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Abstract

Based on the finite difference discretization of partial differential equations, we propose

a kind of semi-implicit θ-schemes of incremental unknowns type for the heat equation with

time-dependent coefficients. The stability of the new schemes is carefully studied. Some

new types of conditions give better stability when θ is closed to 1/2 even if we have variable

coefficients.
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1. Introduction

Using finite difference discretization in the infinite dimensional dynamical systems to seek

the solution of nonlinear partial differential equations and to study its long time behavior is

highly stressed by many authors, see for example [4,10,12]. The Incremental Unknowns (IU)

method, stemming originally from the dynamical system theory, was introduced by Temam

in 1990 ([11]) for the approximation of inertial manifolds when finite differences are used to

discretize a partial differential equation, see also [5,12]. It was shown that the IU method

usually yields a very well conditioned matrix in the IU-type linear algebraic equations. Many

articles have contributed to the analysis of the IU method and to applying the property to

several kinds of differential equations.

For the heat equation of constant coefficients, Pouit [8] constructed a Y-explicit and Z-

implicit IU-scheme, and Huang and Wu [7] constructed a class of weighted IU-schemes. The

objective of this work is to construct a new type of semi-implicit θ-schemes for the heat equation

with time-dependent coefficients which are monotonous increasing with respect to time. We

will study the stability of the new schemes and give the proof of the stability theorem.

2. Semi-Implicit θ-Schemes

We consider the one-dimensional evolution equation, i.e., the heat equation















∂u

∂t
− v(t)

∂2u

∂x2
= f, 0 < x < 1, 0 < t ≤ T,

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ T,

u(x, 0) = u0, 0 < x < 1.

(2.1)
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where v(t) expresses the time-dependent coefficients when t varies in [0, T ]. Suppose that v(t)

is increasing and bounded on [0, T ] with v(0) > 0.

At first, we discretize (2.1) by finite differences. By introducing the incremental unknowns

Um and the transfer matrix S (see, [4,7,8,11])

Um =

(

Y m

Zm

)

, S =

(

IN−1 0

G IN

)

,

where the N × (N − 1) matrix G = (gij) is given by gij = 0 except that gii = gi+1,i = 1
2 , we

can construct the IU-type θ-scheme ([6,9,13])

(

ST S + θ∆tvmST AS
)

(

Y m

Zm

)

=
(

ST S − (1 − θ)∆tvmST AS
)

(

Y m−1

Zm−1

)

+ ∆tST S

(

Fm
Y

Fm
Z

)

. (2.2)

If we have the basis (ϕp)p=1,2,··· ,2N−1 in R
2N−1, then the scheme (2.2) becomes

2N−1
∑

p=1

(1 + θ∆tvmλp)Um
p ϕp =

2N−1
∑

p=1

[(1 − (1 − θ)∆tvmλp)Um−1
p + ∆tFm

p ]ϕp.

Consequently, the solution of (2.2) can be written as

Um
p =

1 − (1 − θ)∆tvmλp

1 + θ∆tvmλp

Um−1
p +

∆t

1 + θ∆tvmλp

Fm
p .

It is easy to show that
1 − (1 − θ)∆tvmλp

1 + θ∆tvmλp

< 1

can be satisfied unconditionally. Note that since λ1 < λ2 < · · · < λ2N−1 and λ2N−1 ∼ 4
h2 , (N →

∞), we get the stability condition of (2.2).

Proposition 2.1. The stability condition of the IU-type θ-scheme (2.2) is as follows:

1) 0 ≤ θ < 1
2 , ∆t <

h2

2(1 − 2θ)v(T )
,

2) θ = 1
2 , unconditionally stable (it is the Crank-Nicolson scheme),

3) 1
2 < θ ≤ 1, unconditionally stable.

In terms of the incremental unknowns, the semi-implicit θ-schemes of (2.1) can be written as

ST S

(

Y m

Zm

)

+ θvm∆tST AS

(

Y m−1

Zm

)

= (ST S − (1 − θ)vm∆tST AS)

(

Y m−1

Zm−1

)

+ ∆tST S

(

Fm
Y

Fm
Z

)

. (2.3)

Since

ST S =

(

B GT

G IN

)

, ST AS =

(

A∗

2 0

0 2
h2 IN

)

, (2.4)
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B =













3
2

1
4

1
4

. . .
. . .

