, if Γk(τ) =
∑q−1

i=1 λi(τ)di does not

satisfy (2.24). So we compute τ given in (2.13) such that (2.24) holds.



584 C.X. JIA AND D.T. ZHU

3. Global Convergence Analysis

Throughout this section we assume that F : X ⊂ ℜn → ℜn is continuously differentiable

and bounded from below. Given x0 ∈ int(Ω) ⊂ ℜn, the algorithm generates a sequence {xk} ⊂

Ω ⊆ ℜn. In our analysis, we denote the level set of f by

L(x0) = { x ∈ ℜn | f(x) ≤ f(x0), l ≤ x ≤ u }.

The following assumption is commonly used in convergence analysis of most methods for the

box constrained systems.

Assumption 1. Sequence {xk} generated by the algorithm is contained in a compact set L(x0)

on ℜn.

Assumption 2. There exist some positive constants χg and χD such that

‖F
′T (x)F (x)‖ ≤ χg, ‖D(x)−1‖ ≤ χD, for all x ∈ L(x0).

In order to discuss the properties of the gradient path in detail, we will summarize as follows.

Lemma 3.1. Let the step pk(τ) = Γk(τ) be obtained from the affine scaling conjugate gradient

path. We have

(1) The norm function of the path ‖pk(τ)‖Mk
is monotonically increasing for τ ∈ (0,+∞),

where ‖x‖Mk
= (xTMkx)

1

2 , ∀x ∈ ℜn;

(2) The quadratic function ψk(pk(τ)) is monotonically decreasing for τ ∈ (0,+∞);

(3) If Hk is positive definite, then

lim
τ→∞

pk(τ) = −D−1
k (D−1

k HkD
−1
k )−1D−1

k gk. (3.1)

Proof. (1) By the definition of ‖ · ‖Mk
, we have

‖Γk(τ)‖Mk
= (Γk(τ)TMkΓk(τ))

1

2

and

d‖Γk(τ)‖

dτ
=

1

2Γk(τ)TMkΓk(τ)

d(Γk(τ)TMkΓk(τ))

dτ

=
1

2Γk(τ)TMkΓk(τ)

[

(
dΓk(τ)

dτ
)TMkΓk(τ) + Γk(τ)TMk

dΓk(τ)

dτ

]

=
1

Γk(τ)TMkΓk(τ)
Γk(τ)TMk

dΓk(τ)

dτ
.

Noting dti(τ)/dτ = 1 or 0, ti(τ) ≥ 0, and the definition of the conjugate gradient, we have

d‖Γk(τ)‖/dτ ≥ 0, the conclusion (1) holds.

(2) From (2.13), we have that

tl(τ) =











τ −
∑i−1

j=1λj if l = i,

λl if l < i,

0 if i < l ≤ q,

(3.2)
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for
∑i−1

j=1 λj < τ ≤
∑i

j=1 λj (i ≤ q) and tl(τ) = λl for τ >
∑q

j=1 λj . Therefore,

Γk(τ) =























i−1
∑

j=1

λjdj +
(

τ −

i−1
∑

j=1

λj

)

di if

i−1
∑

j=1

λj ≤ τ <

i
∑

j=1

λj ;

q
∑

j=1

λjdj if τ ≥

q
∑

j=1

λj .

(3.3)

Noting that ψk(Γk(τ)) = f(xk) + gT
k Γk(τ) + 1

2Γk(τ)THkΓk(τ), we have

dψk(Γk(τ))

dτ
=

(dψk(Γk(τ))

dΓk

)T

di

= gT
k di +

[

i−1
∑

j=1

λjdj + (τ −

i−1
∑

j=1

λj)di

]T

Hkdi

= gT
k di +

(

τ −
i−1
∑

j=1

λj

)

dT
i Hkdi ≤ r

T
1 di + λid

T
i Hkdi

= rT
1 di + rT

i si = rT
1 di + rT

i M
−1
k ri = rT

1 di − r
T
i di

= rT
1 di −

(

r1 +
i−1
∑

j=1

λjHkdj

)T

di = −
i−1
∑

j=1

λjd
T
j Hkdi = 0, (3.4)

for
∑i−1

j=1 λj < τ ≤
∑i

j=1 λj (i ≤ q) and dψk(Γk(τ))/dτ = 0 for τ ≥
∑q

j=1λj . So the quadratic

function ψk(Γk(τ)) is monotonically decreasing for τ ∈ (0,+∞).

(3) If Hk is positive definite, by the termination condition, we have rq+1 = 0. Noting

Hkvq+1 + gk = rq+1 = 0, then vq+1 = −H−1
k gk. By λq+1 = rT

q+1sq+1/(d
T
q+1Hkdq+1), we get

λq+1 = 0, lim
τ→∞

tq+1(τ) = 0.

