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Abstract

Inexact Newton methods are constructed by combining Newton’s method with another

iterative method that is used to solve the Newton equations inexactly. In this paper, we

establish two semilocal convergence theorems for the inexact Newton methods. When these

two theorems are specified to Newton’s method, we obtain a different Newton-Kantorovich

theorem about Newton’s method. When the iterative method for solving the Newton

equations is specified to be the splitting method, we get two estimates about the iteration

steps for the special inexact Newton methods.
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1. Introduction

Consider the system of nonlinear equations

F (x) = 0, (1.1)

where F : D ⊂ X → Y is a continuously differentiable operator mapping an open convex subset
D of a Banach space X into a Banach space Y. Newton’s method,

xn+1 = xn − F ′(xn)−1F (xn), n = 0, 1, · · · , (1.2)

is the most classical method among a great deal of iterative methods used to solve (1.1).
There are many research works on the existence and uniqueness of the solution of (1.1) (see
[23, 24, 27]), and the convergence of Newton’s method (see [12, 15, 16, 17, 20, 23, 24, 26, 27, 28]
and the references therein) in addition to the classic Newton-Kantorovich theorem (see [19, 22]).
These results are distinguished into two classes. One is about local convergence discussing
the properties of Newton’s method as x is sufficiently close to the solution x∗ of (1.1) (see
[24, 26, 27]), and another is about semilocal convergence which only deals with the initial point
x0 (see [15, 16, 17, 20, 23, 28]).

In order to get the (n+1) iteration xn+1 in Newton’s method, we need to solve the Newton
equation

F ′(xn)sn = −F (xn), (1.3)
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and then obtain xn+1 = xn + sn, see (1.2). In fact, (1.3) is a system of linear equations in the
form

Ax = b. (1.4)

In principle, there are two groups of methods for the solution of linear systems (1.4).
One group of methods are the so-called direct methods, or elimination methods, that is, the

exact solution is determined through a finite number of arithmetic operations (in real arithmetic
without considering the roundoff errors) (see [21]). It is not efficient to obtain the exact solution
of (1.4) by using a direct method such as Gaussian elimination, if the coefficient matrix A is
large and sparse; and when the iterate xn is far from x∗ the iteration sequence {xn} may not
converge to x∗. We should mention that for the large sparse system of nonlinear equations,
Bai and Wang [10, 11] established the following sparse factorization update algorithm based on
matrix triangular factorization:





given x0,

xn+1 = xn + sn,

Unsn = −HnF (xn),
H−1

0 U0 is an approximation to F ′(x0),

where Un is an upper triangular matrix and Hn a unit low triangular matrix generated by two
recursion formulas. As now the matrix A in (1.4) is automatically factorized into the form
A = H−1

n Un, we can directly solve the Newton equation (1.3) by solving an upper triangular
linear system of the coefficient matrix Uk at each iteration step of Newton’s method.

Another group is the iterative methods, which results in the two-stage method, or sometimes
termed as inner/outer iterations, for solving the system of nonlinear equations (1.1). In the two-
stage method, Newton’s method is the outer iteration, while an iterative method which is used
to solve the Newton equations is the inner iteration. Particularly, in the two cases described
below, two classes of two-stage iterative methods have been established and analyzed.

One case is that the nonlinear mapping F (x) is a mildly nonlinear mapping, i.e.,

F (x) = Ax− φ(x),

where A ∈ Rn×n is nonsingular and φ : Rn →Rn is a nonlinear diagonal function with certain
local smoothness properties [5, 6, 8, 22]. Another case is that F (x) is a linear mapping, i.e.,

F (x) = Ax− b,

where A ∈ Rn×n is a large sparse and, possibly, a very ill-conditioned symmetric positive
definite matrix, x ∈ Rn and b ∈ Rn (see [13]). See also [7] for efficient splitting method and its
inexact variant for non-Hermitian positive definite linear systems.