. . .
. . . 1

4
1
4

3
2













, A∗ = A∗

N−1 =













2 −1

−1
. . .

. . .

. . .
. . . −1

−1 2













, (2.5)

the scheme (2.2) can be written as



































BY m + GT Zm +
1

2
θ∆tvmA∗Y m = BY m−1 + GT Zm−1

− 1

2
(1 − θ)∆tvmA∗Y m−1 + ∆tBFm

Y + ∆tGT Fm
Z ,

GY m + Zm +
2

h2
θ∆tvmZm = GY m−1 + Zm−1

− 2

h2
(1 − θ)∆tvmZm−1 + ∆tGFm

Y + ∆tFm
Z .

(2.6)

The second equality above gives Zm explicitly in terms of Y m. Replacing Zm in the first

equality by the solution in the second one, we obtain the matrix to be inverted for computing

Y m:

M = B − h2

h2 + 2θ∆tvm
GT G +

θ∆tvm

2
A∗. (2.7)

We now proceed in the same way for the scheme (2.3). We solve Zm explicitly; then the matrix

to be inverted for solving Y m is

Ms = B − h2

h2 + 2θ∆tvm
GT G. (2.8)

We can show easily that the matrices M and Ms are both tri-diagonal and symmetric positive

definite. The condition numbers of the two matrices are, respectively,

cond (M) =
h4 + 4θh2∆tvm + 4θ2(vm)2∆t2

h4 + 4θh2∆tvm + 4θ2π2h2(vm)2∆t2
, (2.9)

cond (Ms) =
h2 + 2θ(2 − π2h2)∆tvm

h2 + 2θ∆tvm
. (2.10)

To obtain the inequality cond (Ms) < cond (M), we should let

2θ∆tvm[4(2π2h2 − π4 − 1)θ2(vm)2∆t2 + 2(h2 − π2h4)θ∆tvm + h4 − π2h6] < 0. (2.11)

Under the assumption that θ 6= 0, we find that it is sufficient to set

v(0)∆t >
(1 +

√
5)h2

4θ
, (2.12)

where vm is replaced by v(0) for N → ∞. Consequently, we get the following theorem.

Theorem 2.1. The matrix Ms in (2.10) is better conditioned than the matrix M in (2.9) if

v(0)∆t >
(1 +

√
5)h2

4θ
.
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3. Stability of the Semi-Implicit θ-Scheme

As in [7,8], we introduce (WY
p , WZ

p , WZ
N ) to set up a basis, where

WY
p =

(

(Wp)2j , j = 1, 2, · · · , N − 1

0

)

p=1,2,··· ,N−1

, (3.1)

WZ
p =

(

0

(Wp)2j+1 , j = 0, 1, · · · , N − 1

)

p=1,2,··· ,N

. (3.2)

Theorem 3.1. The necessary and sufficient condition for the stability of the scheme (2.3) is

as follows.

1. θ = 0 :
v(T )∆t

h2
<

1

2
,

2. 0 < θ < 1
2 :

v(T )∆t

h2
< min { 2θ

1 − 2θ
,

4θ

1 + 2θ − 8θ2
, g(N − 1), X1,

1

1 − θ
},

3. θ = 1
2 :

v(T )∆t

h2
< 1,

4. 1
2 < θ < 1 :

v(T )∆t

h2
< min {g(N − 1), X1,

1

1 − θ
},

5. θ = 1 :
v(T )∆t

h2
< min {g(N − 1), X1},

where the positive numbers g(N − 1) and X1 will be given in the proof.

Proof. To begin, we define the vector Ũm = S

(

Y m−1

Zm

)

. Then

Ũm = S

(

IN−1 0

0 0

)

S−1Um−1 + S

(

0 0

0 IN

)

S−1Um.

Owing to Um =
∑2N−1

p=1 Um
p Wp, Ũm and the basis (Wp)p=1,··· ,2N−1, we can write Ũm as

Ũm =

2N−1
∑

p=1

[

Um−1
p S

(

IN−1 0

0 0

)

S−1Wp + Um
p S

(

0 0

0 IN

)

S−1Wp

]

.