By (2.9) and (3.3), we have

lim
τ→∞

Γk(τ) =

q
∑

j=1

λjdj = vq+1 = −H−1
k gk = −D−1

k (D−1
k HkD

−1
k )−1D−1

k gk.

So the conclusion (3) holds. This completes the proof of this lemma. �

The following lemma shows the relation between the gradient gk = F
′T
k Fk of the objective

function and the step pk generated by the proposed algorithm. We can see from the lemma

that the direction of the trial step is a sufficiently descent direction.

Lemma 3.2. Let the step pk(τ) = Γk(τ) be obtained from the affine scaling conjugate gradient

path. Then:

(1) The function Φk(τ) = gT
k pk(τ) is monotonically decreasing for τ ∈ (0,+∞).

(2) For τ ∈ (0,+∞), the function Φk(τ) satisfies the following sufficient descent condition:

gT
k pk(τ) ≤ −min

{

τ,
1

‖D−1
k HkD

−1
k ‖

}

‖D−1
k gk‖

2. (3.5)
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Proof. (1) By Lemma 3.1, if
∑i−1

j=1λj ≤ τ <
∑i

j=1 λj (i ≤ q), then

Φk(τ) = gT
k Γk(τ) = gT

k

(

i−1
∑

j=1

λjdj + (τ −

i−1
∑

j=1

λj)di

)

=

i−1
∑

j=1

λjg
T
k dj +

(

τ −

i−1
∑

j=1

λj)g
T
k di

)

.

Noting d1 = −M−1
k gk and dT

i Mkdj > 0, we can get

Φ
′

k(τ) = gT
k di = −dT

1Mkdi < 0. (3.6)

(2) If 0 < τ ≤ λ1, where

λ1 =
rT
1 s1

dT
1 Hkd1

=
‖D−1

k gk‖
2

(D−1
k gk)T (D−1

k HkD
−1
k )(D−1

k gk)
,

then

gT
k Γk(τ) = gT

k (τd1) = −τgT
k M

−1
k gk = −τgT

k D
−1
k D−1

k gk = −τ‖D−1
k gk‖

2.

Noting Φk(τ) is monotonically decreasing for τ ∈ (0,+∞), we have Φk(τ) ≤ Φk(λ1) for τ > λ1,

that is,

gT
k Γk(τ) ≤ gT

k Γk(λ1) = −λ1‖D
−1
k gk‖

2

= −
1

(D−1
k gk)T (D−1

k HkD
−1
k )(D−1

k gk)
‖D−1

k gk‖
4

≤ −
1

‖D−1
k HkD

−1
k ‖
‖D−1

k gk‖
2,

which gives (3.5). �

Lemma 3.3. Let the step pk(τ) = Γk(τ) be obtained from the affine scaling conjugate gradient

path. Then the predicted reduction satisfy the estimate:

f(xk)− ψk(pk(τ)) ≥
1

2
min

{

τ,
1

‖D−1
k HkD

−1
k ‖

}

‖D−1
k gk‖

2 (3.7)

for all F
′

k, Fk, Ck, Dk and τ .

Proof. We consider first the case of 0 < τ ≤ λ1. Here, we have

f(xk)− ψk(Γk(τ)) = f(xk)− ψk(τd1)

=− τgT
k d1 −

1

2
τ2dT

1Hkd1 (d1 = −M−1
k gk = −D−1

k D−1
k gk)

=− τgT
k d1 −

1

2
τ2(D−1

k gk)TD−1
k HkD

−1
k (D−1

k gk) (τ ≤ λ1)

≥− τgT
k d1 −

τ

2
λ1
‖D−1

k gk‖
2

λ1
=
τ

2
‖D−1

k gk‖
2 ≥

1

2
min{τ,

1

‖D−1
k HkD

−1
k ‖
}‖D−1

k gk‖
2

and so (3.7) certainly holds.
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For the next case, consider τ > λ1. Noting the quadratic function ψk(Γk(τ)) is monotonically

decreasing for τ ∈ (0,+∞), we obtain that

f(xk)− ψk(Γk(τ)) ≥ f(xk)− ψk(Γk(λ1))

= − λ1g
T
k d1 −

1

2
λ2

1d
T
1 Hkd1 = −

‖D−1
k gk‖

2

dT
1Hkd1

gT
k d1 −

1

2

‖D−1
k gk‖

4

dT
1Hkd1

=
1

2

‖D−1
k gk‖

4

(D−1
k gk)T (D−1

k HkDk)(D−1
k gk)

≥
1

2
min{τ,

1

‖D−1
k HkD

−1
k ‖
}‖D−1

k gk‖
2

for τ > λ1. This proves (3.7). �

Assumption 3. D−1
k (F

′

k)TF
′

kD
−1
k and Ck are bounded, i.e., there exist some constants χF > 0

and χC > 0 such that

bk
def
= ‖D−1

k (F
′

k)TF
′

kD
−1
k ‖ ≤ χF , and ck

def
= ‖Ck‖ ≤ χC , ∀ k.

