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Abstract

In this paper, two new nonconforming hexagonal elements are presented, which are

based on the trilinear function space Q
(3)
1 and are edge-oriented, analogical to the case of

the rotated Q1 quadrilateral element. A priori error estimates are given to show that the

new elements achieve first-order accuracy in the energy norm and second-order accuracy

in the L2 norm. This theoretical result is confirmed by the numerical tests.
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1. Introduction

The finite element method (FEM) is a powerful tool, which can be easily applied to a

large variety of engineering applications. In two dimensions, classical FEMs often treat meshes

consisting of triangles, quadrilaterals, etc. While as is well-known, hexagons also extensively

exist in the nature as well as in some special application fields, such as in material sciences and

nuclear engineering [3, 12, 13]. Moreover, besides triangles and quadrilaterals, only hexagons

can form a regular tessellation of the plane [4], which inspires us to consider hexagonal elements.

Noticing that a bivariate quadratic polynomial has six degree of freedoms, one may ask

whether the six vertices of a hexagon exactly determine a bivariate quadratic polynomial.

Unfortunately, the resulting equation is not unisolvable in general, since the six vertices of the

regular hexagon belong to a same quadratic curve, a circle. To construct conforming hexagonal

elements avoiding polynomial spaces, some works based on rational function spaces have been

carried out in [10, 12, 13, 17]. Moreover, while the nonconforming triangular and quadrilateral

elements are well studied, see, e.g., [7, 11, 14, 15, 16], their hexagonal counterparts are less

complete. This motivates us to study nonconforming hexagonal elements.

The main goal of this paper is to generalize the quadrilateral rotated Q1 element [14] to the

hexagonal case. We use the so-called three-directional coordinates [18] to explore the symmetry

of a hexagon. Two new elements are constructed, both of which are based on trilinear function

space Q
(3)
1 and are edge-oriented. The modified version has an extra degree of freedom on

the element face, which is similar to the five-node element proposed by Han in [11]. Optimal

order error estimates are given with respect to the energy norm and the L2 norm. Numerical

experiments are presented to demonstrate the accuracy of the proposed method.

Before the end of this section, we recall some notations (or refer to [1, 2]). Let (·, ·) denote

the L2 inner product and || · ||Hp(Ω) (resp. | · |Hp(Ω)) be the norm (resp. semi-norm) for the

Sobolev space Hp(Ω).
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2. Nonconforming Hexagonal Element

To begin, we introduce the three-directional coordinates with which the symmetries of a
regular hexagon Ĥ could be well embodied. As is well-known, under Cartesian coordinates, a
plane can be viewed as {(t1, t2, t3) | t3 = 0} in the space. While under the three-directional
coordinates, the plane S = {(t1, t2, t3) | t1 + t2 + t3 = 0} are studied. For more details, we refer
to [18]. Thus any point in the plane S can be represented by a coordinates triple (t1, t2, t3)
with t1 + t2 + t3 = 0. A natural coordinates transform between Cartesian coordinates and
three-directional coordinates can be






ξ =
1

2
(t3 − t2),

η =

√
3

2
t1,

and






t1 =
2√
3
η,

t2 = −ξ − 1√
3
η,

t3 = ξ − 1√
3
η.

O

t1

t2

t3

Fig. 2.1. Getting a regular hexagon from a unit-cube.

We let B = {(t1, t2, t3) | − 1 < t1, t2, t3 < 1} be a box domain in the space. Then as

illustrated in Fig. 2.1, the regular hexagon Ĥ can be easily obtained by letting Ĥ = B ∩ S.

Denote the trilinear space over Ĥ as

Q
(3)
1 (Ĥ) = span{1, t1, t2, t3, t2t3, t3t1, t1t2, t1t2t3};

obviously we have dim(Q
(3)
1 (Ĥ)) = 23 − 1 = 7.

We refer symmetric parallel hexagons as an affine-equivalence class of the regular hexagon.

For a symmetric parallel hexagon, any two opposite sides are parallel and the three main

diagonals meet at one symmetric point, see Fig. 2.2.

