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Abstract

A regularized recursive linearization method is developed for a two-dimensional in-

verse medium scattering problem that arises in near-field optics, which reconstructs the

scatterer of an inhomogeneous medium deposited on a homogeneous substrate from data

accessible through photon scanning tunneling microscopy experiments. In addition to the

ill-posedness of the inverse scattering problems, two difficulties arise from the layered back-

ground medium and limited aperture data. Based on multiple frequency scattering data,

the method starts from the Born approximation corresponding to the weak scattering at

a low frequency, each update is obtained via recursive linearization with respect to the

wavenumber by solving one forward problem and one adjoint problem of the Helmholtz

equation. Numerical experiments are included to illustrate the feasibility of the proposed

method.

Mathematics subject classification: 78A46, 65N21.
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1. Introduction

Scattering problems are basic in many scientific research areas such as radar, sonar, geo-

physical exploration, medical imaging, and nondestructive testing [1–3]. In near-field optics, the

scattering problems further involve wave fields containing evanescent components to improve

resolution [4, 5], which arise naturally in diverse applications such as the imaging of biologi-

cal samples, the inspection and manipulation of nano-electronic components in semiconductor

technology, and the inspection and activation of nano-optical devices [6]. Near-field optics has

attracted considerable attention as an effective approach to obtain images with subwavelength

resolution [7].

Three important modalities that fall in the scenario of near-field optics are near-field scan-

ning optical microscopy (NSOM) [8], total internal reflection microscopy (TIRM) [9, 10], and

photon scanning tunneling microscopy (PSTM) [11,12]. In NSOM, the light source is transmit-

ted through both the fiber and the small aperture at the tip of a probe. The probe is scanned

over the sample in the near-field zone. The field scattered by the sample is then collected and

measured in the far-field zone as a function of the probe position. In TIRM, the sample is
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illuminated by high spatial frequency evanescent plane waves, which may be generated by total

internal reflection from a prism [13]. The scattered field is measured in the far zone of the

sample as the direction of the incident wave is varied. In PSTM, the sample is illuminated by

an evanescent field generated at the face of a prism (similar to TIRM), but the scattered field is

detected via a tapered fiber probe in the near zone of the sample (as in NSOM). See [6] for an

account of other modalities as basic experiments of near-field optics and associated scattering

theories.

In all of the above mentioned modalities, it is desirable to solve the inverse scattering

problem in order to reconstruct the sample from the measured data. Initial results in this

direction have been reported in the cases of three-dimensional inhomogeneous media for all of

the three modalities: NSOM [8] , TIRM [9], and more recently PSTM [11]. The basic idea is to

develop an analytical solution technique for solving the linearized inverse scattering problem for

each modality within the framework of the weak scattering approximation. Numerical solution

of the nonlinear inverse problem is at present completely open. The main purpose of the present

work is to explore the possibility of developing a regularized recursive linearization approach for

solving the nonlinear inverse scattering problem in the modality of PSTM. It should be pointed

out that we currently adopt the non-global approach, i.e., the scattered field resulting from

the interaction of the incident field with the sample is analyzed in the absence of the tip. This

procedure overlooks the possible influence of the tip on the detected field. The global approach

which takes into account the entire system is the subject of future work.

The remainder of this paper is organized as follows. The mathematical model of the scatter-

ing problems is introduced in Section 2. Based on the Lippmann–Schwinger integral equation

in a two-layered background medium, an initial guess of the reconstruction is derived from the

Born approximation corresponding to the weak scattering at a low frequency in Section 3. In

Section 4, a regularized recursive linearization algorithm is proposed. Numerical examples are

presented in Section 5. The paper is concluded with some general remarks and directions for

future research in Section 6.

2. Model Problem

Consider an inhomogeneous sample deposited on a homogeneous substrate, usually a prism.

The substrate is assumed to be relatively thick so that only one face needs to be considered, thus

defining an interface between two half-spaces. The index of refraction in the lower half-space

(substrate) has a constant value n0. However, the index of refraction in the upper half-space

varies within the domain of the sample but otherwise has a value of unity. The sample is

illuminated from below (transmission geometry) by a time-harmonic plane wave, as shown in

Fig. 2.1. Throughout, by assuming nonmagnetic materials and transverse electric polarization,

the model PDE reduces to the two-dimensional Helmholtz equation.