Hence, we have the scheme

2N−1
∑

p=1

Um
p

(

ST + θvm∆tST AS

(

0 0

0 IN

)

S−1

)

Wp =
2N−1
∑

p=1

(Um−1
p Tp + ∆tSTFm

p Wp), (3.3)

where

Tp =

(

ST − (1 − θ)vm−1∆tST A − θvm∆tST AS

(

IN−1 0

0 0

)

S−1

)

Wp.

We also set

Rp =

(

ST + θvm∆tST AS

(

0 0

0 IN

)

S−1

)

Wp. (3.4)
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It is easy to obtain matrices Rp and Tp as follows (see also [7,8])

Tp =































(Wp)2 · 2
(

1 − θvm∆tλp − (1 − θ)vm−1∆tλp

)

cos2 pπ
4N

(Wp)4 · 2
(

1 − θvm∆tλp − (1 − θ)vm−1∆tλp

)

cos2 pπ
4N

...

(Wp)2N−2 · 2
(

1 − θvm∆tλp − (1 − θ)vm−1∆tλp

)

cos2 pπ
4N

(Wp)1 · (1 − (1 − θ)vm∆tλp)

(Wp)3 · (1 − (1 − θ)vm∆tλp)
...

(Wp)2N−1 · (1 − (1 − θ)vm∆tλp)































,

Rp =































(Wp)2 · 2 cos2 pπ
4N

(Wp)4 · 2 cos2 pπ
4N

...

(Wp)2N−2 · 2 cos2 pπ
4N

(Wp)1 · (1 + θvm∆tλp)

(Wp)3 · (1 + θvm∆tλp)
...

(Wp)2N−1 · (1 + θvm∆tλp)































.

Therefore, the schemes (3.3) can be written as

2N−1
∑

p=1

Um
p

(

apW
Y
p + bpW

Z
p )

)

=
2N−1
∑

p=1

[

Um−1
p

(

cpW
Y
p + dpW

Z
p

)

+ ∆tFm
p

(

apW
Y
p + WZ

p )
)]

,

where

ap = 2 cos2
pπ

4N
, bp = 1 + θvm∆tλp, dp = 1 − (1 − θ)vm∆tλp,

cp = 2
(

1 − θvm∆tλp − (1 − θ)vm−1∆tλp

)

cos2
pπ

4N
. (3.5)

Note that

WY
2N−p = −WY

p , WZ
2N−p = WZ

p (p = 1, · · · , N−1), WY
N = 0.

The scheme (2.3) can be rewritten as

N−1
∑

p=1

[(

apUm
p − a2N−pUm

2N−p

)

WY
p +

(

bpUm
p + b2N−pUm

2N−p

)

WZ
p

]

+ bNUm
N WZ

N

=
N−1
∑

p=1

[(

cpUm−1
p − c2N−pUm−1

2N−p

)

WY
p +

(

dpUm−1
p + d2N−pUm−1

2N−p

)

WZ
p

]

+ dNUm−1
N WZ

N

+

N−1
∑

p=1

∆t
[(

apFm
p − a2N−pFm

2N−p

)

WY
p +

(

Fm
p + Fm

2N−p

)

WZ
p

]

+ ∆tFm
N WZ

N , (3.6)
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or in matrix-vector form























a1 −a2N−1

ց ր
aN−1 −aN+1

bN

bN−1 bN+1

ր ց
b1 b2N−1























Um

=























c1 −c2N−1

ց ր
cN−1 −cN+1

dN

dN−1 dN+1

ր ց
d1 d2N−1























Um−1 + ∆t























a1 −a2N−1

ց ր
aN−1 −aN+1

1

1 1

ր ց
1 1























Fm. (3.7)

To solve the linear system (3.7) from the row N , we have

Um
N =

1 − (1 − θ)vm∆tλN

1 + θvm∆tλN

Um−1
N +

∆t

1 + θvm∆tλN

Fm
N .

The sufficient and necessary condition for the corresponding amplificator
∣

∣

∣

1−(1−θ)vm∆tλN

1+θvm∆tλN

∣

∣

∣ to

be less than 1 is:

(i) 0 ≤ θ <
1

2
, ∆t <

h2

(1 − 2θ)v(T )
, or

(ii)
1

2
≤ θ ≤ 1, unconditionally stable.

