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Abstract

We are interested in the numerical solution of the large nonsymmetric shifted linear

system, (A + αI)x = b, for many different values of the shift α in a wide range. We apply

the Saad’s flexible preconditioning technique [14] to the solution of the shifted systems.

Such flexible preconditioning with a few parameters could probably cover all the shifted

systems with the shift in a wide range. Numerical experiments report the effectiveness of

our approach on some problems.
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1. Introduction

We are interested in the numerical solution of the following large nonsymmetric shifted

linear system,

(A + αjI)x(αj)b, j = 1, · · · , s, (1.1)

for many, possibly a few hundreds, different values of the shift αj in a wide range, all available

simultaneously. This problem arises in many engineering applications like in quantum chro-

modynamics [8], electromagnetics [12], structural dynamics [5,17], wave propagation [15] and

control theory [4]. The traditional approach to this problem is to factorize A + αjI and solve

(1.1) by backtransformation for each αj . This can be quite expensive when s is large. Now

the Krylov subspace methods is a popular approach to solve (1.1); see e.g. [4,7,9,10,17],since

these are invariant with respect to shift αj . More precisely, the Krylov subspace satisfies

Km(A, b) = Km(A + αjI, b), for any αj . Hence, all approximation solutions can be sought in a

single subspace generated by the constant coefficient matrix A.

However, convergence may be slow if the coefficient shifted matrix A + αjI has unfavor-

able spectral properties. Applying an efficient preconditioner for the shifted systems (1.1) is

necessary and important. Some attempts have been made in the past, e.g. polynomial precon-

ditioning, which preserves the shifted form [6], and approximate inverse preconditioner for each

shifted matrix A + αjI by cheaply modifying an existing sparse approximate inverse precondi-

tioner for A [3].
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In [13], the preconditioning matrix (A + σI)−1 with a fixed reference σ is used. This leads

to solve the preconditioned shifted systems

(A + σI)−1(A + αjI)x(αj) = (A + σI)−1b, j = 1, · · · , s. (1.2)

This preconditioning approach maintains the shift-invariance properties of the Krylov subspace,

since

(A + σI)−1(A + αjI) = I + (αj − σ)(A + σI)−1. (1.3)

Thus, all the approximation solutions can be sought in one Krylov subspace generated by

the matrix (A + σI)−1. Meerbergen [13] analyzed the spectrum of the preconditioned matrix

(A + σI)−1(A + αjI). The nice features are that the preconditioner is well suited for values of

αj near the reference value σ. However, it is difficult for only one reference value σ to cover

many different values αj in a wide range.

Based on Saad’s flexible preconditioning idea, the FOM/GMRES method with a variable

preconditioning for solving the shifted systems (1.1) is presented in this paper. The method

allows us to incorporate the different preconditioner, e.g. (A + σiI)−1 with different σi in our

problem, into the Arnoldi procedure when constructing a projective subspace. It is possible

for such single projective subspace with a few different preconditioning matrices (A + σiI)−1

to cover all the different values αj in a wide range. Although such projective subspace is not

a Krylov subspace, it is still invariant with respect to the shift αj , or say that the subspace is

independent on the shift αj . Hence, all the approximation solutions can still be sought in the

single projective subspace generated by the preconditioned matrices (A + σiI)−1. Numerical

experiments report the effectiveness of our approach on some problems.

The remainder of the paper is organized as follows. In Section 2, we first change the

left version of Meerbergen’s preconditioner to the right version. We then present the Arnoldi

method with a flexible preconditioning. In Section 3, we discuss some implementation issues of

the algorithm. Numerical experiments are shown in Section 4.

2. Projective Subspace with Preconditioning

In this section, we first present the right version of Meerbergen’s preconditioning to construct

a flexible preconditioning, and then based on it, we establish FOM/GMRES method with a

flexible preconditioning for solving the shifted linear systems (1.1).