Lemma 3.4. Assume that Assumptions 1-3 hold. If ‖D−1
k gk‖ 6= 0, then Algorithm 1 produces

an τk in a finite number steps which satisfies

f(xk)− f(xk + pk(τ)) ≥ ξ[f(xk)− ψk(pk(τ))].

Proof. Using the triagonal inequality, we have

f(xk)− f(xk + pk(τ))

= f(xk)− ψk(pk(τ)) + ψk(pk(τ)) − f(xk + pk(τ))

≥ f(xk)− ψk(pk(τ)) − |ψk(pk(τ)) − f(xk + pk(τ))|.

Using Taylor’s Theorem, we can get

|ψk(pk(τ)) − f(xk + pk(τ))|

=
∣

∣

∣

1

2
‖Fk‖

2 + gT
k pk(τ) +

1

2
pk(τ)THkpk(τ) −

1

2
‖F (xk + pk(τ))‖2

∣

∣

∣

=
∣

∣

∣

1

2
‖Fk‖

2 + gT
k pk(τ) +

1

2
pk(τ)THkpk(τ) −

1

2
‖Fk +∇F (xk + tpk)pk(τ)‖2

∣

∣

∣

≤
[

‖∇FT
k Fk −∇F (xk + tpk(τ))TFk‖+

1

2
‖∇FT

k ∇Fk

−∇F (xk + tpk(τ))T∇F (xk + tpk(τ)) +DkCkDk‖ · ‖pk(τ)‖
]

· ‖pk(τ)‖

def
= ǫ(xk, pk)‖pk(τ)‖,

where

ǫ(xk, pk) = ‖∇FT
k Fk −∇F

T (xk + tpk(τ))Fk‖+
1

2
‖∇FT

k ∇Fk

−∇F (xk + tpk(τ))T∇F (xk + tpk(τ)) +DkCkDk‖ · ‖pk(τ)‖.

We assume 0 < τ < λ1. Then

0 ≤ ‖pk(τ)‖ = ‖τd1‖ = τ‖M−1
k gk‖ = τ‖D−2

k gk‖ ≤ τχ
2
Dχg. (3.8)
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If ‖D−1
k gk‖ 6= 0, then there exists ε > 0 such that ‖D−1

k gk‖ ≥ ε. Noting (3.8), we have that for

sufficiently small τ ,

f(xk)− ψk(pk(τ)) ≥
1

2
min{τ,

1

D−1
k HkD

−1
k

}‖D−1
k gk‖

2

≥
1

2
ε2τ ≥

1

2

ε2

χ2
Dχg

‖pk(τ)‖ = c1‖pk(τ)‖, (3.9)

where c1 = 1
2ε

2/(χ2
Dχg). Furthermore,

f(xk)− f(xk + pk(τ))

f(xk − ψk(pk(τ)))
≥ 1−

|ψk(pk(τ)) − f(xk + pk(τ))|

f(xk)− ψk(pk(τ))

≥ 1−
ǫ(xk, pk(τ))‖pk(τ)‖

c1‖pk(τ)‖
= 1−

ǫ(xk, pk(τ))

c1
.

Noting that ∇F (x) is continuous and (3.8), we can get ǫ(xk, pk(τ)) < c1/3 for τ is small enough.

This completes the proof. �

Lemma 3.5. Assume that Assumptions 1-3 hold and the gradient of f satisfies

‖∇f(x)−∇f(y)‖2 ≤ γ‖x− y‖2, ∀ x, y ∈ ℜ
n,

where γ is the Lipschitz constant. Let β ∈ (0, 1) and the step pk(τ) = Γk(τ) be obtained from

the affine scaling conjugate gradient path. If ‖D−1
k gk‖ 6= 0, then Algorithm 1 produces an iterate

xk+1 = xk + αkpk in a finite number of backtracking steps in (??).

Proof. Using the mean value theorem, we have the equality:

f(xk + αkpk(τk)) = f(xk) + αk∇f(xk + ηkαkpk(τk))T pk(τk),

where 0 ≤ ηk ≤ 1. We rewrite the above equation as:

f(xk + αkpk(τk)) = f(xk) + αkg
T
k pk(τk) + αk

[

∇f(xk + ηkαkpk(τk))−∇f(xk)
]T
pk(τk)

= f(xk) + αkβg
T
k pk(τk) + αk

[

(∇f(xk + ηkαkpk(τk))

−∇f(xk))T pk(τk) + (1− β)∇f(xk)T pk(τk)
]

.