The special structure of the system results in solving N − 1 systems of two equations with two

unknowns

{

apUm
p − a2N−pUm

2N−p = cpUm−1
p − c2N−pUm−1

2N−p + ap∆tFm
p − a2N−p∆tFm

2N−p,

bpUm
p + b2N−pUm

2N−p = dpUm−1
p + d2N−pUm−1

2N−p + ∆tFm
p + ∆tFm

2N−p.
(3.8)

Therefore, we find finally for p = 1, 2, · · · , N − 1,

Um
2N−p = γm

p

(

θvmvm−1∆t2λ2
p cos2

pπ

4N
+ θ2vm(vm − vm−1)∆t2λ2

p cos2
pπ

4N

)

Um−1
p

+γm
p Γm

p,1Um−1
2N−p − γm

p θ∆t2vmλp cos2
pπ

4N
Fm

p +∆tγm
p

(

1 + θvm∆tλp sin2 pπ

4N

)

Fm
2N−p,(3.9)

and

Um
p = γm

p Γm
p,2Um−1

p + γm
p

(

θvmvm−1∆t2λ2
2N−p sin2 pπ

4N
+ θ2vm(vm − vm−1)∆t2 sin2 pπ

4N
λ2

2N−p

)

Um−1
2N−p + ∆tγm

p

(

1 + θvm∆tλ2N−p cos2
pπ

4N

)

Fm
p − γm

p θ∆t2vmλ2N−p sin2 pπ

4N
Fm

2N−p, (3.10)
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where

γm
p =

[

1 +
4

h2
θvm∆t − 2θvm∆tλp cos2

( pπ

4N

)

]

−1

,

Γm
p,1 = 1 − (1 − θ)vm−1∆tλ2N−p − θvm∆tλp cos

pπ

2N
− θvmvm−1∆t2 cos2

pπ

4N
λ2

p

+θ2vm(vm−1 − vm)∆t2 cos2
pπ

4N
λ2

p,

Γm
p,2 = 1 − (1 − θ)vm−1∆tλp + θvm∆tλ2N−p cos

pπ

2N
− θvmvm−1∆t2 sin2 pπ

4N
λ2

2N−p

+θ2vm(vm−1 − vm)∆t2 sin2 pπ

4N
λ2

2N−p.

Eqs. (3.9)-(3.10) can be written as

{

Um
2N−p = aUm−1

p + bUm−1
2N−p + α,

Um
p = cUm−1

p + dUm−1
2N−p + β.

(3.11)

To localize the eigenvalues of the amplification matrix, we need to solve

P (σp) ≡ det

(

a − σp b

c d − σp

)

= σ2
p − (a + d)σp + ad − bc = 0,

namely, we need to find the roots of the following equation:

σ2
p − γm

p

(

Γm
p,2 + Γm

p,1

)

σp +
(

γm
p

)2 {

Γm
p,2 · Γm

p,1

−
(

θvmvm−1∆t2λ2
p cos2

pπ

4N
+ θ2vm(vm − vm−1)∆t2λ2

p cos2
pπ

4N

)

·
(

θvmvm−1∆t2λ2
2N−p sin2 pπ

4N
+ θ2vm(vm − vm−1)∆t2 sin2 pπ

4N
λ2

2N−p

)}

= 0. (3.12)

Because sin4 pπ
2N

cos2 pπ
2N

(

cos2 pπ
2N

− 1
)

< 0 holds true unconditionally, by direct computa-

tion, the necessary and sufficient condition of stability for our scheme can be written as: the

minimum point of P (σp) is between −1 and 1, P (1) > 0 and P (−1) > 0.

(i) The Minimum Point of P (σp) between −1 and 1. The minimum of P (σp) is obtained at

σmin =
1

2
γm

p

(

2 − 4(1 − θ)vm−1∆t

h2
+

4θvm∆t

h2
cos2

pπ

2N

−θvmvm−1∆t2λpλ2N−p + θ2vm(vm−1 − vm)∆t2
4

h4
sin2 pπ

2N

)

.

It is evident that σmin < 1.

