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Email: Ernst.Hairer@math.unige.ch

Abstract

For the numerical treatment of Hamiltonian differential equations, symplectic integra-

tors are the most suitable choice, and methods that are conjugate to a symplectic integrator

share the same good long-time behavior. This note characterizes linear multistep methods

whose underlying one-step method is conjugate to a symplectic integrator. The bounded-

ness of parasitic solution components is not addressed.
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1. Main Result

For the numerical integration of ẏ = f(y) we consider the linear multistep method

k∑

j=0

αjyn+j = h

k∑

j=0

βjf(yn+j), (1.1)

and we denote its generating polynomials by

ρ(ζ) =

k∑

j=0

αjζ
j , σ(ζ) =

k∑

j=0

βjζ
j .

We assume throughout this note that the method is consistent (i.e., ρ(1) = 0 and ρ′(1) =

σ(1) 6= 0) and irreducible (i.e., ρ(ζ) and σ(ζ) do not have a common factor).

Since the discrete flow of a multistep method evolves on a product of k copies of the phase

space, definitions like that for symplecticity are not straightforward. It was first suggested

by Feng Kang [3] (see also [2, pp. 274-283]) to study the symplecticity of a linear multistep

method via its underlying one-step method (also called step-transition operator). This is a

mapping y 7→ Φh(y), such that the iterates yn = Φn
h(y0) satisfy the recursion (1.1). The

existence of this underlying one-step method as a formal B-series is discussed in [4, 10], see

also [6, Sect. XV.2]. Unfortunately, multistep methods are non symplectic with respect to this

definition of symplecticity [9].

A method Φh(y) is called conjugate-symplectic [8] if there exists a transformation χh(y)

which is O(h) close to the identity (and represented by a formal B-series), such that χ−1
h ◦Φh◦χh

is a (formal) symplectic transformation when f(y) is a Hamiltonian vector field. Although such

a method does not need to be symplectic, it shares the long-time behavior of a symplectic

integrator because (χ−1
h ◦ Φh ◦ χh)n = χ−1

h ◦ Φn
h ◦ χh.
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Theorem 1.1. The underlying one-step method of the linear multistep method (1.1) is conjugate-

symplectic if and only if (1.1) is symmetric, i.e., αj = −αk−j and βj = βk−j for all j.

Since the order of symmetric methods is always even and since we consider arbitrary B-

series for the conjugacy mapping χh, this provides a new proof for the main result of [7], which

states that the underlying one-step method of a method (1.1) with odd order u ≥ 3 cannot be

conjugate to a symplectic method with order v ≥ u via any generalized linear multistep method

(GLMSM). In that article, a GLMSM denotes a difference formula like (1.1), where f(yn+j) is

replaced by f
(∑k

l=0 γjlyn+l

)
.

In [7] it is furthermore conjectured that if a GLMSM (and in particular also (1.1)) is

conjugate-symplectic via another GLMSM, then it must be conjugate to the 2nd order mid-point

rule. The requirement on the conjugacy mapping seems very strong, because any B-series for

χh would imply as well the good long-time behavior of the method. If we relax this requirement

and admit arbitrary B-series for χh, Theorem 1.1 proves the existence of conjugate-symplectic

methods (1.1) of arbitrarily high order.

The proof of Theorem 1.1 is a concatenation of various results that have been proved in a

different context by several authors.

2. Proof of Necessity

It suffices to consider the harmonic oscillator which can be written as ẏ = λy with λ = i

(put y = p + iq). In this situation Φh(y) = ζ(λh)y, where ζ = ζ(z) is the solution of

ρ(ζ) − z σ(ζ) = 0 (2.1)

which is the analytic continuation of ζ(0) = 1. For the harmonic oscillator, conjugate-symplec-

ticity as well as symplecticity and area preservation are equivalent to

|ζ(ih)|2 = ζ(ih)ζ(−ih) = 1.

It is proved in [8] and in [3] (see also [2, pp. 274-283]) that this property implies the

symmetry of the method (1.1): substituting −z for z and ζ−1 for ζ in (2.1) shows that the adjoint

mapping ζ∗(z) = ζ(−z)−1 satisfies the relation ρ∗(ζ∗) + z σ∗(ζ∗) = 0 with ρ∗(ζ) = ζkρ(ζ−1)

and σ∗(ζ) = ζkσ(ζ−1). The condition ζ(ih)ζ(−ih) = 1 therefore implies that ζ = ζ(ih) satisfies

ρ(ζ) − ih σ(ζ) = 0, ρ∗(ζ) + ih σ∗(ζ) = 0

for all sufficiently small h. Consequently, we have

ρ(ζ)σ∗(ζ) = −ρ∗(ζ)σ(ζ)

for ζ = ζ(ih) and, by analytic continuation, for all complex ζ. Since ρ(ζ) and σ(ζ) do not have

common factors, and σ(1) = σ∗(1) 6= 0, this yields ρ∗(ζ) = −ρ(ζ) and σ∗(ζ) = σ(ζ) what is

equivalent to the symmetry of the method.

3. Proof of Sufficiency

a) The following result has been proved in [5] for multistep methods for second order differ-

ential equations and in [6, Sect. XV.4.4] for methods (1.1): if Q(y) is a quadratic first integral
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of ẏ = f(y) and if (1.1) is symmetric, then the underlying one-step method exactly preserves a

quantity Q̃(y) = Q(y) + O(h) that can be expressed in terms of elementary differentials.

b) One of the main results in [1] is the following: if, for a problem ẏ = f(y) having a

quadratic first integral Q(y), a B-series integrator Φh(y) exactly preserves a modified quantity

Q̃(y) = Q(y) + O(h), then it is conjugate to a symplectic B-series.

c) A combination of the statements (a) and (b) completes the proof of Theorem 1.1.

4. Comments

Numerical one-step methods that are conjugate-symplectic have the same long-time be-

haviour as symplectic methods. They nearly conserve the Hamiltonian and quadratic first

integrals, and they have an improved error propagation for nearly integrable Hamiltonian sys-

tems.

Care has to be taken with multistep methods, because their long-time behavior is not only

determined by their underlying one-step method. Also the parasitic solution components have

to be got under control (see [4]). A satisfactory long-time analysis is known only for a special

class of symmetric multistep methods for problems q̈ = −∇U(q) (see [5]).
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