Note that

[∇f(xk + ηkαkpk(τk))−∇f(xk)]T pk(τk) ≤ γηkαk‖pk(τk)‖2,

from Lemma 3.1 and the condition ‖D−1
k g(xk)‖ 6= 0. After a finite number of reductions, the

above formula will become negative and the corresponding αk will be acceptable. That is, in a

finite number of backtracking steps, αk must satisfy

f(xk + αkpk(τk)) ≤ f(xk) + βαk∇f(xk)T pk(τk),

equivalently,

f(xk) ≤ f(xl(k)) + βαk∇f(xk)T pk(τk).

Consequently, the conclusion of the lemma holds. �

We are now ready to state one of our main results of the proposed algorithm. Before doing

this, we need the following assumptions.
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Assumption 4. ‖pk(τk)‖ and Hk are uniformly bounded, that is, there exist constants χp, χH

satisfy ‖pk(τk)‖ ≤ χp and ‖Hk‖ ≤ χH for all k.

Assumption 5. Assume
|vj

k|

|pj
k|
≥

̟k

σ|gj
k|
,

where vi(x) are defined by (2.4), ̟k ∈ (̟l, 1], 0 < ̟l < 1 and ̟k − 1 = O(‖pk‖), σ > 0 is a

constant.

Assumption 6. The first-order optimality system associated to problem (1.1) has no noniso-

lated solutions and the nondegenerate property of the system (1.1) holds at any solutions of

systems (1.1).

Theorem 3.6. Assume that Assumptions 1-6 hold. Let {xk} ⊂ ℜ
n be a sequence generated by

the algorithm. If the nondegenerate property of the system (1.1) holds at any limit point, then

lim inf
k→∞

‖D−1
k F

′T
k Fk‖ = 0. (3.10)

Proof. According to the acceptance rule of αk in step 4, we have

f(xl(k))− f(xk + αkpk(τk)) ≥ −αkβg
T
k pk(τk).

Taking into account that m(k + 1) ≤ m(k) + 1 and f(xk+1) ≤ f(xl(k)), we get

f(xl(k+1)) = max
0≤j≤m(k+1)

f(xk+1−j)

≤ max
0≤j≤m(k)+1

f(xk+1−j) = max
0≤j≤m(k)

f(xk−j) = f(xl(k)).

This means {f(xl(k))} is nonincreasing for all k and hence f(xl(k)) is convergent.

If the conclusion of the theorem is not true, there exists some ε > 0 such that

‖D−1
k gk‖ = ‖D−1

k F
′T
k Fk‖ ≥ ε.

From (??) and Lemma 3.2, we obtain

f(xl(k)) = f(xl(k)−1 + αl(k)−1pl(k)−1(τl(k)−1))

≤ max
0≤j≤m(l(k)−1)

f(xl(l(k)−1−j)) + βαl(k)−1g
T
l(k)−1pl(k)−1

≤ f(xl(l(k)−1))− βαl(k)−1 min
{

τl(k)−1,
1

χF + χc

}

ǫ2. (3.11)

Since limk→+∞f(xl(k)) exists, we can conclude that

lim
k→∞

αl(k)−1τl(k)−1 = 0; (3.12)

moreover, from (3.12) we can deduce

lim
k→∞

αl(k)−1‖pl(k)−1‖ = 0. (3.13)

Similar to the proof of a theorem in [6], we have

lim
k→∞

f(xk) = lim
k→∞

f(xl(k)). (3.14)
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According to the acceptance rule (??), we have

f(xl(k))− f(xk + αkpk(τk)) ≥ −αkβg
T
k pk(τk)

≥ αkβmin{τk,
1

‖D−1
k HkD

−1
k ‖
}‖D−1

k gk‖
2 ≥ αkβε

2 min{τk,
1

χF + χc

} ≥ 0.

Noting (3.14) and the above formula, we obtain limk→∞αkτk = 0, which implies that either

lim
k→∞

inf τk = 0, (3.15)

or

lim
k→∞

αk = 0. (3.16)

If (3.15) holds, from the acceptance rule of τk, we have

f(xk)− f(xk + pk(
τk
ω

)) < ξ
[

f(xk)− ψk(pk(
τk
ω

))
]

,

which gives

−
[

gT
k pk(

τk
ω

) + o(‖pk(
τk
ω

)‖)
]

< ξ
[

− gT
k pk(

τk
ω

)−
1

2
(pk(

τk
ω

))THkpk(
τk
ω

)
]

, (3.17)

where

‖pk(τ)‖ = ‖τd1‖ = τ‖M−1
k gk‖ = τ‖D−2

k gk‖ ≤ τχ
2
Dχg for 0 < τ ≤ λ1.