2.1. Right Preconditioning

We employ the right preconditioner (A + σI)−1 to the shifted system (1.1),

(A + αjI)(A + σI)−1x̃(αj) = b, j = 1, · · · , s, (2.1)

where x̃(αj) = (A + σI)x(αj). Since

(A + αjI)(A + σI)−1 = I + (αj − σ)(A + σI)−1, (2.2)

Krylov subspace Km((A + σI)−1, b) generated by (A + σI)−1 is invariant with respect to shift

αj , i.e., Km((A+σI)−1, b) = Km((A+αjI)(A+σI)−1, b), for any αj . Hence, all preconditioned

shifted systems(2.1) can be projected onto a single approximation subspace Km((A+σI)−1, b).

The following Arnoldi procedure builds an orthogonal basis of the Krylov subspace Km((A +

σI)−1, b).
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Algorithm 2.1. Build Km((A + σI)−1, b) by the m-Arnoldi procedure.

1. Choose σ and factorize A + σI.

2. Set v1 = b/β, where β = ‖b‖2.

3. For k = 1, · · · , m. Do

1) Solve (A + σI)wk = vk.

2) ṽk+1 = wk −
∑k

i=1 hikvi, where hik = (vi, wk).

3) hk+1k = ‖ṽk+1‖2.

4) vk+1 = ṽk+1/hk+1k.

Set Wm = [w1, · · · , wm], Vm = [v1, · · · , vm], and H̄m = {hij}. By 1) of step 3 and the

Arnoldi procedure, we have

Wm = (A + σI)−1Vm, (2.3)

and

Wm = Vm+1H̄m, (2.4)

where V T
m Vm = I. Thus by (2.2), the following holds,

(A + αiI)Wm = (A + αiI)(A + σI)−1VmVm+1H̄m(αi),

where H̄m(αi) =

[

I

0

]

+(αi −σ)H̄m. We seek the approximation solutions x̃m(αj) in the sub-

space Km((A+σI)−1, b) by setting zero initial, i.e., x̃m(αj) = Vmum(αj). For the original prob-

lem(1.1), the approximation solutions are xm(αj) = (A + σI)−1x̃m(αj) = Wmum(αj), which

means that all the approximation solutions xm(αj) are sought in the subspace span{Wm} =

span{(A + σI)−1Vm}. The residuals have the expression,

rm(αj) = b − (A + αjI)xm(αj) = Vm+1(βe1 − H̄m(αj)um(αj))

= Vm(βe1 − Hm(αj)um(αj)) − vm+1hm+1meT
mum(αj), (2.5)

where Hm(αj) is the matrix by deleting the last row of H̄m(αj) and b = βv1. By imposing

the Galerkin condition rm(αj) ⊥ Km((A + σI)−1, b), or minimizing the residual norm over all

vectors in Km((A + σI)−1, b), we can obtain the following algorithms, i.e., FOM method and

GMRES method with a right preconditioning (A+σI)−1, for solving the shifted systems (1.1).

Algorithm 2.2. FOM/GMRES method with a right preconditioning.

1. Choose x0(αj) = 0, j = 1, · · · , s.

2. By Algorithm 2.1, Vm, Wm, H̄m, are produced.

3. (i) FOM: um(αj) = H−1
m (αj)(βe1).

(ii) GMRES: um(αj)arg minu ‖βe1 − H̄m(αj)u‖2.

4. xm(αj) = Wmum(αj).
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In the above algorithm, {Vm} is an orthogonal basis of the Krylov subspace Km((A +

σI)−1, b). However, all the approximation solutions xm(αj) are sought in the subspace {Wm},

which is the subspace spanned by the vectors wk = (A + σI)−1vk. In the context of it-

erative methods, (A + σI)−1 can be regarded as a preconditioner for the shifted systems

(A + αjI)x(αj) = b.

In [13], the spectral properties of the preconditioned matrix (A+σI)−1(A+αjI) are analyzed

and it is shown that the preconditioner (A + σI)−1 is well suited only for values of αj near

the reference value σ. In the application problems, the shifts αj are selected in a wide range.

In this case, only one preconditioner could not reach a good efficiency. In the implementation,

another (restarted) Krylov subspace with a new select preconditioner (A+σ̄I)−1 and new initial

value r̄0 = rm+1, which is the last residual, for solving unconverged shifted systems could be

generated, after some systems converge. However, some information obtained in the previous

subspace could be lost.

