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Abstract

In this paper, we give some convergence results on the gradient projection method

with exact stepsize rule for solving the minimization problem with convex constraints.

Especially, we show that if the objective function is convex and its gradient is Lipschitz

continuous, then the whole sequence of iterations produced by this method with bounded

exact stepsizes converges to a solution of the concerned problem.
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1. Introduction

We consider the convexly constrained minimization problem

min{f(x) | x ∈ Ω}, (1)

where Ω ⊆ Rn is a nonempty closed convex set, and the function f(x) is continuously differen-
tiable on Ω. We say that x∗ ∈ Ω is a stationary point of problem (1) if it satisfies condition

〈∇f(x∗), x− x∗〉 ≥ 0, ∀x ∈ Ω, (2)

where 〈·, ·〉 denotes the inner product of Rn. Let Ω∗ denote the set of all stationary points of
problem (1). Then if f is convex or pseudo-convex, Ω∗ becomes the solution set of this problem.

The gradient projection method was first proposed by Goldstein [5] and Levitin and Polyak
[9] for solving convexly constrained minimization problems. This method is regarded as an
extension of the steepest descent or Cauchy algorithm for solving unconstrained optimization
problems. It now has many variants in different setting, and supplies a prototype for various
more advanced projection methods. Its iterative scheme is to update xk ∈ Ω according to the
formula

xk+1 = P [xk − αk∇f(xk)], (3)
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where P [·] denotes the projection from Rn onto Ω, i.e.,

P [y] = arg min{‖x− y‖ | x ∈ Ω}, y ∈ Rn,

∇f is the gradient of f , and αk > 0 is a judiciously chosen stepsize. If αk is taken as a global
minimizer (this assumes, of course, that such a minimum exists) of the subproblem

min{f(xk(α)) | α ≥ 0}, (4)

where x(α) := P [x− α∇f(x)], then it is called the exact stepsize. If αk is taken as the largest
element in the set {γl0, γl1, γl2, · · · } (γ > 0, l ∈ (0, 1)) satisfying

f(xk(αk)) ≤ f(xk) + µ〈∇f(xk), xk(αk)− xk〉, µ ∈ (0, 1), (5)

then it is called the inexact Armijo stepsize.
The exact stepsize rule was first used by McCormick and Tapia [10] and further studied by

Phelps [11, 12], Hager and Park [7], et al. Frequently, this rule is not used since it requires
to evaluate the projections for all choices of α ≥ 0 while the inexact Armijo stepsize requires
to only evaluate the finite projections at each iteration. However, as Hager and Park pointed
out for some difficult optimization problems, where the structure of constraints is relatively
simple, the exact stepsize rule is useful since it provides a mechanism for making a large step to
escape from one valley of the cost function and move to another (possibly distant) valley with
a smaller minimum cost. In [7], they gave an example in which the NP-hard graph partitioning
problem can be formulated as a continuous quadratic programming problem whose constraints
have a simple structure, and a practical procedure to evaluate the exact stepsize was given for
the reformulated problem. This shows that it is quite necessary to study convergence of the
gradient projection method with exact stepsize rule.

This paper is mainly concerned with the above issue. In Section 3 we characterize some
sufficient conditions under which this method with bounded exact searches possesses some
encouraging convergent properties. Especially, we obtain the result that if f is convex and
∇f is Lipschitz continuous on Ω, then the full sequence produced by the gradient projection
method with bounded exact stepsizes is convergent to a solution of problem (1).

2. Some Lemmas

The analysis of the gradient projection method defined by (3) and (4) requires the following
lemmas which are consequences of some basic properties of the projection operator.

Lemma 2.1. Let P be the projection into Ω. Then for x ∈ Ω,
(i) 〈x(α)− x + α∇f(x), y − x(α)〉 ≥ 0, for all y ∈ Ω and α > 0;
(ii) 〈∇f(x), x− x(α)〉 ≥ 1

α‖x(α)− x‖2, for all α > 0.