From (3.17), we obtain

lim
k→∞

gT
k pk(τk/ω)

‖pk(τk/ω)‖
= 0,

which contradicts

lim
k→∞

gT
k pk(τk/ω)

‖pk(τk/ω)‖
≤ lim

k→∞

−min{τk/ω,
1

‖D
−1

k
HkD

−1

k
‖
}‖D−1

k gk‖
2

τk

ω
‖d1‖

= lim
k→∞

−‖D−1
k gk‖

2

‖D−1
k D−1

k gk‖
≤ −

1

χD

‖D−1
k gk‖ ≤ −

ǫ

χD

.

As a result (3.16) holds. If αk is determined by (??), we have

f(xk +
αk

ω
pk(τk)) > f(xl(k)) +

αk

ω
βgT

k pk(τk) > f(xk) +
αk

ω
βgT

k pk(τk),

which gives

f(xk +
αk

ω
pk(τk))− f(xk) >

αk

ω
βgT

k pk(τk). (3.18)

On the other hand,

f(xk +
αk

ω
pk(τk))− f(xk)

=
αk

ω
gT

k pk(τk) +
αk

ω

∫ 1

0

g(xk + t
αk

ω
pk(τk)− g(xk))T pk(τk)dt

≤
αk

ω
gT

k pk(τk) +
1

2
γ(
αk

ω
)2‖pk(τk)‖2, (3.19)
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where γ is the Lipschitz constant. From (3.18) and (3.19), we have

αk

ω
gT

k pk(τk) +
1

2
γ(
αk

ω
)2‖pk(τk)‖2 > β

αk

ω
gT

k pk(τk).

Therefore,

αk ≥
2ω(β − 1)

γ‖pk(τk)‖2
gT

k pk(τk) ≥
2ω(β − 1)

γχ2
p

gT
k pk(τk)

≥
2ω(1− β)

γχ2
p

min
{

τk,
1

‖D−1
k HkD

−1
k ‖

}

‖D−1
k gk‖

2

≥
2ω(1− β)

γχ2
p

min
{

τk,
1

χF + χc

}

ǫ2 ≥ 0. (3.20)

From (3.20), we can conclude that limk→∞τk = 0, which contradicts limk→∞ inf τk 6= 0.

If αk is determined by (2.25), let x∗ be a limit point of {xk}. Then there exists a subset

K1 ⊂ {k} satisfies:

lim
k→∞,k∈K1

α∗
k = 0, lim

k→∞,k∈K1

xk = x∗.

From the expression of α∗
k, we know there exists an index j such that

max
{ lj − xj

∗

pj
∗

,
uj − xj

∗

pj
∗

}

= 0,

so we can get a subset K2 ⊂ K1 such that:

lim
k→∞,k∈K2

max
{ lj − xj

k

pj
k

,
uj − xj

k

pj
k

}

= 0.

Without loss of generality, assume xj
∗ − lj = 0. If pj

k > 0, by pj
k ≤ ‖pk‖ < χp, we get that for

sufficiently large k,

max
{ lj − xj

k

pj
k

,
uj − xj

k

pj
k

}

=
uj − xj

k

pj
k

>
uj − xj

∗

2χp

=
uj − lj

2χp

> 0.

If pj
k < 0, by nondegeneration, we get gj

∗ > 0; by the optimization condition, we get

µj
∗ > 0, vj

∗ = 0, gj
∗ = µj

∗ − v
j
∗ > 0,

so when k is large enough, gj
k > 0. By the definition of D(x), we know

vj(x) = xj − lj, max
{ lj − xj

k

pj
k

,
uj − xj

k

pj
k

}

=
lj − xj

k

pj
k

=
|vj

k|

|pj
k|
.

By Assumption 5, we get

|vi
k|

|pi
k|
≥

̟k

σ|gk|
≥

̟l

σχg

> 0,

which contradicts

lim
k→∞,k∈K2

max
{ lj − xj

k

pj
k

,
uj − xj

k

pj
k

}

= 0,

so limk→∞αk 6= 0. Similarly, when xj
∗ − u

j = 0, we get limk→∞αk 6= 0, which contradicts

(3.17). Hence the conclusion of the theorem is true. �



592 C.X. JIA AND D.T. ZHU

4. Properties of the Local Convergence

Theorem 3.6 indicates that at least one limit point of {xk} is a stationary point. In this

section we shall first extend this theorem to a stronger result and then prove a local convergence

rate.