2.2. Flexible preconditioning

Based on Saad’s idea [14], a projective subspace with a flexible preconditioning could be

built for seeking all the approximation solutions, and it could probably cover the whole shifted

systems with many different values of αj in a wide range, although it is not Krylov subspace.

We note that in 1) of step 3, for each k, wk = (A+σI)−1vk for a fixed σ. We now replace it by

wk = (A + σkI)−1vk. (2.6)

Again, we set Wm = [w1, · · · , wm], Vm = [v1, · · · , vm], H̄m = {hij}. The relation(2.3) can

be rewritten in the following matrix form by setting Σm = diag{σ1, · · · , σm}:

AWm + WmΣm = Vm. (2.7)

In addition, the Arnoldi factorization(2.4) still satisfies

Wm = Vm+1H̄m, (2.8)

and V T
m Vm = I. In this case, we have

(A + αjI)Wm = AWm + αjWm = Vm − WmΣm + αjWm

= Vm + Vm+1H̄m(αjI − Σm) = Vm+1(

[

I

0

]

+ H̄m(αjI − Σm)).

Setting H̄m(αj , Σm) =

[

I

0

]

+ H̄m(αjI − Σm), we have the following relation,

(A + αjI)Wm = Vm+1H̄m(αj , Σm). (2.9)

We seek the approximation solutions xm(αj) still in the subspace span{Wm}≡span{w1, · · · , wm}

by setting zero initial, where wk is given by (2.6). The approximation solutions can be written

as xm(αj) = Wmum(αj). Their residuals have the expression

rm(αj) = b − (A + αjI)xm(αj) = Vm+1(βe1 − H̄m(αj , Σm)um(αj)).

= Vm(βe1 − Hm(αj , Σm)um(αj)) − vm+1hm+1meT
m(αj − σm)um(αj), (2.10)
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where Hm(αj , Σm) is the matrix by deleting the last row of the matrix H̄m(αj , Σm). By

imposing the Galerkin condition rm(αj) ⊥ span{v1, · · · , vm}, or minimizing the residual norm

over all vectors in span{w1, · · · , wm}, we can establish the following FOM method and GMRES

method with flexible preconditioning for solving the shifted systems (1.1).

Algorithm 2.3. FOM/GMRES with flexible preconditioning.

1. Choose σk, k = 1, · · · , m.

2. Choose x0(αj) = 0, j = 1, · · · , s.

3. Set v1 = b/β, where β = ‖b‖2.

4. For k = 1, · · · , m. Do

(i) Solve (A + σkI)wk = vk.

(ii) ṽk+1 = wk −
∑k

i=1 hikvi, where hik = (vi, Awk).

(iii) hk+1k = ‖ṽk+1‖2.

(iv) vk+1 = ṽk+1/hk+1k.

5. (i) FOM: um(αj) = H−1
m (αj , Σm)(βe1).

(ii) GMRES: um(αj)arg minu ‖βe1 − H̄m(αj , Σm)u‖2.

6. xm(αj) = Wmum(αj).

2.3. Some Propositions

It is important that the projective subspace {Wm} is independent of the shift αj . In fact,

we have the following propositions about the subspace {Wm} and about Algorithm 2.3. These

propositions are easily obtained by using the formulas (2.8) and (2.9).

Proposition 2.1. Let Wm = [w1, · · · , wm] and Vm = [v1, · · · , vm] be defined by Algorithm 2.1.

Then for any αj,

span{Wm} ⊆ span{Vm+1} and span{(A + αjI)Wm} ⊆ span{Vm+1}.

Proposition 2.2. If hm+1m = 0 and Hm is nonsingular, then for any αj,

span{Wm} = span{Vm} = span{(A + αjI)Wm}.

Proposition 2.3. Assume that Algorithm 2.3 does not break down. Then rank{Wm} =

rank{H̄m}.

3. Implementation Issues

3.1. Restarting

With m increasing, the computational cost and the memory will increase significantly in

Algorithm 2.3. So restarting is necessary.