For simplicity, assume that Ω is a polygon domain and Th be a decomposition of Ω consisted

by symmetric parallel hexagons and triangles, where h = maxK∈Th
diamK. By ∂Th we denote

the set of all edges F of the element K ∈ Th. Assume Th satisfies the usual ”quasi-uniform”

condition [1, 2]. Accordingly, the generic constant C used below is always independent of h. We

take the unit regular hexagon Ĥ and the unit equilateral triangle T̂ as the reference element. For

any K ∈ Th, there exists a unique and invertible affine map FK : K̂ → K, FK = BK x̂+bK := x,

where K̂ could be Ĥ or T̂ .
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Fig. 2.2. A symmetric parallel hexagon H can be transformed from the regular hexagon Ĥ via affine

map FH .

Here we formally define the average and the residual of any function v ∈ L2(M) over M by

PM
0 (v) =

1

meas(M)
(

∫

M

vdσ)

and RM
0 (v) = v − PM

0 (v), respectively, where M ∈ Th or M ∈ ∂Th. It is easy to see that

PM
0 : L2(M) → P0(M) is an orthogonal projection.

Now we try to construct a finite element space where any functions in it are continuous

regarding PF
0 over element edge F . For any triangle T ∈ Th, it is obvious that we can choose

the Crouzeix-Raviart element [7, 2, 1], which has linear shape space and is midpoint-oriented

(as well as edge-oriented). For any symmetric parallel hexagon H ∈ Th, there exist an affine

map FH that H = FH(Ĥ). Thus the shape space P of H can be determined by the shape space

P̂ of Ĥ via P = {q ◦ F−1
H : q ∈ P̂}.

2.1. Q1 hexagonal element

If we choose the local interpolant operator Π̂ on the reference element Ĥ under interpolation

condition

(a) : N̂ (a) = {P l̂i
0 , i = 1, · · · , 6},

where l̂i, i = 1, · · · , 6 are the six edges of Ĥ , then we need to find a suitable subspace P̂(a) ⊂

Q
(3)
1 (Ĥ), and dim(P̂(a)) = 6. Denote {φ̂j}6

j=1 as the basis for P̂(a) dual to N̂ (a), then P l̂i
0 (φ̂j) =

δij , i, j = 1, · · · , 6. An undetermined coefficients method straightforwardly yields






φ̂1 = 3
8 + 1

3 t1 + 3
4 t2t3 + t1t2t3 + c1φ̂0,

φ̂2 = 3
8 − 1

3 t3 + 3
4 t1t2 − t1t2t3 + c2φ̂0,

φ̂3 = 3
8 + 1

3 t2 + 3
4 t3t1 + t1t2t3 + c3φ̂0,

φ̂4 = 3
8 − 1

3 t1 + 3
4 t2t3 − t1t2t3 + c4φ̂0,

φ̂5 = 3
8 + 1

3 t3 + 3
4 t1t2 + t1t2t3 + c5φ̂0,

φ̂6 = 3
8 − 1

3 t2 + 3
4 t3t1 − t1t2t3 + c6φ̂0,

where φ̂0 = 5
6 + t2t3 + t3t1 + t1t2. It is easy to verify that P l̂i

0 (φ̂0) = 0 for all i = 1, · · · , 6.

For the sake of symmetry, we take ci ≡ c, i = 1, · · · , 6. Thus the partition of unity property∑6
j=1 φ̂j = 1 leads to c = − 1

4 . An important observation is that c = − 1
4 insures the summation

of the coefficients of term t2t3, t3t1, t1t2 of any function in P̂(a) to be zero. Since

α1t2t3 + α2t3t1 − (α1 + α2)t1t2 = α1(t
2
1 − t23) + α2(t

2
2 − t23)



Edge-Oriented Hexagonal Elements 433

for any constant αj (j = 1, 2), we eventually get

P̂(a) = span{1, t1, t2, t
2
1 − t23, t

2
2 − t23, t1t2t3}. (2.1)

2.2. Modified Q1 hexagonal element

In [11], Han proposes a five-node quadrilateral element by adding an extra degree of freedom

on the element face. Here we follow Han’s idea by letting

(b) : N̂ (b) = {P l̂i
0 , i = 1, · · · , 6} ∪ {P Ĥ

0 }, P̂(b) = Q
(3)
1 (Ĥ).