Theorem 4.1. Assume that the Assumptions 1-6 hold. Let {xk} be a sequence generated by

the proposed algorithm. If nondegenerate property of the system (1.1) holds at any limit point,

then

lim
k→+∞

‖D−1
k (F

′

k)TFk‖ = 0. (4.1)

Proof. Assume that the conclusion is not true. Then there is an ǫ1 ∈ (0, 1) and a subsequence

{D−1
mi

(F
′

mi
)TFmi

} such that for all mi, i = 1, 2, · · · ,

‖Dmi
(F

′

mi
)TFmi

‖ ≥ ǫ1.

Theorem 3.6 guarantees the existence of another subsequence {D−1
li

(F
′

li
)TFli} such that

‖D−1
k (F

′

k)TFk‖ ≥ ǫ2, for mi ≤ k < li; ‖D−1
li

(F
′

li
)TFli‖ ≤ ǫ2,

for an ǫ2 ∈ (0, ǫ1). Similar to the proof of Theorem 3.6, we have

lim
k→∞,mi≤k<li

f(xl(k)) = lim
k→∞,mi≤k<li

f(xk). (4.2)

According to the acceptance rule in step 4, we have

f(xl(k))− f(xk + αkpk(τk)) ≥ −αkβg
T
k pk(τk) ≥ βταkǫ2 min

{

τk,
1

χ2
DχH

}

≥ 0.

Similarly, we also get

lim
k→∞,mi≤k<li

αkτk = 0.

For simplicity, we rewrite the above formula as

lim
k→∞

αkτk = 0. (4.3)

Assume there exists K ⊂ {k}, such that limk→∞,k∈Kτk > 0. Then limk→∞,k∈Kαk = 0. If αk is

determined by (2.25), similar to the proof of Theorem 3.6, we have limk→∞,k∈Kαk > 0, so αk

is determined by (??). From the acceptance rule of αk in (??) and (3.20), we have

0 = lim
k→∞,k∈K

αk ≥ lim
k→∞,k∈K

2ω(1− β)

γχ2
p

min
{

τk,
1

χF + χc

}

ε22 ≥ 0. (4.4)

Consequently,

lim
k→∞,k∈K

τk = 0, (4.5)

which contradicts the assumption limk→∞,k∈K τk > 0. Therefore,

lim
k→∞

τk = 0. (4.6)
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By the definition of pk(τk), we have

lim
k→∞

‖pk(τk)‖ = 0. (4.7)

Noting that

f(xk + pk(τk)) = f(xk) + gT
k pk +O(‖pk(τk)‖2)

≤ f(xl(k)) + βgT
k pk + (1− β)gT

k pk +O(‖pk(τk)‖2)

for mi ≤ k < li and

(1− β)gT
k pk +O(‖pk(τk)‖2)

≤ −
1

2
(1− β)min

{

τk,
1

‖D−1
k HkD

−1
k ‖

}

‖D−1
k gk‖

2 +O(‖pk(τk)‖2)

≤ −
1

2
(1− β)min

{

τk,
1

χF + χc

}

ǫ22 + c(χ2
Dχgτk)2 < 0

for sufficiently large k, we have that xk+1 = xk + pk(τk). By (3.9), we know

f(xk)− ψk(pk(τk)) ≥ c1‖pk(τk)‖;

hence, by (2.24), we can get

f(xk)− f(xk + pk(τk)) ≥ ξ[f(xk)− ψk(pk(τk))] ≥ ξc1‖pk(τk)‖ = c2‖pk(τk)‖,

where c1 = 1
2ǫ

2
2/(χ

2
Dχg), c2 = ξc1. From the above formula, we obtain

‖xmi
− xni

‖ ≤

ni−1
∑

k=mi

‖xk+1 − xk‖ =

ni−1
∑

k=mi

‖pk(τk)‖

≤
1

c2

li−1
∑

k=mi

[f(xk)− f(xk + pk(τk))] =
1

c2
[f(xmi

)− f(xni
)]. (4.8)

It follows from (4.8) and (3.14) that

lim
i→∞

‖xmi
− xli‖ = 0. (4.9)

From (4.9) and

‖F
′

mi
Fmi
− F

′

li
Fli‖ = ‖∇f(xmi

)−∇f(xli)‖ ≤ γ‖xmi
− xli‖,

we have

‖xmi
− xli‖ ≤ ǫ2, ‖F

′

mi
Fmi
− F

′

li
Fli‖ ≤ γǫ2

for sufficiently large i.

On the other hand, the level set L is compact, so g(x) is uniformly continuous. Furthermore,

we can get

‖gmi
− gli‖ ≤ ε2.