Note the expression of the residual (2.10). For FOM method, the residual of the approxi-

mation xm(αj) is

rm(αj) = b − (A + αjI)xm(αj) = −vm+1hm+1m(αj − σm)[um(αj)]m,
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where [um(αj)]m is the last element of vector um(αj). This means that the residuals for

all αj are collinear with vm+1. Thus we can restart the algorithm with new initial vector

v̄1 = vm+1, x̄0(αj) = xm(αj) for solving unconverged systems.In this case, x̄m(αj) = x̄0(αj) +

Wmum(αj).

For GMRES method, Frommer’s approach [9] can be applied to the preconditioned shifted

system with a flexible preconditioning. We assume that the approximation solution xm of

Ax = b, called seed system, in the affine subspace {x0}+{Wm} has been obtained by Algorithm

2.3. We now want to obtain the other approximation solutions xm(αj) of (A+αjI)xb, αj 6= 0 in

{x0(αj)}+ {Wm}, i.e., xm(αj) = x0(αj) + Wmzm, such that the residuals rm(αj) are collinear

with the residual rm of xm, i.e., rm(αj) = βm(αj)rm. We first assume that initial residuals are

collinear with r0 : r0(αj) = β0(αj)r0. From (2.10), the residual rm can be set as rm = Vm+1ym,

where ym = βe1 − H̄m(0, Σm)um(0). Thus the collinear condition can be written as

b − (A + αjI)(x0(αj) + Wmzm(αj))βmVm+1ym,

⇐⇒ r0(αj) − (A + αjI)Wmzm(αj) = βmVm+1ym,

⇐⇒ β0r0 − Vm+1H̄m(αj , Σm)zm(αj) = βmVm+1ym.

Note r0 = βVm+1e1. Multiplying the above formula from the left by V T
m+1, we have

ββ0e1 − H̄m(αj , Σm)zm(αj) = βmym.

So we can obtain the approximation solutions xm(αj)x0(αj) + Wmzm(αj) by solving the fol-

lowing (m + 1) × (m + 1) system,

(

H̄m(αj , Σm) ym

)

(

zm(αj)

βm

)

= ββ0e1. (3.1)

Frommer shows that if the matrix A is positive (i.e., the eigenvalue has a positive real part)

and the shift αj > 0, the approximation solution xm(αj) from the above system converges to

the solution of (A + αjI)x = b, if the residual rm converges to zero.

3.2. Unnecessary to Select Each Different σk for Each k

Since m inner systems (A + σkI)w = v must be solved in Algorithm 2.3, the computation

cost is expensive if m is large. In application problems, we may select only very few different

σk in all inner iteration(In our numerical experiments, two or three σk are selected.) according

to the clustered distributing of the parameter αj .

For the inner systems (A + σkI)w = v, it is generally practical to use a direct linear solver

[11,13]. Since very few σk is selected for a large number of shifts α, only very few large-scale

sparse factorizations of A+σkI, e.g., LU factorization, are required and such factorized matrices

could be stored if the memory is not limited. Thus even if m is large and s is very large, the

computation cost will be improved greatly.

4. Numerical Experiments

In this section, we report the results of our numerical experiments with a Fortran 77 imple-

mentation of the algorithm described in Section 2. We compare the effect of the flexible precon-

ditioning with a fixed right preconditioning and unpreconditioning, based on GMRES method
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(restart version), denoted by FGMRES(m) (the GMRES method with a flexible precondition-

ing), PGMRES(m) (the GMRES method with a fixed right preconditioning) and GMRES(m)

(the GMRES method without preconditioning) separately; here m stands for the size of the

approximation subspace. In our all experiments, m = 14 is set. Also we carry out the FOM

method for Example 1 to show the effectiveness of flexible preconditioning. The algorithms were

executed on the basis of the iteration number (restart runs) necessary to achieve the residual

norm, ‖rm(αj)‖2 < ǫ ≡ 10−6. The maximum restart run is set to 30. In all methods the zero

initial vector is chosen for all shifted systems and each new initial vector x̄
(j)
0 of the j-th system

is set to the last iteration solution x
(j)
m . We consider the different distributing of the parameter

αj in a wide range, and the choice of σk.