More specifically, let an incoming plane wave ui = exp(iαx1 + iβx2) be incident on the

straight line {x2 = 0} from R2
− = {x : x2 < 0}, where

α = n0k sin θ, β = n0k cos θ, θ ∈ (−π/2, π/2),

and k is the free space wavenumber. The total field u satisfies the Helmholtz equation:

∆u+ n2k2(1 + q)u = 0, (2.1)



254 G. BAO AND P.J. LI

Fig. 2.1. The geometry of the problem. A plane wave is incident on the prism from the bottom. The

scatterer is illuminated by the transmitted waves and the scattered waves are measured in the constant

height configuration by an idealized point detector in the near zone.

where the scatterer q(x) has a compact support contained in D ⊆ R2
+ = {x : x2 > 0} and

n(x) =

{

1 for x2 > 0,

n0 for x2 < 0.

Denote the reference field uref as the solution of the homogeneous equation:

∆uref + n2k2uref = 0. (2.2)

It can be analytically obtained from Eq. (2.2) together with continuity conditions that

uref =

{

ut for x2 > 0,

ui + ur for x2 < 0,

where ut and ur are the transmitted and reflected waves, respectively [14, 15]. More precisely,

we have

ut = T exp(iαx1 + iγx2) and ur = R exp(iαx1 − iβx2), (2.3)

where T = 2β/(β + γ), R = (β − γ)/(β + γ), and

γ(α) =

{
√
k2 − α2 for k > |α|,

i
√
α2 − k2 for k < |α|.

The total field consists of the reference field uref and the scattered field us:

u = uref + us. (2.4)

It follows from (2.1), (2.2), and (2.4) that the scattered field satisfies

∆us + n2k2(1 + q)us = −k2qut. (2.5)

In addition, the scattered field is required to satisfy the following radiation condition [16]

lim
R→∞

∫

ΣR

∣

∣

∣

∣

∂us

∂ν
− inkus

∣

∣

∣

∣

2

dS = 0,
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where ΣR is the sphere of radius R and ν is the unit outward normal to ΣR.

Given the reference field uref , the forward problem is to determine the scattered field us for

the known scatterer q, which has been well studied [16–20]. The inverse problem is to determine

the scatterer q from the measurements of the scattered field us, for the given reference field

uref . The scattered field is measured by an idealized point detector at {xj : x2j = b}, j =

1, · · · ,m, where b is a constant. In addition to the ill-posedness of the inverse scattering

problem, two difficulties arise from the layered background medium and limited aperture data.

In particular, the open domain with a two-layered background medium needs to be truncated

into a bounded computational domain. For the forward solver, we apply the finite element

method with a perfectly matched layer technique to truncate the unbounded domain [21–24].

The inverse scattering problem with limited aperture data is challenging, since without full

aperture measurements, the ill-posedness and nonlinearity of the inverse problem become more

severe. In the full aperture case, stable and efficient recursive linearization methods were

proposed for solving the two-dimensional Helmholtz equation [25] and the three-dimensional

Maxwell equations [26], respectively. A homotopy continuation method with limited aperture

data but in a homogeneous background medium may be found in [27].

In this work, we develop a regularized recursive linearization to solve the inverse scattering

problem of the two-dimensional Helmholtz equation in a two-layered background medium with

limited aperture data. The algorithm requires multiple frequency scattering data, and the

recursive linearization is obtained by a continuation method on the wavenumber. It first solves

a linear equation (Born approximation) at the lowest wavenumber. Updates are subsequently

obtained by using a sequence of increasing wavenumbers. Following the idea of the Kaczmarz

method [3,28–30], we use partial data to perform the Landweber iteration at each wavenumber.

At each iteration, one forward problem and one adjoint problem of the Helmholtz equation are

solved.

3. Born Approximation

In this section, a starting point is derived for the iteratively recursive linearization algorithm

based on the linearized Lippmann–Schwinger integral equation. The Lippman–Schwinger inte-

gral equation and the fundamental solution,G(x,y), for the Helmholtz equation in a two-layered

background medium are given in the appendix.

When the wavenumber k is small, the scattered field is weak [31]. By dropping the scattered

field at the right hand side of (A8) under the weak scattering, we obtain the linearized integral

equation

us(x) = k2

∫

D

G(x,y)q(y)ut(y)dy, (3.1)

which is the well known Born approximation.