When we solve the Newton equations with an iterative method, some residuals will be given.
This is the reason we call this process the inexact Newton methods. To sum up, inexact Newton
methods have the form

xn+1 = xn + sn, n = 0, 1, · · · , (1.5)

where the step sn satisfies

F ′(xn)sn = −F (xn) + rn, n = 0, 1, · · · , (1.6)

for some residual sequence {rn} ⊆ Y (see [14]).
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It is necessary to study when the iterations can be stopped and how to choose a forcing
sequence in the above process (see [1, 2, 3, 7, 9, 14, 18, 29]). Most of the results gave the local
convergence (see [1, 3, 14, 18, 29]), among them a fundamental result giving below can be found
in [14].
Theorem 1.1 (see [14], Th.2.3). Let F : RN → RN be a nonlinear mapping with the
following properties:

(i)
‖rn‖

‖F (xn)‖ ≤ ηn; (1.7)

(ii) there exists an x∗ ∈ RN such that F (x∗) = 0;
(iii) F is continuously differentiable in a neighborhood of x∗, and F ′(x∗) is nonsingular.
Assume that ηn ≤ ηmax < t < 1. Then there exists ε > 0 such that if ‖x0 − x∗‖ ≤ ε then the
sequence {xn} of inexact Newton methods converges to x∗. Moreover, the convergence is linear
in the sense that

‖xn+1 − x∗‖∗ ≤ t‖xn − x∗‖∗, n ≥ 0,

where ‖y‖∗ ≡ ‖F ′(x∗)y‖.
In this theorem, we do not know the exact value of ε. Argyros [1, 3] suppose that F ′′(x)

satisfies a Lipschitz condition, and Huang [18] suppose F ′′(x) satisfies the first order-γ condition
(see [25]). In [29], the affine invariant condition

‖F ′(xi)−1ri‖
‖F ′(xi)−1F (xi)‖ ≤ νi ≤ ν, i = 0, 1, · · · ,

is satisfied instead of the condition ‖rn‖
‖F (xn)‖ ≤ ηn used in [1, 3, 18], which makes the method

become an affine invariant one.
The above results concerning local convergence are not applicable in practical computations.

To be more practical, a semilocal convergence theorem with Lipschitz-type conditions on the
second Fréchet derivative was given in [2]. In [9], the assumptions





‖ F ′(x)− F ′(y) ‖≤ L ‖ x− y ‖,
‖ F ′(x)−1 ‖≤ β,
‖rn‖

‖F (xn)‖ ≤ ηn,

are presented for (1.5) and (1.6), and the assumptions




‖F ′(y)−1(F ′(x + t(y − x))− F ′(x))‖ ≤ L ‖ y − x ‖,
‖ F ′(x0)−1F (x0) ‖≤ η,

‖rn‖
‖F ′(xn)−1F (xn)‖ ≤ νn,

combined with the affine invariant property are provided for the improved inexact Newton
methods as follows:

{
xn+1 = xn + sn,

F ′(xn)sn = −F (xn) + F ′(xn)rn, n = 0, 1, · · · .

We try to establish a new semilocal convergence theorem in a way as brief as that in Newton-
Kantorovich theorem. In other words, the new hypotheses are based on Lipschitz-continuity on
the first Fréchet derivative F ′ of the operator F and on the condition ‖F ′(x0)−1F (x0)‖ ≤ β.
We can not establish this new semilocal convergence theorem using the technique that was used
to prove the local convergence theorems as they heavily depend on the assumption F (x∗) = 0.
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The technique used in the proof of Theorem 1 in [9], however, is very useful and can help us to
obtain our new semilocal convergence theorem.

In this paper, we first demonstrate this new semilocal convergence theorem. Then, we
replace the original assumption on the residual sequence by

‖F ′(x0)−1(rn − rn−1)‖ ≤ ηn‖xn − xn−1‖,
and give another new semilocal convergence theorem. In particular, the well-known Newton-
Kantorovich theorem is a special case of our second theorem when the latter is applied to
Newton’s method. The reduction of our first theorem to Newton’s method is different from the
Newton-Kantorovich theorem. Moreover, by combining Newton’s method with the splitting
method for the Newton equations, we get a special class of two-stage methods of the inexact
Newton methods, called as the Newton-splitting method, for which we provide two types of
convergence theorems in which the number of inner iteration steps for the Newton equations is
shown to be different from that in [4, 30].

2. Semilocal Convergence Theorems

In this section, we establish two new Kantorovich-type semilocal convergence theorems under
the assumptions

‖F ′(x0)−1rn‖
‖F ′(x0)−1F (xn)‖ ≤ ηn

and
‖F ′(x0)−1(rn − rn−1)‖ ≤ ηn‖xn − xn−1‖,

imposed on the residuals, respectively.

2.1. Semilocal Convergence Theorem: Type I

It is well-known that the Newton-Kantorovich hypothesis is concise. But the hypotheses
in [2] are on the second F -derivative and a little intricate. The hypotheses in [9] are on the
first F -derivative but dealing with the bound of ‖F ′(x)−1‖. So, it is necessary to establish a
new Kantorovich-type semilocal convergence theorem by utilizing the advantages of those two
kinds of hypotheses. The technique used in [9] (in the proof of Theorems 1 or 2) can be used
to establish this theorem.