Three sets of values for the shift parameters are:

1) Set one Π1 is formed by 80 shift parameters: αj = 0.001 ∗ j, 1 ≤ j ≤ 40, and αj =

1.0 + 0.001 ∗ j, 41 ≤ j ≤ 80, which are gathered in two intervals [0.001, 0.04] and [1.041, 1.08].

2) Set two Π2 is formed by 80 shift parameters: αj = 0.001 ∗ j, 1 ≤ j ≤ 30, αj = 0.5+0.001 ∗ j,

31 ≤ j ≤ 50, and αj = 5.0+0.001 ∗ j, 51 ≤ j ≤ 80, which are gathered in three intervals [0.001,

0.03], [0.531, 0.55] and [5.051, 5.08].

3) Set three Π3 is formed by 200 shift parameters: αj = 0.01 + 0.002 ∗ j, 1 ≤ j ≤ 200, which

are gathered in the interval [0.012, 0.41].

The experiments are based on the following shifted linear systems:

(A + αjI)x(αj) = b, j = 1, · · · , s. (4.1)

Example 1. We first consider the problems arising from the centered difference discretization

of problems of the form

−∆u + 2γ1ux + 2γ2uy + βu = f

on square regions with zero Dirichlet boundary condition. The grid consists of a square of 50

internal mesh points in each direction, leading to a matrix A of size n = 2500. The right-hand

side b is formed by b = (A+α1I)e, where e is a vector with all entries 1. The parameters γ1 = 5

and γ2β = 0 are selected.

In FGMRES(m) and FFOM(m), one reference value σk in each separated interval can be

selected.

For the set Π1, only two references are selected in all inner iteration (m = 14). More

precisely, σk = 0.006, 1 ≤ k ≤ 10, and σk = 1.0, 11 ≤ k ≤ 14. This means in the first ten inner

iterative steps, σk=0.006 is fixed, and in the last four inner iterative steps, σk=1.0 is fixed.

Similarly, for the set Π2, only three references are selected by σk = 0.0054, 1 ≤ k ≤ 8,

σk = 0.5, 9 ≤ k ≤ 11 and σk = 5.0, 12 ≤ k ≤ 14; and for the set Π3, only two references are

selected by σk = 0.018, 1 ≤ k ≤ 8 and σk = 0.31, 9 ≤ k ≤ 14.

In PGMRES(m) and PFOM(m), a reference σ is first selected around the first gathered

interval of shifts to form a preconditioner (A + σI)−1, e.g., in our experiments, σ is set to be

the reference σ1 selected in the above flexible preconditioner. After one restart run, we delete

the converged shifted systems and solve the unconverged shifted systems. We then form a new

preconditioner (A + σ̄I)−1 by selecting a new reference σ̄ around the next gathered interval of

shifts, e.g., σ̄ is set to be the reference σ1 selected in the above flexible preconditioner.

The results of the iteration number (restart runs) for the convergence are reported in Table

4.1.



A Flexible Preconditioned Arnoldi Method for Shifted Linear Systems 529

shift set FGMRES PGMRES GMRES FFOM PFOM FOM

Π1 1 2 15 1 2 18

Π2 1 3 15 1 3 18

Π3 1 2 13 1 2 14

Table 4.1: Example 1. Restart runs for the convergence of three methods for solving the shifted systems

with three sets of shifted parameters.

shift set FGMRES PGMRES GMRES

Π1 1 2 29

Π2 1 3 29

Π3 1 2 25

Table 4.2: Example 2. Restart runs for the convergence of three methods for solving the shifted systems

with three sets of shifted parameters.

The methods without preconditioning take much more iterative steps to reach the con-

vergence. The effectiveness of preconditioning is apparent. The experiments show that the

GMRES/FOM methods with a flexible preconditioner have a better convergence history than

the methods with a fixed preconditioner. Since only one fixed reference σ can be selected at

one restart run in the PGMRES/PFOM methods, the effectiveness of preconditioning is mainly

on the shifted systems with the shift parameters α near the reference value σ, and it is difficult

for only one reference value σ to cover many different values αj in the different intervals or in

a wide range.