It follows from the scattered field measured at x2 = b that

us(x1, b) = k2

∫ ∞

−∞

dy1

∫ b

0

dy2G(x1, b; y1, y2)u
t(y1, y2)q(y1, y2). (3.2)

Substituting the explicit form of the transmitted field (2.3) and the fundamental solution (A6),
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and realizing the dependence of the scattered field us on α, we may rewrite (3.2) as

us(x1;α) =
ik2T

4π

∫ ∞

−∞

dy1

∫ b

0

dy2 exp(iαy1 + iγy2)q(y1, y2)

×
∫ ∞

−∞

dξ
exp(iβ1b)

β1

[

β1 − β2

β1 + β2
exp(iβ1y2) + exp(−iβ1y2)

]

exp(iξ(x1 − y1)), (3.3)

where β1 and β2 are defined in the appendix. Rearranging the integral order, we obtain

us(x1;α) =
ik2T

4π

∫ b

0

dy2 exp(iγy2)

∫ ∞

−∞

dξ
exp(iβ1b)

β1

[

β1 − β2

β1 + β2
exp(iβ1y2) + exp(−iβ1y2)

]

× exp(iξx1)

∫ ∞

−∞

dy1 exp(−i(ξ − α)y1)q(y1, y2). (3.4)

Noting the last integral is the Fourier transform of the scatterer with respect to y1,

us(x1;α) =
ik2T

4π

∫ b

0

dy2 exp(iγy2)

∫ ∞

−∞

dξ
exp(iβ1b)

β1

[

β1 − β2

β1 + β2
exp(iβ1y2) + exp(−iβ1y2)

]

× exp(iξx1)q̂(ξ − α, y2). (3.5)

Multiplying both sides of (3.5) by exp(−iωx1), integrating with respect to x1, and observing

that
1

2π

∫ ∞

−∞

exp(iωx1)dx1 = δ(ω),

we obtain the Fourier transform of scattered field with respect to x1

ûs(ω;α) =
ik2T

2

∫ b

0

dy2 exp(iγy2)

∫ ∞

−∞

dξ
exp(iβ1b)

β1

[

β1 − β2

β1 + β2
exp(iβ1y2) + exp(−iβ1y2)

]

× δ(ξ − ω)q̂(ξ − α, y2), (3.6)

which gives rise to

ûs(ω;α) =
ik2T

2

∫ b

0

dy2
exp(iβ1(ω)b)

β1(ω)

[

β1(ω) − β2(ω)

β1(ω) + β2(ω)
exp(iβ1(ω)y2) + exp(−iβ1(ω)y2)

]

× exp(iγy2)q̂(ω − α, y2). (3.7)

When |ω| < k and |α| < k, both β1 and γ are real numbers. The Fourier transform

may be used for Eq. (3.7) to produce an approximation of the scatterer q. In this case, the

inversion involves data related to the scatterer through the Fourier transform in the case of weak

scattering. The reconstructed Fourier modes of q at most fill the disk of radius 2k. See [32]

for an detailed resolution analysis of the Born approximation in the homogeneous background

medium. However, for k < |α| < n0k, γ is a pure imaginary number. From (3.7), it is easily seen

that the inversion involves data related to the scatterer through a Fourier–Laplace transform

in the case of weak scattering, due to the presence of the evanescent waves. For each |ω| < k

and |α| < n0k, it follows from |ω − α| < (n0 + 1)k that the Fourier modes of the reconstructed

scatterer may be beyond the 2k along the transverse part of y1.

Introduce the integral kernel

K(ω, α; y2) =
ik2T exp(iβ1(ω)b)

2β1(ω)

[

β1(ω) − β2(ω)

β1(ω) + β2(ω)
exp(iβ1(ω)y2) + exp(−iβ1(ω)y2)

]

× exp(iγ(α)y2).
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The integral equation (3.7) can be written as

ûs(ω;α) =

∫ b

0

K(ω, α; y2)q̂(ω − α; y2)dy2. (3.8)

By denoting ξ = ω − α, we can formally rewrite (3.8) as

K(ξ)q̂(ξ) = ûs(ξ). (3.9)

In practice, Eq. (3.9) is implemented by using the method of least squares with Tikhonov

regularization [33]

q̂(ξ) = (λI +K∗K)−1K∗ûs(ξ), (3.10)

where λ is a small positive number, I is the identity operator, and K∗ is the adjoint operator of

K. Once q̂(ξ, y2) is available, an approximation of q may be obtained from the inverse Fourier

transform.