For x ∈ D and a positive number r, let B(x, r) denote an open ball with radius r and center
x, and B(x, r) denotes its closure. Suppose that F ′(x0)−1 exists and





‖F ′(x0)−1F (x0)‖ ≤ β,

‖F ′(x0)−1(F ′(x)− F ′(y))‖ ≤ γ‖x− y‖, ∀x, y ∈ D,
‖F ′(x0)

−1rn‖
‖F ′(x0)−1F (xn)‖ ≤ ηn, η = max

n
{ηn} < 1.

(2.1)

Then the following lemmas can be established, which are useful for proving the new semilocal
convergence theorems of our inexact Newton methods.
Lemma 2.1. Let

h(s) = γs3 + βγ(1− η)s2 − 2β(1− η)s + 2β2(1− η2).

If

βγ ≤ −2η2 + 14η + 11−
√

(4η + 5)3

(1 + η)(1− η)2
,
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then h(s) has two positive zeros s1 and s2 that satisfy

0 < β(1− η) ≤ s1 ≤ s ≤ s2 <
1
γ

,

where

s =
−βγ(1− η) +

√
(βγ)2(1− η)2 + 6βγ(1− η)

3γ
.

Proof. Consider
h′(s) = 3γs2 + 2βγ(1− η)s− 2β(1− η).

We can deduce that the function h(s) is nonincreasing for 0 ≤ s ≤ s and nondecreasing for
s ≥ s. In addition, we know that

h(0) > 0, h(
2
γ

) > 0, h(s) ≤ 0,

by computing with Maple. Hence, it follows that

0 < s1 ≤ s ≤ s2 <
1
γ

.

On the other hand, from h(s1) = 0, we have

s1 ≥ β(1 + η) ≥ β(1− η).

Therefore the proof is complete.
By using some basic arithmetic operation, we have the following results.

Lemma 2.2. Let
σ =

−β + βη + s1

β − βη + s1
.

Then we have
0 ≤ σ < 1, s1 <

1− σ

γ
.

Lemma 2.3. Let
φn(t) =

1− σ

1− σ − γs1
[
γ

2
t2 + (σ + 1)σn−1βη].

Define a sequence {tn} as follows:

{
tn+1 − tn = φn(tn − tn−1),
t0 = 0, t1 = s1.

(2.2)

Then {tn} converges to t∗ monotonically increasingly, and

0 < t∗ ≤ s1

1− σ
, t∗ − tn ≤ σn

1− σ
s1.

Proof. Since t1 − t0 = s1, if we suppose

tk − tk−1 ≤ σk−1s1, k = 1, 2, · · ·n,
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then
tn+1 − tn = φn(tn − tn−1) ≤ φn(σn−1s1)

=
1− σ

1− σ − γs1
[
γ

2
(σn−1s1)2 + (σ + 1)σn−1βη].

It follows from Lemma 2.2 that

tn+1 − tn ≤ σn−1 1− σ

1− σ − γs1
[
γ

2
(s1)2 + (σ + 1)βη] ≤ σns1.

Hence

tn+1 =
n∑

k=0

(tk+1 − tk) ≤
n∑

k=0

σks1 ≤ s1

1− σ
.

That is, {tn} is monotonically increasing in [0, s1
1−σ ]. Thus, there exists t∗ such that lim

n→∞
tn = t∗

and
tn ≤ t∗ ≤ s1

1− σ
.

Because
tn+m − tn ≤ (σn+m−1 + σn+m−2 + · · ·+ σn)s1,

letting m → +∞, we have

t∗ − tn ≤ σn

1− σ
s1.

This completes the proof of this lemma.
By Banach’s theorem (see Theorem V.4.3 in [19]), the following result can be obtained

directly.
Lemma 2.4. For all x ∈ B(x0,

1
γ ), F ′(x)−1 exists and satisfies

‖F ′(x)−1F ′(x0)‖ ≤ 1
1− γ‖x− x0‖ .