Lemma 2.2. Under the conditions of the above lemma, it holds that
(i) ‖x(α)− x‖ is nondecreasing on α > 0 (see [14]);
(ii) 1

α‖x(α)− x‖ is nonincreasing on α > 0 (see [4] or [3]);
(iii) 〈∇f(x), x− x(α)〉 is nondecreasing on α > 0;
(iv) 1

α 〈∇f(x), x− x(α)〉 is nonincreasing on α > 0 (see [15]).

For a given closed convex set Ω, we denote the tangent cone T (x) at x ∈ Ω to be the closure
of the cone of all feasible directions at x. Since T (x) is a nonempty closed convex set in Rn,
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the projection, denoted by ∇Ωf(x), of −∇f(x) onto T (x) is uniquely defined, i.e.,

∇Ωf(x) = arg min{||v +∇f(x)|| | v ∈ T (x)}.

Calamai and Moré [3] called it the projected gradient, and showed some of its characterizations.

Lemma 2.3. Let ∇f be continuous on the closed convex set Ω. Then
(i) the point x∗ ∈ Ω∗ if and only if ∇Ωf(x∗) = 0;
(ii) min{〈v,∇f(x)〉| v ∈ T (x), ||v|| ≤ 1} = −||∇Ωf(x)||;
(iii) the mapping ||∇Ωf(x)|| is lower semicontinuous on Ω.

Define N = {0, 1, 2, · · · }. Based on Lemma 2.1, we derive the following basic lemma.

Lemma 2.4. Let {xk} be generated by formula (3). Then we have for any x ∈ Ω,

〈∇f(xk), xk − x〉
‖xk − x‖ ≤ 〈∇f(xk−1), xk−1 − xk〉

‖xk−1 − xk‖ + ‖∇f(xk)−∇f(xk−1)‖, ∀k ∈ N.

Proof. For any x ∈ Ω, by Lemma 2.1 (i) we have

〈∇f(xk−1), xk − x〉 ≤ 〈xk−1 − xk, xk − x〉
αk−1

, ∀k ∈ N.

From the above inequality and Lemma 2.1 (ii) we obtain for any k ∈ N ,

〈∇f(xk), xk − x〉
‖xk − x‖ = 〈∇f(xk−1), xk − x〉

‖xk − x‖ + 〈∇f(xk)−∇f(xk−1), xk − x〉
‖xk − x‖

≤ 〈xk−1 − xk, xk − x〉
αk−1‖xk − x‖ + ‖∇f(xk)−∇f(xk−1)‖

≤ 1
αk−1

‖xk−1 − xk‖+ ‖∇f(xk)−∇f(xk−1)‖

≤ 〈∇f(xk−1), xk−1 − xk〉
‖xk−1 − xk‖ + ‖∇f(xk)−∇f(xk−1)‖.

The proof is complete.
Before stating and proving the following key lemma for our convergence analysis, we need

to recall the notion of absolute continuity which can be founded in any text of mathematical
analysis.

Definition 2.1. We say that ∇f is absolutely continuous on Ω, if for given ε > 0, there is a
number δ > 0 such that for arbitrarily finite set {x1, x2, · · · , xt} ∈ Ω satisfying

∑
i,j∈{1,··· ,t} ||xi

−xj || < δ, ∑

i,j∈{1,··· ,t}
||∇f(xi)−∇f(xj)|| < ε.

Clearly, Lipschitz continuity of∇f implies absolute continuity, and the latter implies uniform
continuity. That is, absolute continuity is between Lipschitz continuity and uniform continuity.

Lemma 2.5. Assume that f is bounded below and ∇f is absolutely continuous on Ω. Let {xk}
be generated by (3) such that

(i) {f(xk)} is monotonically decreasing;
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(ii) limk→∞ ||xk − xk+1|| = 0;

(iii) lim infk→∞
〈∇f(xk), xk − xk+1〉

‖xk − xk+1‖ = 0.

Then, limk→∞∇Ωf(xk) = 0.