4. Recursive Linearization

As discussed in the previous section, when the wavenumber k is small, the Born approxima-

tion allows a reconstruction of those low Fourier modes for the function q. We now describe a

procedure that recursively determines better approximations qk at k = kl for l = 1, 2, · · · with

the increasing wavenumbers. Suppose now that an approximation of the scatterer, qk̃, has been

recovered at some wavenumber k̃, and that the wavenumber k is slightly larger that k̃. We wish

to determine qk, or equivalently, to determine the perturbation

δq = qk − qk̃.

For the reconstructed scatterer qk̃, we solve at the wavenumber k the forward scattering

problem

∆ũs
i + n2k2(1 + qk̃)ũs

i = −k2qk̃u
t
i, (4.1)

where ut
i is the transmitted wave corresponding to the incident wave ui

i with incident angle

θi, i = 1, · · · , p.
For the scatterer qk, we have

∆us
i + n2k2(1 + qk)us

i = −k2qku
t
i. (4.2)

Subtracting (4.1) from (4.2) and omitting the second order smallness in δq and in δus
i = us

i − ũs
i,

we obtain

∆δus
i + n2k2(1 + qk̃)δus

i = −k2δq(ut
i + ũs

i). (4.3)

Given a solution us
i of (4.2), we define the measurements

Mus
i(x) = [us

i(x1), · · · , us
i(xm)]T . (4.4)

The measurement operatorM is well defined and maps the scattered field to a vector of complex

numbers in Cm, which consists of point measurements of the scattered field at xj , j = 1, · · · ,m.
For the scatterer qk and the transmitted field ut

i, we define the forward scattering operator

S(qk, u
t
i) = Mus

i. (4.5)
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It is easily seen that the forward scattering operator S(qk, u
t
i) is linear with respect to ut

i but

nonlinear with respect to qk. For simplicity, we denote S(qk, u
t
i) by Si(qk). Let S

′

i(qk̃) be the

Fréchet derivative of Si(qk) and denote the residual operator

Ri(qk̃) = M(δus
i). (4.6)

It follows from the linearization of the nonlinear equation (4.5) that

S
′

i(qk̃)δq = Ri(qk̃). (4.7)

Applying the Landweber iteration [33] to the linearized equation (4.7) yields

δq = τS
′

i(qk̃)∗Ri(qk̃), (4.8)

where τ is a positive relaxation parameter and S
′

i(qk̃)∗ is the adjoint operator of S
′

i(qk̃).

In order to compute the correction δq, we need some efficient way to compute S
′

i(qk̃)∗Ri(qk̃).

Let Ri(qk̃) = [ζi1, · · · , ζim]T ∈ Cm. Consider the adjoint problem

∆ψi + n2k2(1 + qk̃)ψi = −k2
m

∑

j=1

ζijδ(x − xj). (4.9)

Multiplying (4.3) with the complex conjugate of ψi and integrating over R
2 on both sides,

we obtain
∫

R2

∆δus
i ψidx +

∫

R2

n2k2(1 + qk̃)δus
i ψidx = −k2

∫

R2

δq(ut
i + ũs

i)ψidx.

Using Green’s formula for an infinite space, we have
∫

R2

(

∆ψi + n2k2(1 + qk̃)ψi

)

δus
idx = −k2

∫

R2

δq(ut
i + ũs

i)ψidx.

It follows from the adjoint equation (4.9) that

m
∑

j=1

δus
i(xj)ζij =

∫

R2

δq(ut
i + ũs

i)ψidx. (4.10)

Noting (4.6), (4.7), and the adjoint operator S
′

i(qk̃)∗, the left-hand side of (4.10) may be deduced

m
∑

j=1

δus
i(xj)ζij = 〈M(δus

i), Ri(qk̃)〉Cm = 〈S′

i(qk̃)δq,Ri(qk̃)〉Cm

= 〈δq, S′

i(qk̃)∗Ri(qk̃)〉L2(R2) =

∫

R2

δq S′(qk̃)∗Ri(qk̃)dx. (4.11)

where 〈·, ·〉Cm and 〈·, ·〉L2(R2) are the standard inner-products defined in the complex vector

space Cm and the square integrable functional space L2(R2) .