Lemma 2.5. For all xn ∈ B(x0,
s1

1−σ ), it holds that

‖F ′(x0)−1F (xn)‖ ≤ σnβ, n = 0, 1, · · · . (2.3)

Proof. The result can be proved by induction. Indeed, the inequality is true for n = 0.
Assume that (2.3) holds true for some nonnegative integer n. Then we have

‖F ′(x0)−1F (xn+1)‖ = ‖F ′(x0)−1[F (xn+1)− F (xn)− F ′(xn)(xn+1 − xn)] + F ′(x0)−1rn‖
≤ γ

2
‖xn+1 − xn‖2 + ‖F ′(x0)−1rn‖

=
γ

2
‖F ′(xn)−1[F (xn)− rn]‖2 + ‖F ′(x0)−1rn‖

≤ γ

2
1

(1− γ‖xn − x0‖)2 (1 + η)2‖F ′(x0)−1F (xn)‖2 + η‖F ′(x0)−1F (xn)‖

≤ [
γ

2
(

1− σ

1− σ − γs1
)2(1 + η)2‖F ′(x0)−1F (xn)‖+ η]‖F ′(x0)−1F (xn)‖

≤ [
γ

2
(

1− σ

1− σ − γs1
)2(1 + η)2β + η]‖F ′(x0)−1F (xn)‖

≤ σn+1β.

Thus (2.3) follows.
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From the above lemmas, we have the following theorem.
Theorem 2.6. Under the assumption (2.1), if

B(x0,
s1

1− σ
) ⊂ D and βγ ≤ −2η2 + 14η + 11−

√
(4η + 5)3

(1 + η)(1− η)2
,

where s1 is the smallest positive zero of the function h(s) defined in Lemma 2.1, then the inexact
Newton sequence {xn} converges to a solution x∗ of Eq. (1.1). Moreover, we have the error
estimate

‖xn − x∗‖ ≤ t∗ − tn ≤ σn

1− σ
s1, n = 0, 1, · · · ,

where t∗ and {tn} are defined in Lemma 2.3.
Proof. First, we prove the following conclusions by induction:

{ ‖xn+1 − xn‖ ≤ tn+1 − tn,

‖xn − x0‖ ≤ s1

1− σ
, n = 0, 1, · · · .

(2.4)

For n = 0, we have

‖x1 − x0‖ = ‖F ′(x0)−1[F (x0)− r0]‖ ≤ (1 + η)β

≤ 1− σ

1− σ − γs1
(1 + η)β = t1 − t0 ≤ s1

1− σ
.

Suppose that for all n ≤ k the conclusions hold true. Then, we have

‖xn+1 − xn‖ = ‖F ′(xn)−1[F (xn)− rn]‖
≤ ‖F ′(xn)−1F ′(x0)‖{‖F ′(x0)−1[F (xn)− F (xn−1)− F ′(xn−1)(xn − xn−1)]‖

+‖F ′(x0)−1(rn−1 − rn)‖}
≤ 1

1− γ‖xn − x0‖ [
γ

2
‖xn − xn−1‖2 + η‖F ′(x0)−1F ′(xn−1)‖+ η‖F ′(x0)−1F ′(xn)‖]

≤ 1− σ

1− σ − γs1
[
γ

2
‖xn − xn−1‖2 + (σ + 1)σn−1βη]

= φn(‖xn − xn−1‖) ≤ φn(tn − tn−1) = tn+1 − tn

and
‖xn+1 − x0‖ ≤ tn+1 − t0 ≤ s1

1− σ
.

Therefore, (2.4) is true.
Hence, by Lemma 2.3 and the inequalities (2.4), the theorem is proved.

2.2. Semilocal Convergence Theorem: Type II

When we use an iterative method to solve a system of linear equations, we can get the
relation between the residuals. So an analogous assumption to the Lipschitz-continuity on the
residual

‖F ′(x0)−1(rn − rn−1)‖ ≤ ηn‖xn − xn−1‖
is reasonable. To this end, we use the assumption

‖F ′(x0)−1[F (x0)− r0]‖ ≤ β,

instead of
‖F ′(x0)−1F (x0)‖ ≤ β,
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in the following discussions.
The following theorem is another semilocal convergence theorem.

Theorem 2.7. Suppose that F ′(x0)−1 exists and




‖F ′(x0)−1[F (x0)− r0]‖ ≤ β,

‖F ′(x0)−1[F ′(x)− F ′(y)]‖ ≤ γ‖x− y‖, ∀x, y ∈ D,

‖F ′(x0)−1(rn − rn−1)‖ ≤ ηn‖xn − xn−1‖, η = max
n
{ηn} < 1.