Proof. From the uniform continuity of ∇f and the assumption (ii), we obtain

f(xk)− f(xk+1) = 〈∇f(xk), xk − xk+1〉+ o(‖xk − xk+1‖) (6)

for all sufficiently large k ∈ N . For arbitrarily given ε > 0, let

N(ε) := {k ∈ N | 〈∇f(xk), xk − xk+1〉
‖xk − xk+1‖ < ε}, N(ε) := N\N(ε).

From the assumption (iii), we know that N(ε) is an infinite subset in N .
Suppose that N(ε) is also an infinite subset. We will show that this is a contradiction. In

view of the assumption (ii) and (6), we have for any sufficiently large k′ ∈ N(ε),

f(xk)− f(xk+1) ≥ ε

2
‖xk − xk+1‖, k ∈ N(ε), k ≥ k′. (7)

This, together with the boundedness of f and the assumption (i), implies that

ε
2

∑

k∈N(ε),k≥k′

‖xk − xk+1‖ ≤
∑

k∈N(ε),k≥k′

{f(xk)− f(xk+1)}

≤
∑

k≥k′
{f(xk)− f(xk+1)} < +∞.

Hence,
lim

k′→∞

∑

k∈N(ε),k≥k′

‖xk − xk+1‖ = 0. (8)

Let k′′ = max{k ∈ N | k < k′, k ∈ N(ε/2)}. Then k ∈ N(ε/2) for any k ∈ [k′′ + 1, k′ − 1]. By
using Lemma 2.4 repeatedly, we have

ε ≤ 〈∇f(xk′), xk′ − xk′+1〉
‖xk′ − xk′+1‖

≤ 〈∇f(xk′−1), xk′−1 − xk′〉
‖xk′−1 − xk′‖ + ||∇f(xk′)−∇f(xk′−1)||

≤ 〈∇f(xk′′), xk′′ − xk′′+1〉
‖xk′′ − xk′′+1‖ +

+ ||∇f(xk′′+1)−∇f(xk′′)||+
∑

k∈[k′′+1,k′−1]

||∇f(xk+1)−∇f(xk)||

< ε
2 + ||∇f(xk′′+1)−∇f(xk′′)||+

∑

k∈N(ε/2),k≥k′′+1

||∇f(xk+1)−∇f(xk)||.

That is,
ε

2
< ||∇f(xk′′+1)−∇f(xk′′)||+

∑

k∈N(ε/2),k≥k′′+1

||∇f(xk+1)−∇f(xk)||. (9)

From the assumption (ii), the absolute continuity of ∇f , and the claim (whose proof is similar
to the one of (8))

lim
k′′→∞

∑

k∈N(ε/2),k≥k′′+1

‖xk − xk+1‖ = 0,
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we obtain
lim

k′′→∞
||∇f(xk′′+1)−∇f(xk′′)|| = 0, (10)

and
lim

k′′→∞

∑

k∈N(ε/2),k≥k′′+1

||∇f(xk+1)−∇f(xk)|| = 0. (11)

Letting k′ →∞, then by the assumption (iii), we have k′′ →∞. Thus, taking the limit in (9)
as k′ →∞ and using (10) and (11), we derive ε

2 ≤ 0, a contradiction.
Therefore, N(ε) is a finite subset. Since ε > 0 is arbitrary, this shows that

lim
k→∞

〈∇f(xk), xk − xk+1〉
‖xk − xk+1‖ = 0. (12)

Now, we prove the conclusion of this lemma. By the definition of T (xk), Lemma 2.4 yields

−〈∇f(xk), v〉 ≤ 〈∇f(xk−1), xk−1 − xk〉
‖xk−1 − xk‖ + ‖∇f(xk)−∇f(xk−1)‖, ∀k ∈ N, (13)

for any v ∈ T (xk) with ||v|| = 1. Hence, from (13) and Lemma 2.3 (ii) we know that

||∇Ωf(xk)|| ≤ 〈∇f(xk−1), xk−1 − xk〉
‖xk−1 − xk‖ + ‖∇f(xk)−∇f(xk−1)‖, ∀k ∈ N. (14)

Taking the limit in (14) as k → ∞, and by using (12), the assumption (ii) and the uniform
continuity of ∇f , we obtain the desired result. The proof is complete.