If there exists subsequence {li} satisfy lim
i→∞
{xli} = x∗, then lim

i→∞
{xmi

} = x∗. By the definition

of v(x), we have

lim
i→∞
{diag(|vmi

|
1

2 − |vli |
1

2 )gli} = 0, (4.10)
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and hence

‖(D−1
mi
−D−1

ni
)gli‖ = ‖diag(|vmi

|
1

2 − |vli |
1

2 )gli‖ ≤ ε2 (4.11)

for sufficiently large i. Consequently,

ǫ1 ≤ ‖D
−1
mi

(F
′

mi
)TFmi

‖

≤ ‖D−1
mi
‖‖F

′T
mi
Fmi
− F

′T
li
Fli‖+ ‖D−1

mi
−D−1

li
‖‖F

′T
li
Fli‖+ ‖D−1

li
(F

′

li
)TFli‖

≤ (χDγ + χg + 1)ǫ2,

which contradicts the assumption that ǫ2 ∈ (0, ǫ1) can be arbitrarily small. �

We now discuss the convergence rate for the proposed algorithm. For this purpose, it is

shown that for large enough k, the step size αk ≡ 1, limk→∞ θk = 1.

Assumption 7. D−1
∗ H∗D

−1
∗ satisfies the strong second-order sufficient condition, i.e., there

exists ζ > 0 such that:

(D∗q)
T (D−1

∗ H∗D
−1
∗ )(D∗q) ≥ ζ‖D∗q‖

2, ∀q. (4.12)

Assumption 8.

lim
k→∞

‖[Bk −∇
2f(xk)]pk(τk)‖

‖pk(τk)‖
= 0. (4.13)

Because Ck → C∗ = 0, by Assumption 8, we have

lim
k→∞

‖[Hk −∇
2f(xk)]pk(τk)‖

‖pk(τk)‖

≤ lim
k→∞

‖[Bk −∇
2f(xk)]pk(τk)‖ + ‖Ckpk(τk)‖

‖pk(τk)‖
= 0, (4.14)

which implies that

pk(τk)T (∇2f(xk)−Hk)pk(τk) = o(‖pk(τk)‖2). (4.15)

Theorem 4.2. Assume that Assumptions 1-8 hold and {xk} is a sequence produced by Algo-

rithm 1 which converges to x∗. Then the convergence is superlinear. i.e.,

lim
k→∞

‖xk+1 − x∗‖

‖xk − x∗‖
= 0. (4.16)

Proof. Since x∗ is a point at which the second-order sufficient optimality conditions are

satisfied, D−1
∗ H∗D

−1
∗ is positive definite. It is not difficult to verify that D−1

k HkD
−1
k is also

positive definite for large enough k. By Lemma 3.1 (3), we know pk(+∞) = −H−1
k gk. Now we

prove that for large enough k, pk(+∞) = −H−1
k gk satisfies (2.24)-(2.25) in the algorithm.

We first prove pk(+∞) satisfies (2.24) for sufficiently large k.

By Assumption 7 we get that

(Dkp)
T (D−1

k HkD
−1
k )Dkp ≥ ζ‖Dkp‖

2,

so we can deduce that ‖(D−1
k HkD

−1
k )−1‖ is bounded, by combining this result with

‖D−1
k (D−1

k HkD
−1
k )−1D−1

k gk‖ ≤ ‖D
−1
k ‖‖(D

−1
k HkD

−1
k )−1‖‖D−1

k gk‖
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and (3.10), we have that

lim
k→∞

‖pk(+∞)‖ = lim
k→∞

‖D−1
k (D−1

k HkD
−1
k )−1D−1

k gk‖ = 0. (4.17)

By(4.15), we can get

|ψk(pk(+∞))− f(xk + pk(+∞))|

= |gT
k pk(+∞) +

1

2
pk(+∞)THkpk(+∞)− (gT

k pk(+∞)

+
1

2
pk(+∞)T∇2f(xk)pk(+∞) + o(‖pk(+∞)‖2))|

= |
1

2
pk(+∞)T (Hk −∇

2f(xk))pk(+∞)− o(‖pk(+∞)‖2)| = o(‖pk(+∞)‖2). (4.18)

It follows from Assumption 7 that D−1
k HkD

−1
k is positive definite uniformly for sufficiently large

k. Hence,

f(xk)− ψk(pk(+∞)) = −gT
k pk(+∞)−

1

2
pk(+∞)THkpk(+∞)

=
1

2
pk(+∞)THkpk(+∞) ≥

ζ

2
‖Dkpk(+∞)‖2. (4.19)

Therefore,

f(xk)− f(xk + pk(+∞))

f(xk)− qk(pk(+∞))

≥ 1−
o(‖pk(+∞)‖2)

f(xk)− qk(pk(+∞))
≥ 1−

o(‖pk(+∞)‖2)
ζ

2‖Dkpk(+∞)‖2
. (4.20)

Since

‖pk‖ = ‖D−1
k Dkpk‖ ≤ ‖D

−1
k ‖‖Dkpk‖ ≤ χD‖Dkpk‖,

we have ‖pk‖/‖Dkpk‖ ≤ χD and hence

lim
k→∞

o(‖pk‖
2)

‖Dkpk‖2
= lim

k→∞

o(‖pk‖
2)

‖pk‖2
·
‖pk‖

2

‖Dkpk‖2
= 0. (4.21)

Combining (4.20) and (4.21), we deduce that pk(+∞) = −H−1
k gk satisfies (2.24).