If (1− η)2 − 2βγ ≥ 0 and B(x0, t∗) ⊂ D, then the inexact Newton sequence {xn} converges to
a solution x∗ of Eq. (1.1). Moreover,

‖xn − x∗‖ ≤ t∗ − tn, n = 0, 1, · · · ,

where {tn} is defined by




tn+1 = tn +
γ
2 t2n − (1− η)tn + β

1− γtn
,

t0 = 0

and

t∗ =
1− η −

√
(1− η)2 − 2βγ

γ
.

Proof. First, let us prove

‖xn+1 − xn‖ ≤ tn+1 − tn, n = 0, 1, · · · .

Since when ‖xn − xn−1‖ ≤ tn − tn−1, we have

‖xn+1 − xn‖ = ‖F ′(xn)−1[F (xn)− rn]‖
≤ ‖F ′(xn)−1F ′(x0)‖{‖F ′(x0)−1[F (xn)− F (xn−1)− F ′(xn−1)(xn − xn−1)]‖

+‖F ′(x0)−1(rn−1 − rn)‖}
≤ 1

1− γ‖xn − x0‖ (
γ

2
‖xn − xn−1‖2 + ηn‖xn − xn−1‖)

≤ 1
1− γtn

[
γ

2
(tn − tn−1)2 + η(tn − tn−1)] = tn+1 − tn,

the inequality holds for all n by induction.
Furthermore, we can obtain the fact

0 < tn ≤ tn+1 ≤ t∗

from Theorem 12.6.3 in [22]. This completes the proof of this theorem.

3. Applications

Inexact Newton methods are reduced to Newton’s method in the case where we solve the
Newton equations exactly. Hence the convergence theorem for inexact Newton methods should
include the Newton-Kantorovich theorem as a special case. See also [6, 8, 13] and [7]. In this
section, by letting rn ≡ 0 and ηn ≡ 0, we reduce Theorem 2.7 and Theorem 2.6 to the Newton-
Kantorovich theorem and a different Newton-Kantorovich theorem, respectively. Then, for the
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special inexact Newton methods which are combinations of Newton’s method with the splitting
methods, we can give two estimates about the inner iteration steps, see [7, 13].

3.1. Type-I Semilocal Convergence Theorem

For rn ≡ 0 in (1.6) and ηn ≡ 0 in (2.1), we get Newton’s method

xn+1 = xn − F ′(xn)−1F (xn), n = 0, 1, · · · , (3.1)

and its convergence. Of course, the function h(s) in Lemma 2.1 is reduced to the form

h(s) = γs3 + βγs2 − 2βs + 2β2. (3.2)

The convergence of Newton’s method can be described as follows.
Corollary 3.1. Suppose that F ′(x0)−1 exists and

‖F ′(x0)−1F (x0)‖ ≤ β,

‖F ′(x0)−1(F ′(x)− F ′(y))‖ ≤ γ‖x− y‖, ∀x, y ∈ D.

If βγ ≤ 5
√

5− 11 and B(x0,
s1

1−σ ) ⊂ D, where s1 is the smallest positive zero of the function
(3.2), then the Newton sequence {xn} defined by (3.1) converges to the solution of the system
of nonlinear equations (1.1) in B(x0,

s1
1−σ ), and

‖xn − x∗‖ ≤ σn

1− σ
s1, n = 0, 1, · · · .

By splitting the matrix F ′(xk) in the Newton equations into

F ′(xk) = Bk − Ck,

we obtain the inner/outer iteration (see [4, 6, 7, 8, 13, 22, 30])
{

xk+1 = xk − (Hmk−1
k + · · ·+ Hk + I)B−1

k F (xk),
Hk = B−1

k Ck, k = 0, 1, · · · ,
(3.3)

where mk is the number of the inner iteration. We can set mk ≡ m, or choose any sequence in
advance. For example, mk = k + 1, k = 0, 1, · · · . An appropriate sequence mk is important for
the convergence of {xk}. Now a choice mk is as follows.
Corollary 3.2. Suppose that F ′(x0)−1 exists and





‖F ′(x0)−1F (x0)‖ ≤ β,

‖F ′(x0)−1(F ′(x)− F ′(y))‖ ≤ γ‖x− y‖, ∀x, y ∈ D,

mk ≥ ln(lk)
ln(‖Hk‖) , η = max

k
{ηk} < 1, lk =

1− σ − γs1

1− σ + γs1
ηk,

where s1 and σ are defined in Lemmas 2.1 and 2.2, respectively. If

B(x0,
s1

1− σ
) ⊂ D and βγ ≤ −2η2 + 14η + 11−

√
(4η + 5)3

(1 + η)(1− η)2
,

then the conclusion of Theorem 2.6 is true.
Remark. The following two conditions are always required such that the above-mentioned
inner/outer iteration is well defined.
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(i) B−1
k exists for all nonnegative k;

(ii) the spectral radius of the matrix Hk is less than one, i.e., ρ(Hk) < 1, for all nonnegative
k.