3. Main Results

In this section, we proceed to the global convergence analysis of the gradient projection
method (3) with bounded exact stepsize rule, i.e., αk is taken as a constrained minimizer of the
subproblem

min{f(xk(α)) | α ∈ [0, c]}, (15)

where c > 0 is a constant. Clearly, this rule guarantees the existence of αk in any case. The
first result is that the distance of two neighbor iterates tends to zero.

Theorem 3.1. Assume that f is bounded below and ∇f is uniformly continuous on Ω. If {xk}
is generated by the method (3) and (15), then limk→∞ ||xk − xk+1|| = 0.

Proof. By the bounded exact stepsize rule (15), we have for any α ∈ [0, c],

f(xk)− f(xk+1) ≥ f(xk)− f(xk(α)), ∀k ∈ N. (16)

Define x̃k+1 := xk(α̃k) for every xk, where α̃k is the largest element in {c, cl, cl2, · · · } (l ∈ (0, 1))
such that

f(xk)− f(x̃k+1) ≥ µ〈∇f(xk), xk − x̃k+1〉. (17)

Then by modelling on the proof of Theorem 2.3 in [3], we readily obtain

lim
k→∞

1
α̃k
‖xk − x̃k+1‖ = 0. (18)
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In fact, assume that there is an infinite subset N0 ⊆ N such that

1
α̃k
‖xk − x̃k+1‖ ≥ ε > 0, ∀k ∈ N0.

Then from (16), (17) and Lemma 2.1 (ii), we imply that for k ∈ N0,

f(xk)− f(xk+1) ≥ f(xk)− f(x̃k+1)
≥ µ〈∇f(xk), xk − x̃k+1〉 ≥ µ

α̃k
‖xk − x̃k+1‖2

≥ µεmax{εα̃k, ‖xk − x̃k+1‖}.

By convergence of {f(xk)}, one has limk∈N0,k→∞ α̃k = 0, and limk∈N0,k→∞ ‖xk − x̃k+1‖ = 0.
Thus, from the way of choosing α̃k, we obtain that for all sufficiently large k ∈ N0,

f(xk)− f(xk(α̃kl−1)) < µ〈∇f(xk), xk − xk(α̃kl−1)〉.

This, together with the uniform continuity of ∇f , Lemma 2.2 (ii) and (iii), shows that for all
sufficiently large k ∈ N0,

(1− µ) <
o(||xk − xk(α̃kl−1)||)

〈∇f(xk), xk − xk(α̃kl−1)〉 ≤
o(l−1||xk − x̃k+1||)
〈∇f(xk), xk − x̃k+1〉 ≤

o(l−1||xk − x̃k+1||)
ε||xk − x̃k+1|| .

Taking the limits on the above inequality as k ∈ N0, k →∞, leads to 1−µ ≤ 0, a contradiction.
Hence (18) is true.

If αk ≥ α̃k, from Lemma 2.2 (ii) and (15) we have

‖xk − xk+1‖ ≤ c

α̃k
‖xk − x̃k+1‖. (19)

If αk < α̃k, from (16), (17), Lemma 2.2 (iii) and Lemma 2.1 (ii) we obtain

f(xk)− f(xk+1) ≥ f(xk)− f(x̃k+1) ≥ µ〈∇f(xk), xk − x̃k+1〉
≥ µ〈∇f(xk), xk − xk+1〉 ≥ µ

c ‖xk − xk+1‖2. (20)

Combining (19) and (20) yields

‖xk − xk+1‖ ≤ max
{

c

α̃k
‖xk − x̃k+1‖,

√
c

µ
(f(xk)− f(xk+1))

}
.

This, together with the monotonicity of {f(xk)} and the boundedness of f and (18), leads to
the desired result. The proof is complete.

If the uniform continuity of ∇f is replaced by the absolute continuity, then we have a further
result.