Denote {ψ̂j}7
j=1 as the basis for P̂(b), a similar derivation as in Section 2.1 leads to






ψ̂1 = − 1
6 + 1

3 t1 + 1
10 t2t3 −

13
20 t3t1 −

13
20 t1t2 + t1t2t3,

ψ̂2 = − 1
6 − 1

3 t3 −
13
20 t2t3 −

13
20 t3t1 + 1

10 t1t2 − t1t2t3,

ψ̂3 = − 1
6 + 1

3 t2 −
13
20 t2t3 + 1

10 t3t1 −
13
20 t1t2 + t1t2t3,

ψ̂4 = − 1
6 − 1

3 t1 + 1
10 t2t3 −

13
20 t3t1 −

13
20 t1t2 − t1t2t3,

ψ̂5 = − 1
6 + 1

3 t3 −
13
20 t2t3 −

13
20 t3t1 + 1

10 t1t2 + t1t2t3,

ψ̂6 = − 1
6 − 1

3 t2 −
13
20 t2t3 + 1

10 t3t1 −
13
20 t1t2 − t1t2t3,

ψ̂7 = 2 + 12
5 (t2t3 + t3t1 + t1t2).

Now, we have constructed two different finite element spaces

V
(a/b)
h =

{
v ∈ L2(Ω)

∣∣ v ◦ FK ∈ P̂(a/b), ∀K ∈ Th; v is continuous regarding PF
0 (·),

∀F ∈ ∂Th; and PF
0 (v) = 0, ∀F ⊂ ∂Ω

}
.

3. Error Estimates

For convenience, we consider the following Poisson problem

{
−∆u = f, in Ω,

u = 0, on ∂Ω.
(3.1)

Then the weak form of equation (3.1) reads

Find u ∈ H1
0 (Ω), such that a(u, v) = (f, v), ∀v ∈ H1

0 (Ω), (3.2)

where

a(u, v) =

∫

Ω

∇u · ∇vdσ.

The approximation of (3.2) is given by

Find uh ∈ Vh, such that ah(uh, vh) = (f, vh), ∀vh ∈ Vh, (3.3)

with

ah(uh, vh) =
∑

K∈Th

∫

K

∇uh · ∇vhdσ.

The energy norm induced by ah(·, ·) is

|| · ||h = (
∑

K∈Th

| · |2H1(K))
1
2 .
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It is obvious that || · ||h is a norm on Vh.

Assume u ∈ H1
0 (Ω) ∩ H2(Ω) and uh ∈ Vh to be the unique solution of (3.2) and (3.3),

respectively. Then the second Strang’s Lemma (see [2]) gives

||u − uh||h ≤ C{ inf
vh∈Vh

||u− vh||h + sup
wh∈Vh\{0}

|ah(u− uh, wh)|

||wh||h
}. (3.4)

The first term on the right-hand side of (3.4) is bounded by the approximation error. Since

(Π̂(a/b) − I)p̂(a/b) = 0, for all p̂(a) ∈ P1 and p̂(b) ∈ P2 respectively, the approximation error can

be estimated by employing the Bramble-Hilbert Lemma [5] and the Deny-Lions Lemma [8].

Lemma 3.1. Under the quasi-uniform assumption for Th, we have

inf
vh∈Vh

||u− vh||
(a)
h ≤ Ch|u|H2(Ω), inf

vh∈Vh

||u− vh||
(b)
h ≤ Ch2|u|H3(Ω). (3.5)

Proof. We take case (a) as example:

inf
vh∈Vh

||u− vh||h ≤
∑

K∈Th

|u− ΠKu|H1(K)

≤ C
∑

K∈Th

||B−1
K || · | detBK |

1
2 · |û− Π̂K̂ û|H1(K̂)