Combining (4.10) and (4.11) yields
∫

R2

δq S′(qk̃)∗Ri(qk̃)dx =

∫

R2

δq (ut
i + ũs

i)ψidx,

which holds for any δq. It follows that

S
′

(qk̃)∗Ri(qk̃) = (ut
i + ũs)ψi. (4.12)
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Fig. 4.1. The flow chart of the recursive linearization algorithm.

Using the above result, Eq. (4.8) can be written as

δq = τ(ut
i + ũs

i)ψi. (4.13)

Thus, for each incident wave, we solve one forward problem (4.1) and one adjoint problem (4.9).

Once δq is determined, qk is updated by qk̃ + δq. After completing the pth sweep, we get the

reconstructed scatterer qk at the wavenumber k.

Given the data of the scattered field us
i(xj), j = 1, · · · ,m, i = 1, · · · , p at different wavenum-

bers from the smallest kmin to the largest kmax, a flow chart of the recursive linearization

algorithm is given in Fig. 4.1.

5. Numerical Experiments

In the following, to illustrate the performance of our algorithm, we present two numerical

examples. The scattering data are obtained by numerical solution of the forward scattering

problem, which is implemented by using the finite element method with a perfectly matched

layer technique.

The index of refraction n0 = 2 in the lower half-space prism and the relaxation parameter τ

is taken to be 0.1/k2. The scattered field are measured on xj = (x1j , 1.0), x1j = −0.5+j/40, j =

0, · · · , 40, and the incident angle θi = −2π/5 + i4π/50, i = 0, · · · , 10. Evidently, the incident

waves consist of the evanescent plane waves and the propagating plane waves. For stability

analysis, some relative random noise is added to the data, i.e., the scattered field takes the
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(a) (b)

Fig. 5.1. Example 5.1: (a) the true scatterer; (b) the reconstructed scatterer.

form

us
i(xj) := (1 + σ rand)us

i (xj), j = 0, · · · , 40, i = 0, · · · , 10.

Here, rand gives uniformly distributed random numbers in [−1, 1] and σ is a noise level param-

eter taken to be 0.02 in our numerical experiments. Define the relative error by

e2 =
(
∑

i,j |qij − q̃ij |2)1/2

(
∑

i,j |qij |2)1/2
,

where q̃ is the reconstructed scatterer and q is the true scatterer.

Example 5.1. Let q(x1, x2) = 2x2
1 exp(−x2

1 − x2
2), and reconstruct a scatterer defined by

q1(x1, x2) = q(6x1, 6(x2 − 0.5)) (5.1)

inside the domain D = [−0.5, 0.5] × [0.0, 1.0]. See Figs. 5.1(a) and 5.2(a) for the surface plot

and the image of the function. Figs. 5.1(b) and 5.2(b) show the surface plot and the image

of the final reconstruction at the wavenumber k = 12. Fig. 5.3 presents the relative error of

reconstructions at different wavenumbers with step size of the wavenumber ∆k = 1 and ∆k = 2.

Example 5.2. Let q(x1, x2) = 2x2
2 exp(−x2

1 − x2
2), and reconstruct a scatterer defined by

q2(x1, x2) = q(6x1, 6(x2 − 0.5)) (5.2)

inside the domainD = [−0.5, 0.5]×[0.0, 1.0]. See Figs. 5.4(a) and 5.5(a) for the surface plot and

the image of the function. It is important to note that the two isolated peaks in this example lie

along the direction of the x2-axis instead of the x1-axis as shown in Example 5.1. Figs. 5.4(b)

and 5.5(b) show the surface plot and the image of the final reconstruction at the wavenumber

k = 12. Fig. 5.6 presents the relative error of reconstructions at different wavenumbers with

step size of the wavenumber ∆k = 1 and ∆k = 2. The two peaks reconstructed in Example 5.2

are not as well separated as that of Example 5.1, as seen in Figs. 5.2(b) and 5.5(b). Comparing

the reconstructions of Examples 5.1 and 5.2, it is clear that better resolution is achieved along
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(a) (b)

Fig. 5.2. Example 5.1: (a) the image view of true scatterer; (b) the image view of reconstructed

scatterer.
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Fig. 5.3. Example 5.1: the relative error of reconstruction at different wavenumbers.