As for the condition σmin > −1, it is equivalent to

2 − 4(1 − θ)vm−1∆t

h2
+

4θvm∆t

h2
cos2

pπ

2N
− θvmvm−1∆t2λpλ2N−p

+θ2vm(vm−1 − vm)∆t2
4

h4
sin2 pπ

2N
+ 2

(

γm
p

)

−1
> 0. (3.13)

Let us denote the left-hand side of the inequality by Q(vm−1). Then

Q′(vm−1) = −4(1 − θ)∆t

h2
− θ(1 − θ)vm∆t2

4

h4
sin2 pπ

2N
< 0.
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So, Q(vm−1) is decreasing about vm−1. Replacing vm−1 by vm in (3.13), we obtain that

2 − 4(1 − θ)vm∆t

h2
+

4θvm∆t

h2
cos2

pπ

2N
− θ(vm)2∆t2λpλ2N−p + 2

(

γm
p

)

−1
> 0. (3.14)

Denoting X = vm∆t/h2 > 0, we obtain the above condition with the help of a polynomial

Qp(X):

Qp(X) = θ sin2 pπ

2N
X2 −

(

1 + 2θ cos2
pπ

2N

)

X − 1 < 0.

Its discriminant is δ = 1 + 4θ + 4θ2 cos4 pπ
2N

> 0, so the condition Qp(X) < 0 is realized if and

only if

X <
1 + 2θ cos2 pπ

2N
+

√

1 + 4θ + 4θ2 cos4 pπ
2N

2θ sin2 pπ
2N

=: g(p).

It is easy to see that g(p) ≥ g(N − 1), ∀p. At last, the necessary and sufficient condition for

σmin > −1 can be written as

v(T )∆t

h2
<

1 + 2θ sin2 π
2N

+
√

1 + 4θ + 4θ2 sin4 π
2N

2θ cos2 π
2N

= g(N − 1), (3.15)

with limN→∞ g(N − 1) = (1 +
√

1 + 4θ)/(2θ).

We point out that if θ = 0, then we have σmin > −1 absolutely.

(ii) The Condition P (1) > 0. Let be σp = 1 in (3.12). We get

∂P (1)

∂(vm−1)
=

(

γm
p

)2
[

8

h4
(1 − θ)2∆t2vm−1 sin2 pπ

2N

+
8

h4
θ(1 − θ)∆t2vm sin2 pπ

2N
+

16

h6
θ2(1 − θ)∆t3(vm)2 sin2 pπ

2N

(

1 + cos2
pπ

2N

)

+
16

h6
θ(1 − θ)2∆t3vmvm−1 sin2 pπ

2N

(

1 + cos2
pπ

2N

)

]

> 0. (3.16)

Note that P (1) is increasing about vm−1. Since both inequalities vm−1 > 0 and

P (1)|vm−1=0 = h−4θ2(vm)2∆t2
(

γm
p

)2
[

4 sin2 pπ

2N
+ 8θ vm∆t

(

2 sin2 pπ

2N
− sin4 pπ

2N

)]

> 0,

are unconditionally satisfied, so we have P (1) > 0 unconditionally.

(iii) The Condition P (−1) > 0. Taking σp = −1 in (3.12) we get, based on 0 < vm−1 ≤ vm, that

vm ∂P (−1)

∂(vm−1)
≤

(

γm
p

)2
[

−(1 − θ)∆t
8vm

h2
− 8

h4
θ(1 − θ)∆t2(vm)2

(

2 + 2 cos2
pπ

2N

)

+
8

h4
(1 − θ)2∆t2(vm)2 sin2 pπ

2N
+

16

h6
θ(1 − θ)2∆t3(vm)3 sin2 pπ

2N

(

1 + cos2
pπ

2N

)

]

. (3.17)

Setting X = vm∆t/h2, then the proof of the inequality ∂P (−1)/∂(vm−1) < 0 is equivalent to

that of the following inequality:

2θ(1 − θ) sin2 pπ

2N

(

1 + cos2
pπ

2N

)

X2 +
(

sin2 pπ

2N
− 3θ − θ cos2

pπ

2N

)

X − 1 < 0.