≤ C
∑

K∈Th

||B−1
K || · | detBK |

1
2 · inf

p̂∈P1(K̂)
||û+ p̂||H2(K̂)

≤ C
∑

K∈Th

||B−1
K || · | detBK |

1
2 · |û|H2(K̂)

≤ C
∑

K∈Th

||B−1
K || · | detBK |

1
2 · ||BK ||2 · | detBK |−

1
2 · |u|H2(K)

≤ C
∑

K∈Th

ρ−1
K · h2

K · |u|H2(K) ≤ Ch|u|H2(Ω),

where the third inequality follows by the Bramble-Hilbert Lemma and the fourth one by the

Deny-Lions Lemma.

Now we are in a position to bound the second term on the right-hand side of (3.4), i.e., the

consistency error. By Green’s formula, we have

ah(u− uh, wh) =
∑

K∈Th

∫

K

∇u · ∇whdσ −

∫

Ω

fwhdσ

=
∑

K∈Th

{

∫

∂K

∂u

∂ν
whds−

∫

K

(∆u)whdσ} −

∫

K

fwhdσ

=
∑

K∈Th

∫

∂K

∂u

∂ν
whds

=
∑

F ∈ ∂Th

F 6⊂ ∂Ω

∫

F

∂u

∂ν
[wh]F ds+

∑

F⊂∂Ω

∫

F

∂u

∂ν
whds, (3.6)

where [ · ]F denote the jump over element side F . Since for any wh ∈ Vh,

PF
0 ([wh]F ) = 0, if F 6⊂ ∂Ω, and PF

0 (wh) = 0, if F ⊂ ∂Ω,
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we have for F ∈ ∂Th, F 6⊂ ∂Ω, the following equality holds
∫

F

∂u

∂ν
[wh]Fds =

∫

F

∂u

∂ν
RF

0 ([wh]F )ds =

∫

F

RK
0 (
∂u

∂ν
)RF

0 ([wh]F )ds.

Thus by Schwarz’s inequality,

|

∫

F

∂u

∂ν
[wh]Fds| ≤

∫

F

|RK
0 (
∂u

∂ν
)RF

0 ([wh]F )|ds

≤ ||RK
0 (
∂u

∂ν
)||L2(F ) · ||R

F
0 ([wh]F )||L2(F ). (3.7)

Lemma 3.2.

||RK
0 (v)||L2(∂K) ≤ Ch1/2|v|H1(K), ∀v ∈ H1(K).

Proof. Employing the Trace Theorem on the reference element K̂, we have

||RK
0 (v)||2L2(∂K) ≤ Ch||R̂K

0 (v)||2
L2(∂K̂)

≤ Ch||R̂K
0 (v)||2

H1(K̂)

= Ch{||R̂K
0 (v)||2

L2(K̂)
+ |R̂K

0 (v)|2
H1(K̂)

}

≤ C{h−1||RK
0 (v)||2L2(K) + h|RK

0 (v)|2H1(K)}

≤ Ch|v|2H1(K),

which completes the proof.

Use the above lemma, we have

||RK
0 (
∂u

∂ν
)||L2(F ) ≤ Ch1/2|

∂u

∂ν
|H1(K) ≤ Ch1/2|u|H2(K), (3.8)

||RF
0 ([wh]F )||L2(F ) = ||RF

0 (wh|K+
− wh|K

−

)||L2(F )

≤ {||RF
0 (wh|K+

)||L2(F ) + ||RF
0 (wh|K

−

)||L2(F )}

≤ C{||R
K+

0 (wh)||L2(F ) + ||R
K

−

0 (wh)||L2(F )}

≤ Ch1/2{|wh|H1(K+) + |wh|H1(K
−

)}, (3.9)

where F is the common edge of the elements K+ and K−.