However, more interesting is the convergence behavior of the FGMRES/FFOM methods.

Since each one reference value σk in each separated interval can be selected at one restart run in

these methods, the experimental results show that the effectiveness of flexible preconditioning

could probably be on the all shifted systems with the shift parameters α near each reference

value σ, even located in the different separated intervals or in a wide range.

Example 2. We next consider the matrix A, pde2961, from the Matrix Market [19]. The

matrix is real unsymmetric matrix with order 2961 and 14585 nonzero entries. We carry out

the GMRES method to show the effectiveness of the flexible preconditioning.

In FGMRES(m), the strategy to select the reference is similar to the one in Example 1, i.e.,

one reference value σk in each separated interval is selected.

For the set Π1, two references are selected by σk = 0.009, 1 ≤ k ≤ 9 and σk = 1.0,

10 ≤ k ≤ 14; for the set Π2, three references are σk = 0.006, 1 ≤ k ≤ 8, σk = 0.53, 9 ≤ k ≤ 12

and σk = 5.065, k = 13, 14; for the set Π3, two references are σk = 0.046, 1 ≤ k ≤ 9 and

σk = 0.32 and 10 ≤ k ≤ 14.

In PGMRES(m), the strategy to select reference σ is the same as the one in Example 1.

The results of the iteration number (restart runs) for the convergence are reported in Table 4.2.

The experimental results show that the projective subspace with a flexible preconditioner

(A + σkI)−1 by selecting a few suitable references σk could be efficient to all shifted systems

with the shift in a wide range. So the methods with a flexible preconditioning have a better

convergence history than the methods with a fixed preconditioning.

Acknowledgments. Research supported by the National Natural Science Foundation of China

(10271075).



530 G.D. GU, X.L. ZHOU AND L. LIN

References

[1] Z.Z. Bai and S.L. Zhang, A regularized conjugate gradient method for symmetric positive definite

system of linear equations, J. Comput. Math., 20 (2002), 437-448.

[2] Z.Z. Bai, J.F. Yin and Y.F. Su, A shift-splitting preconditioner for non-Hermitian positive definite

matrices, J. Comput. Math., 24 (2006), 539-552.

[3] M. Benzi and D. Bertaccni, Approximate inverse preconditioning for shifted linear systems, BIT,

43 (2003), 231-244.

[4] B.N. Datta and Y. Saad, Arnoldi methods for large Sylvester-like observer matrix equations and

an associated algorithm for partial spectrum assignment, Linear Algebra Appl., 154-156 (1991),

225-244.

[5] A. Feriani, F. Perotti and V. Simoncini, Iterative system solvers for the frequency analysis of

linear mechanical systems, Comput. Method. Appl. Mech. Engrg., 190 (2000), 1719-1739.

[6] R. Freund, On conjugate gradient type methods and polynomial preconditioners for a class of

complex non-Hermitian matrices, Numer. Math., 57 (1990), 285-312.

[7] R. Freund, Solution of shifted linear systems by quasi-minimal residual iterations, in Numerical

Linear Algebra, L. Reichel, Aa. Ruttan and R. S.Varga, eds., de Gruyter, Berlin, 1993, 101-121.

[8] A. Frommer, B. Nockel, S. Gusken, T. Lippert and K. Schilling, Many masses on one stroke:

Economic computtation of quark propagators, Int. J. Mod. Phys., 6 (1995), 627-638.

[9] A. Frommer and U. Glassner, Restarted GMRES for shifted linear systems, SIAM J. Sci. Ccom-

put., 19 (1998), 15-26.

[10] G. Gu, Restarted GMRES augmented with Harmonic-Ritz vectors for shifted linear systems, Int.

J. Comput. Math., 82 (2005), 837-849.

[11] G.-D. Gu and V. Simoncini, Numerical solution of parameter-dependent linear systems, Numer.

Linear Algebra Appl., 12 (2005), 923-940.

[12] M. Kuzuoglu and R. Mittra, Finite element solution of electromagnetic problems over a wide
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