(a) (b)

Fig. 5.4. Example 5.2: (a) the true scatterer; (b) the reconstructed scatterer.
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(a) (b)

Fig. 5.5. Example 5.2: (a) the image view of true scatterer; (b) the image view of reconstructed

scatterer.
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Fig. 5.6. Example 5.2: the relative error of reconstruction at different wavenumbers.

the x1-axis than that along the x2-axis since the evanescent waves propagate along the x1-axis

but exponentially decay along the x2-axis. Due to the noise added to the scattering data,

the semiconvergence of the iterative algorithm can be clearly observed in Fig. 5.6, i.e., the

algorithm firstly converges to certain level and then starts to diverge. This phenomenon further

illustrates the ill-posedness of the inverse scattering problem. In practice, if the noise level is

known, the discrepancy principle may be used as a stopping rule for detecting the transient

from convergence to divergence [33].

6. Conclusion

We have presented a regularized recursive linearization method for reconstructing the scat-

terer of inhomogeneities in the modality of PSTM. The proposed method is stable and efficient

for solving the inverse medium scattering in the layered background medium with limited aper-

ture measurements. There are two important future directions of the present study. The first

concerns the convergence analysis of the recursive linearization algorithm, which is in progress

and will be reported elsewhere. Another research direction is concerned with a detailed study
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of the resolution of the proposed method and extend the approach in this paper further to the

more complicated 3D model problems.
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Appendix

A. Lippmann–Schwinger Integral Equation

For the observation point x = (x1, x2) and the source point y = (y1, y2), the fundamental

solution of the Helmholtz equation, G(x,y), in a two-layered background medium in R2 satisfies

∆G(x,y) + n2(x)k2G(x,y) = −δ(x− y) (A.1)

with continuity conditions

G(x,y)|x2=0+ = G(x,y)|x2=0− , (A.2)

∂G(x,y)

∂x2

∣

∣

∣

∣

x2=0+

=
∂G(x,y)

∂x2

∣

∣

∣

∣

x2=0−

, (A.3)

where δ is the Dirac delta function.

Define

β1(ξ) =

{

√

k2 − ξ2 for |k| > |ξ|,
i
√

ξ2 − k2 for |k| < |ξ|,

and

β2(ξ) =

{
√

(n0k)2 − ξ2 for |n0k| > |ξ|,
i
√

ξ2 − (n0k)2 for |n0k| < |ξ|.

It follows from the Fourier transform of (A1) as suggested in [14,34] and the integral represen-

tation of the Hankel function [35, 36] that

• x2 > 0, y2 < 0

G(x,y) =
i

2π

∫ ∞

−∞

ei(β1x2−β2y2)

β1 + β2
eiξ(x1−y1)dξ, (A.4)

• x2 < 0, y2 > 0

G(x,y) =
i

2π

∫ ∞

−∞

ei(β1y2−β2x2)

β1 + β2
eiξ(x1−y1)dξ, (A.5)

• x2 > 0, y2 > 0

G(x,y) =
i

4π

∫ ∞

−∞

1

β1

[

β1 − β2

β1 + β2
eiβ1(x2+y2) + eiβ1|x2−y2|

]

eiξ(x1−y1)dξ, (A.6)

• x2 < 0, y2 < 0

G(x,y) =
i

4π

∫ ∞

−∞

1

β2

[

β2 − β1

β1 + β2
e−iβ2(x2+y2) + eiβ2|x2−y2|

]

eiξ(x1−y1)dξ. (A.7)
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Using the fundamental solution (A4)-(A7), we obtain from (2.5) that the scattered field us

satisfies

us(x) = k2

∫

D

G(x,y)q(y)(ut(y) + us(y))dy. (A.8)

Adding the transmitted field ut on both sides of (A8) yields the total field in R
2
+

u(x) = ut(x) + k2

∫

D

G(x,y)q(y)u(y)dy, (A.9)

which gives the Fredholm integral equation of the second kind for the total field in D

u(x) − k2

∫

D

G(x,y)q(y)u(y)dy = ut(x). (A.10)

Once the total field in D is computed, the total field can be directly obtained from

u(x) = ut(x) + k2

∫

D

G(x,y)q(y)u(y)dy for R2
+ \D, (A.11)

and

u(x) = ui(x) + ur(x) + k2

∫

D

G(x,y)q(y)u(y)dy for x ∈ R2
−. (A.12)
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