Next, we prove that pk(+∞) satisfies (??). Let pk
def
= pk(+∞) = −H−1

k gk. Because f(xk) is

twice continuously differentiable, β ∈ (0, 1
2 ), gT

k pk = −pT
kHkpk. By (4.12) and (4.15), we have

that

f(xk + pk) = f(xk) + gT
k pk +

1

2
pT

k∇
2f(xk)pk + o(‖pk‖

2)

= f(xk) + βgT
k pk + (

1

2
− β)gT

k pk +
1

2
(gT

k pk + pT
kHkpk)

+
1

2
pT

k [∇2f(xk)−Hk]pk + o(‖pk‖
2)

≤ f(xk) + βgT
k pk − (

1

2
− β)pT

kHkpk + o(‖pk‖
2)

≤ f(xk) + βgT
k pk − (

1

2
− β)

ζ

2
‖Dkpk‖

2 + o(‖pk‖
2).
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By (4.21), we deduce that f(xk +pk) ≤ f(xk)+βgT
k pk for large enough k, i.e., pk satisfies (??).

Finally, we prove that (2.25) holds. By (4.17), limk→∞ pi
k(+∞) = 0. Noting

lim
k→∞

‖D−1
k gk‖ = 0, lim

k→∞
‖D−1

k gk‖ = ‖D−1
∗ g∗‖,

we can get ‖D−1
∗ g∗‖ = 0 and hence g∗ = 0. By the definition of nodegeneration, we obtain

l < x∗ < u and li < xi
∗ < ui (∀ 1 ≤ i ≤ n), so there exists some ǫ0 > 0 satisfying min{xi

∗ −

li, ui − xi
∗} > 2ǫ0, which implies min{xi

k − l
i, ui − xi

k} > ǫ0 for sufficiently large k. Therefore,

lim
k→∞

max
{ li − xi

k

pi
k

,
ui − xi

k

pi
k

}

= 0, (4.22)

which implies that α∗
k = +∞. Therefore, pk(+∞) = −H−1

k gk satisfies (2.25).

From the above discussion, we obtain if Hk is positive definite, the new iterate step is

xk+1 = xk + pk(+∞). pk(+∞) is a Newton or quasi-Newton step, so (4.16) holds. �

Theorem 4.2 means that the local convergence rate for the proposed algorithm depends

on the Hessian of the objective function at x∗ and the local convergence rate of the step. If

dk becomes the Newton step, then the sequence {xk} generated by the algorithm converges

quadratically to x∗.

5. Numerical Experiments

In this section we present some numerical results. In order to check the effectiveness of the

method, we select the parameters as follows: ǫ = 10−6, ξ = 0.02, β = 0.4, ω = 0.5.

Table 5.1: Numerical comparison.

Problem the optimal solution and the optimal value M=0 M=5

name reference results results of algorithm NG NF NG NF

SC229 x∗ = (1, 1)T x∗ = (1, 1)T 21 25 20 20

f∗ = 0 f∗ = 1.6934 × 10−12

SC208 x∗ = (1, 1)T x∗ = (1, 1)T 17 24 11 13

f∗ = 0 f∗ = 5.5417 × 10−29

SC209 x∗ = (1, 1)T x∗ = (1, 1)T 55 74 35 37

f∗ = 0 f∗ = 6.8002 × 10−24

SC201 x∗ = (5, 6)T x∗ = (5, 6)T 2 3 2 3

f∗ = 0 f∗ = 7.8886 × 10−31

Ferraris x∗ = (0.5, 3.14159)T x∗ = (0.5, 3.1416)T 12 13 12 13

Tronconi f∗ = 0 f∗ = 1.6668 × 10−15

Reklaitis x∗ = (3, 2)T x∗ = (3, 2)T 10 11 10 11

Ragsdell f∗ = 0 f∗ = 5.2577 × 10−18

The experiments are carried out on 6 test problems which are quoted from [5] and [10]. NF

and NG stand for the numbers of function evaluations and gradient evaluations, respectively, M

denotes the nonmonotonic parameter. The results of the numerical experiments are reported

in Table 5.1 to show the effectiveness of the proposed algorithm.
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