The left-hand side of the above inequality attains its maximum at P = N . Letting P = N and

N → ∞, we get 2θ(1− θ)X2 +(1− 3θ)X − 1 < 0. Therefore, P (−1) is decreasing about vm−1,

while 0 < X < 1/(1 − θ).
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Now, we replace vm−1 by vm in P (−1), and denote this new equality by P0(−1):

P0(−1) = 1 + γm
p

(

1 − (1 − θ)vm∆tλp + θvm∆tλ2N−p cos
pπ

2N
− θ(vm)2∆t2 sin2 pπ

4N
λ2

2N−p

+1 − (1 − θ)vm∆tλ2N−p − θvm∆tλp cos
pπ

2N
− θ(vm)2∆t2 cos2

pπ

4N
λ2

p

)

+
(

γm
p

)2
{(

1 − (1 − θ)vm∆tλp + θvm∆tλ2N−p cos
pπ

2N

−θ(vm)2∆t2 sin2 pπ

4N
λ2

2N−p

)

·
(

1 − (1 − θ)vm∆tλ2N−p − θvm∆tλp cos
pπ

2N

−θ(vm)2∆t2 cos2
pπ

4N
λ2

p

)

− θ2(vm)4∆t4λ2
pλ

2
2N−p sin2 pπ

4N
cos2

pπ

4N

}

. (3.18)

Naturally we have P0(−1) < P (−1), so P0(−1) > 0 implies P (−1) > 0.

Let us replace P0(−1), vm∆t/h2 and cos2(pπ/2N) by ΦX(y), X and y, respectively, and set

σp = −1 in (3.12). We obtain that

ΦX(y) = (4θ2X2 − 2θX3 + 4θ2X3)y2 +
[

(8θ2 − 2θ − 1)X2 + 4θX
]

y

+2θ(1 − 2θ)X3 + (4θ2 − 6θ + 1)X2 + (4θ − 2)X + 1. (3.19)

If θ = 0, the condition of P0(−1) > 0 is guaranteed by X < 1
2 . If θ 6= 0, we have generally

Φ′

X(y) = (8θ2X2 − 4θX3 + 8θ2X3)y + (8θ2 − 2θ − 1)X2 + 4θX

and

Φ′′

X(y) = (8θ2 − 4θ)X3 + 8θ2X2.

It follows that

(1) 1 ≥ θ ≥ 1
2 : Φ′′

X(y) ≥ 0 hold true unconditionally,

(2) 1
2 > θ > 0 : if X ≤ 2θ

1 − 2θ
, i.e.,

v(T )∆t

h2
≤ 2θ

1 − 2θ
, then Φ′′

X(y) ≥ 0.

Hence, we know that Φ′

X(y) is increasing. Therefore, the inequality

Φ′

X(0) = (8θ2 − 2θ − 1)X2 + 4θX > 0

implies Φ′

X(y) > 0 . It is now easy to find that

(1) 1 ≥ θ ≥ 1
2 : Φ′

X(0) > 0 are satisfied unconditionally,

(2) 1
2 > θ > 0 : if X ≤ 4θ

1 + 2θ − 8θ2
, i.e.,

v(T )∆t

h2
≤ 4θ

1 + 2θ − 8θ2
, then Φ′

X(0) > 0.

That yields the conclusion that ΦX(y) is increasing. We can get ΦX(y) > 0, provided that

ΦX(0) = dX3 + eX2 + fX + 1 > 0,

where d = 2θ(1 − 2θ), e = 4θ2 − 6θ + 1, f = 4θ − 2. In particular, if θ = 1
2 , then ΦX(0) > 0

holds true with X < 1.

Now we suppose that θ > 1
2 . Note that ΦX(0) has a positive root

X1 = K
1

3 − 3fd− e2

9d2K
1

3

− e

3d
,
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with

K =
9fed− 27d2 − 2e3

54d3
+

√

12f3d − 3f2e2 − 54fed + 81d2 + 12e3

18d2
.

Therefore, we know that if X < X1 and ΦX(0) > 0 hold true. Then the condition for P (−1) > 0

reads,

(i) θ = 0:
v(T )∆t

h2
<

1

2
,

(ii) 0 < θ < 1
2 :

v(T )∆t

h2
< min

{

4θ

1 + 2θ − 8θ2
,

2θ

1 − 2θ
, X1,

1

1 − θ

}

,

(iii) θ = 1
2 :

v(T )∆t

h2
< 1,

(iv) 1
2 < θ < 1 :

v(T )∆t

h2
< min

{

X1,
1

1 − θ

}

,

(v) θ = 1:
v(T )∆t

h2
< X1.

This completes the proof of Theorem 3.1.
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