Proof. Since
xk+1 = xk − F ′(xk)−1[F (xk)− rk],

it follows from (3.3) that

rk = F (xk)− F ′(xk)[(Hmk−1
k + · · ·+ Hk + I)B−1

k F (xk)]
= F (xk)− F ′(xk)[(I −Hmk

k )(I −Hk)−1B−1
k F (xk)]

= F (xk)− F ′(xk)(I −Hmk

k )F ′(xk)−1F (xk)
= F (xk)− F ′(xk)F ′(xk)−1F (xk) + F ′(xk)Hmk

k F ′(xk)−1F (xk)
= F ′(xk)Hmk

k F ′(xk)−1F (xk).

By Lemma 2.4 and the above two conditions, the proof is complete.

3.2. Type-II Semilocal Convergence Theorem

Theorem 2.7 also includes the Newton-Kantorovich theorem as a special case with respect
to ηn ≡ 0.

We also want to estimate the number of inner iteration under the condition in Theorem 2.7.
But the estimate is so hard that the simplified hypothesis mk ≡ m should be imposed. The
following result is parallel to Corollary 3.2.
Corollary 3.3. Suppose that F ′(x0)−1 exists and





‖F ′(x0)−1F (x0)‖ ≤ β,

‖F ′(x0)−1(F ′(x)− F ′(y))‖ ≤ γ‖x− y‖, ∀x, y ∈ D,

‖B−1
0 F ′(x0)‖ ≤ δ,

ahm + mbhm−1 ≤ ηk, sup
k
‖Hk‖ ≤ h < 1, η = max

k
{ηk} < 1,

a = 3−2η+2βγ
η2 ,

b = 2−η
η

δ(δ+1)γ
[1−(1−η)δ]2 [ (1−η)2

2γ + 1−η
γ + β],

where the matrix norm has the property: ‖F ′(x0)−1E‖ ≤ ‖F ′(x0)−1D‖ if E is a submatrix of
D. If (1− η)2 − 2(1 + hm)βγ ≥ 0 and B(x0, t∗) ⊂ D, then the conclusion of Theorem 2.7 holds
true.

Proof. From
rk = F ′(xk)Hm

k F ′(xk)−1F (xk),

we have

rk − rk−1 = F ′(xk)Hm
k F ′(xk)−1F (xk)− F ′(xk−1)Hm

k−1F
′(xk−1)−1F (xk−1)

= F ′(xk)Hm
k F ′(xk)−1[F (xk)− F (xk−1)]

+[F ′(xk)Hm
k F ′(xk)−1 − F ′(xk−1)Hm

k−1F
′(xk−1)−1]F (xk−1)

= F ′(xk)Hm
k F ′(xk)−1[F (xk)− F (xk−1)]

+[F ′(xk)− F ′(xk−1)]Hm
k F ′(xk)−1F (xk−1)

+F ′(xk−1)[Hm
k F ′(xk)−1 −Hm

k−1F
′(xk−1)−1]F (xk−1)

= F ′(xk)Hm
k F ′(xk)−1[F (xk)− F (xk−1)]

+[F ′(xk)− F ′(xk−1)]Hm
k F ′(xk)−1F (xk−1)

+F ′(xk−1)Hm
k F ′(xk)−1[F ′(xk−1)− F ′(xk)]F ′(xk−1)−1F (xk−1)

+F ′(xk−1)(Hk −Hk−1)(Hm−1
k + Hm−2

k Hk−1 + · · ·+ Hm−1
k−1 )F ′(xk−1)−1F (xk−1).
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From the assumptions, we can also get

‖F ′(x0)−1F ′(xk)‖ ≤ γ‖xk − x0‖+ 1;
‖F ′(xk)−1F ′(x0)‖ ≤ 1

1−γ‖xk−x0‖ ;
‖F ′(x0)−1F (xk)‖ ≤ γ

2 ‖xk − x0‖2 + ‖xk − x0‖+ β;
‖F ′(x0)−1(Bk −Bk−1)‖ ≤ γ‖xk − xk−1‖;
‖B−1

k F ′(x0)−1‖ ≤ δ
1−γ‖xk−x0‖δ ;

by induction. Hence, by Theorem 2.7 and some concrete estimates, we can complete the proof.
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