Theorem 3.2. Assume that f is bounded below and ∇f is absolutely continuous on Ω. If {xk}
is generated by the method (3) and (15), then

lim
k→∞

∇Ωf(xk) = 0 or lim
k→∞

xk = x∗ ∈ Ω∗.

Proof. If there is a small number ε > 0 such that

〈∇f(xk), xk − xk+1〉 ≥ ε‖xk − xk+1‖, ∀k ∈ N. (21)
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Then from Theorem 3.1 and the absolute continuity of ∇f , we know that for all sufficiently
large k ∈ N ,

f(xk)− f(xk+1) = 〈∇f(xk), xk − xk+1〉+ o(‖xk − xk+1‖)
≥ ε

2‖xk − xk+1‖.

This implies that for all sufficiently large k′,

∑

k≥k′
‖xk − xk+1‖ ≤ 2

ε

∑

k≥k′
{f(xk)− f(xk+1)} < +∞,

i.e., limk′→∞
∑

k≥k′ ‖xk − xk+1‖ = 0. This shows that {xk} is a convergent sequence.
Let limk→∞ xk = x∗. Thus, from (17), Lemma 2.1 (i), (16), {f(xk)} ↓ f(x∗) and (18) we

derive for every z ∈ Ω,

〈∇f(x∗), x∗ − z〉 = limk→∞{〈∇f(xk), xk − x̃k+1〉+ 〈∇f(xk), x̃k+1 − z〉}

≤ limk→∞{f(xk)− f(x̃k+1)
µ + 〈x̃k+1 − xk, z − x̃k+1〉

α̃k
}

≤ limk→∞{f(xk)− f(xk+1)
µ + 〈x̃k+1 − xk, z − xk〉

α̃k
− ||x̃k+1 − xk||2

α̃k
}

≤ limk→∞{f(xk)− f(xk+1)
µ + ||x̃k+1 − xk||

α̃k
||z − xk||}

= 0.

This shows that x∗ ∈ Ω∗.
If (21) does not hold, then we have

lim inf
k→∞

〈∇f(xk), xk − xk+1〉
‖xk − xk+1‖ = 0.

By applying Lemma 2.5 and using Theorem 3.1 and the above equality, we deduce that limk→∞
∇Ωf(xk) = 0. The proof is complete.

Moreover, if the above assumptions on f are strengthened so that f is convex and ∇f is
Lipschitz continuous, then the gradient projection method with bounded exact stepsize rule
generates a convergent sequence whose limit point is a solution of problem (1). This is the
main result of the paper.

Theorem 3.3. Assume that f is convex and ∇f is Lipschitz continuous on Ω, and that Ω∗ is
nonempty. If {xk} is generated by the method (3) and (15), then limk→∞ xk = x∞ ∈ Ω∗.

Proof. We first prove that there exists a constant c1 > 0 satisfying

〈∇f(xk), xk − xk+1〉 ≤ c1{f(xk)− f(xk+1)}, ∀k ∈ N. (22)

In fact, if αk ≤ α̃k then by Lemma 2.2 (iii),

〈∇f(xk), xk − xk+1〉 ≤ 〈∇f(xk), xk − x̃k+1〉, (23)

where x̃k+1 = xk(α̃k) and α̃k is produced by the Armijo stepsize rule (17). Let L > 0 be
Lipschitz constant of ∇f . From (17) and the mean value theorem we derive

α̃k ≥ min{c, 2l(1− µ)/L} := c2 > 0.
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If αk > α̃k, then by the above inequality and and c ≥ αk, from Lemma 2.2 (iv) we know that

〈∇f(xk), xk − xk+1〉 ≤ c

c2
〈∇f(xk), xk − x̃k+1〉. (24)

Thus, from (23), (24), (17) and (16) we obtain

〈∇f(xk), xk − xk+1〉 ≤ max{1, c
c2
}〈∇f(xk), xk − x̃k+1〉

≤ c
c2µ{f(xk)− f(x̃k+1)}

≤ c
c2µ{f(xk)− f(xk+1)}.