Substituting (3.8)-(3.9) into (3.7) (summation over F 6⊂ ∂Ω), we get

∑

F ∈ ∂Th

F 6⊂ ∂Ω

|

∫

F

∂u

∂ν
[wh]Fds| ≤

∑

K∈Th

Ch|u|H2(K)|wh|H1(K) ≤ Ch|u|H2(Ω)||wh||h. (3.10)

Analogously, for F ⊂ ∂Ω, we have

∑

F⊂∂Ω

|

∫

F

∂u

∂ν
whds| ≤ Ch|u|H2(Ω)||wh||h. (3.11)

By (3.10)-(3.11) and (3.6), we can get

|ah(u− uh, wh)| ≤ Ch|u|H2(Ω)||wh||h. (3.12)

Theorem 3.1. Suppose u ∈ H2(Ω), under the quasi-uniform partition Th mentioned above, we

have the following error estimates:

h||u− uh||h + ||u− uh||L2(Ω) ≤ Ch2|u|H2(Ω). (3.13)
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Proof. Employing Lemma 3.1 and substituting (3.12) into (3.4), we obtain

||u − uh||
(a/b)
h ≤ Ch|u|H2(Ω).

By the Aubin-Nitsche duality argument in standard finite element theory [1], we can get

||u− uh||
(a/b)
L2(Ω) ≤ Ch2|u|H2(Ω).

Then the proof is complete.

4. Numerical Experiment

In order to investigate the numerical behavior of the two hexagonal elements, we consider

the second order problem (3.1) with

f(x, y) = −2(y + x cot θ3) + 2 cot θ2(x+ 3y cot θ3 − sin θ1).

And Ω is a triangular domain consisted by l1 : y = 0, l2 : y = (sin θ1 − x) tan θ3, and l3 :

y = x tan θ2, where θ1, θ2, θ3 are the three inner angles of Ω. It can be verified that the exact

solution of problem (3.1) is

u(x, y) = y(x− y cot θ2)(x + y cot θ3 − sin θ1).

We equally divide the three edges of Ω into N segments and partition Ω with small hexagons

and a few triangles near the boundary. The meshes obtained in this way for N = 9 and N = 18

are illustrated in Fig. 4.1.

Fig. 4.1. The hexagonal meshes for the triangular domain Ω (left: N = 9, right: N = 18).

Fig. 4.2. The triangular meshes for the triangular domain Ω (left: N = 9, right: N = 18).
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Table 4.1: Errors in energy norm using element-(a): ||u − uh||h.

N DOF (60◦, 60◦, 60◦) (45◦, 60◦, 75◦) (20◦, 50◦, 110◦)

18 183 8.758 ∗ 10−3 − 6.441 ∗ 10−3 − 1.349 ∗ 10−3 −

36 696 4.450 ∗ 10−3 1.97 3.249 ∗ 10−3 1.98 6.207 ∗ 10−4 2.17

72 2694 2.241 ∗ 10−3 1.99 1.630 ∗ 10−3 1.99 2.922 ∗ 10−4 2.12

144 10578 1.124 ∗ 10−3 1.99 8.160 ∗ 10−4 2.00 1.409 ∗ 10−4 2.07

Table 4.2: Errors in energy norm using element-(b): ||u − uh||h.

N DOF (60◦, 60◦, 60◦) (45◦, 60◦, 75◦) (20◦, 50◦, 110◦)

18 229 3.161 ∗ 10−3 − 2.540 ∗ 10−3 − 1.064 ∗ 10−3 −

36 895 1.329 ∗ 10−3 2.37 1.078 ∗ 10−3 2.36 4.765 ∗ 10−4 2.23

72 3523 5.721 ∗ 10−4 2.32 4.689 ∗ 10−3 2.30 2.194 ∗ 10−4 2.17

144 13963 2.568 ∗ 10−4 2.29 2.125 ∗ 10−4 2.21 1.042 ∗ 10−4 2.11

Table 4.3: Errors in energy norm using C-R element: ||u − uh||h.

N DOF (60◦, 60◦, 60◦) (45◦, 60◦, 75◦) (20◦, 50◦, 110◦)

18 459 6.846 ∗ 10−3 − 5.496 ∗ 10−3 − 2.373 ∗ 10−3 −

36 1890 3.426 ∗ 10−3 2.00 2.750 ∗ 10−3 2.00 1.190 ∗ 10−3 1.99

72 7668 1.713 ∗ 10−3 2.00 1.376 ∗ 10−3 2.00 5.960 ∗ 10−4 2.00

144 30888 8.566 ∗ 10−3 2.00 6.880 ∗ 10−4 2.00 2.982 ∗ 10−4 2.00

Table 4.4: Errors in L2 norm using element-(a): ||u − uh||L2(Ω).

N DOF (60◦, 60◦, 60◦) (45◦, 60◦, 75◦) (20◦, 50◦, 110◦)

18 183 1.441 ∗ 10−4 − 1.017 ∗ 10−4 − 1.581 ∗ 10−5 −

36 696 3.740 ∗ 10−5 3.85 2.621 ∗ 10−5 3.88 3.650 ∗ 10−6 4.33

72 2694 9.551 ∗ 10−6 3.92 6.663 ∗ 10−6 3.93 8.589 ∗ 10−7 4.25

144 10578 2.414 ∗ 10−6 3.96 1.680 ∗ 10−6 3.97 2.068 ∗ 10−7 4.15

Table 4.5: Errors in L2 norm using element-(b): ||u − uh||L2(Ω).

N DOF (60◦, 60◦, 60◦) (45◦, 60◦, 75◦) (20◦, 50◦, 110◦)

18 229 3.821 ∗ 10−5 − 3.016 ∗ 10−5 − 1.241 ∗ 10−5 −

36 895 8.184 ∗ 10−6 4.67 6.521 ∗ 10−6 4.63 2.824 ∗ 10−6 4.40

72 3523 1.793 ∗ 10−6 4.56 1.443 ∗ 10−6 4.52 6.580 ∗ 10−7 4.30

144 13963 4.089 ∗ 10−7 4.38 3.321 ∗ 10−7 4.35 1.575 ∗ 10−7 4.18

Table 4.6: Errors in L2 norm using C-R element: ||u − uh||L2(Ω).

N DOF (60◦, 60◦, 60◦) (45◦, 60◦, 75◦) (20◦, 50◦, 110◦)

18 459 7.667 ∗ 10−5 − 6.118 ∗ 10−5 − 2.839 ∗ 10−5 −

36 1890 1.918 ∗ 10−5 4.00 1.533 ∗ 10−5 4.00 7.162 ∗ 10−6 3.96

72 7668 4.797 ∗ 10−6 4.00 3.834 ∗ 10−6 4.00 1.795 ∗ 10−6 3.99

144 30888 1.199 ∗ 10−6 4.00 9.582 ∗ 10−7 4.00 4.492 ∗ 10−7 4.00
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Fig. 4.3. Comparisons among the Q1 hexagonal element (element (a)), the modified Q1 hexagonal

element (element (b)), and the Crouzeix-Raviart triangular element (C-R element).

We give the numerical results of the above problem using our nonconforming hexagonal

elements. And we also use the famous Crouzeix-Raviart element (see [7]) for the sake of com-

parison upon the triangular mesh illustrated in Fig. 4.2. A variety of different inner angles

(θ1, θ2, θ3) of Ω are considered. In Tables 4.1-4.3, we list the results in the energy norm for the

Q1 hexagonal element, the modified Q1 hexagonal element and the Crouzeix-Raviart element

respectively. And in Tables 4.4-4.6, the corresponding results in the L2 norm are given.

The results show that both of the new hexagonal elements are convergent with first order

in energy norm and second order in L2 norm, comparable with the Crouzeix-Raviart element.

Although the Q1 hexagonal element is slightly inaccurate, nearly 2/3 of the degree of freedoms

are saved. And the modified hexagonal element is more accurate than the Crouzeix-Raviart

element with more than 1/2 degree of freedoms saved. Fig. 4.3 gives a more clear illustration

for the case of (θ1, θ2, θ3) = (60◦, 60◦, 60◦). One may be concerned about which is the most

accurate among the three elements with a given number of degrees of freedom. From the two

log-log plots on the bottom of Fig. 4.3, we can see that both hexagonal elements achieve better

accuracy than the Crouzeix-Raviart element.
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