Setting c1 = c
c2µ yields (22).

We next prove that there exists a constant c3 > 0 such that for any x∗ ∈ Ω∗,

||xk+1 − x∗||2 + c3f(xk+1) ≤ ||xk − x∗||2 + c3f(xk), ∀k ∈ N, (25)

where Ω∗ is the solution set of problem (1) since f is convex. In fact, for any x∗ ∈ Ω∗ we have

||xk+1 − x∗||2 = ||xk − x∗||2 + 2〈xk+1 − xk, xk − x∗〉+ ||xk+1 − xk||2

≤ ||xk − x∗||2 + 2〈xk+1 − xk, xk+1 − x∗〉
≤ ||xk − x∗||2 + 2αk〈∇f(xk), x∗ − xk+1〉
= ||xk − x∗||2 + 2αk〈∇f(xk), xk − xk+1〉+ 2αk〈∇f(xk), x∗ − xk〉
≤ ||xk − x∗||2 + 2cc1{f(xk)− f(xk+1)},

where the second inequality uses Lemma 2.1 (i), and the last inequality comes from (15), (22)
and the convexity of f . Letting c3 = 2cc1 yields (25).

Finally, we prove the conclusion of the theorem. Since {xk} is bounded by (25) and by the
monotonicity of {f(xk)}, there exists a point x∞ ∈ Ω satisfying

lim
k∈N0⊆N,k→∞

xk = x∞ ∈ Ω∗. (26)

Replacing x∗ in (25) by x∞, we know that {||xk−x∞||2 +c3f(xk)} is monotonically decreasing,
and hence it converges to c3f(x∞) by (26) and {f(xk)} ↓ f(x∞). Thus,

lim
k→∞

||xk − x∞||2 = lim
k→∞

{||xk − x∞||2 + c3f(xk)} − lim
k→∞

c3f(xk) = 0.

The proof is complete.
In Theorem 3.3, the Lipschitz continuity of ∇f can not be weakened to continuity of ∇f ,

although full convergence of the gradient projection method with inexact Armijo stepsize needs
only the continuity of ∇f (for the special case where Ω = Rn, see [2, 6, 8]; for a general
closed convex set Ω, see [13]). In fact, Gonzaga [6] gave a genuine example for the special
case where Ω = Rn, in which if f is continuously differentiable, convex and strictly convex at
all non-optimal points, the steepest descent method with exact stepsize rule for solving this
unconstrained problem generates four distinct accumulation points with ||xk − xk+1|| bounded
away from zero.

Theorem 3.4. Assume that f is convex and ∇f is Lipschitz continuous on Ω, and that Ω∗ is
nonempty. If {xk} is generated by the method (3) and (15) and if the sequence {αk} of stepsizes
satisfies

c0 ≤ αk (≤ c), ∀k ∈ N, (27)
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where c0 > 0 is a constant, then limk→∞ xk = x∞ ∈ Ω∗ and limk→∞∇Ωf(xk) = 0.

Proof. Observing the proof of Lemma 2.4, we have actually obtained that for any x ∈ Ω,

〈∇f(xk), xk − x〉
‖xk − x‖ ≤ 1

αk−1
‖xk−1 − xk‖+ ‖∇f(xk)−∇f(xk−1)‖, ∀k ∈ N,

from which, similar to the proof of (14), we imply that

||∇Ωf(xk)|| ≤ 1
αk−1

‖xk−1 − xk‖+ ‖∇f(xk)−∇f(xk−1)‖, ∀k ∈ N.

Thus, the desired result follows immediately from Theorems 3.1 and 3.3, and the given assump-
tions.

4. Concluding Remarks

In this paper, we have presented global convergence properties of the gradient projection
method with bounded exact stepsize rule (15), where the constant c plays a key role. To verify
the convergence behavior of the method and to find a way of choosing c, we have done numerical
experiments for solving the constrained optimization problems [1], and some numerical results
are shown in a technical report. In future studies, we plan to do further work on both theory
and numerical testing for the exact stepsize rule.
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