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Abstract

Recently, Wei in [18] proved that perturbed stiff weighted pseudoinverses and stiff
weighted least squares problems are stable, if and only if the original and perturbed co-
efficient matrices A and A satisfy several row rank preservation conditions. According to
these conditions, in this paper we show that in general, ordinary modified Gram-Schmidt
with column pivoting is not numerically stable for solving the stiff weighted least squares
problem. We then propose a row block modified Gram-Schmidt algorithm with column
pivoting, and show that with appropriately chosen tolerance, this algorithm can correctly
determine the numerical ranks of these row partitioned sub-matrices, and the computed
QR factor R contains small roundoff error which is row stable. Several numerical exper-
iments are also provided to compare the results of the ordinary Modified Gram-Schmidt
algorithm with column pivoting and the row block Modified Gram-Schmidt algorithm with
column pivoting.

Mathematics subject classification: 65F20, 65F35, 65G50.
Key words: Weighted least squares, Stiff, Row block MGS QR, Numerical stability, Rank
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1. Introduction

In this paper, we use the following notations. R™*" is the set of all m X n matrices with
real entries, R7**" is a subset of R"*™ in which any matrix has rank r. For a given matrix
A, AT is the transpose of A. I and 0 respectively denote the identity and zero matrices with
appropriate sizes, e is the kth column of the identity matrix I,e = [1,---,1] is a vector with
appropriate size, ||| = ||-]|2 is the Euclidean vector norm or corresponding subordinate matrix
norm. The line over a quantity is the corresponding a perturbed version.

We are concerned with the numerical computations of the stiff weighted least squares (stiff
WLS) problem

min
TER™

W (Az = b)|| = min||D(Az - b)]|, (1)

where A € R™*™ b € R™ are a known coefficient matrix and observation vector, respectively,

and
1 1 1

D = diag(d117 d227 e 7dmm) = diag(wfl, w252, U ;w%m) = W% (2)

* Received April 18, 2005; final revised December 23, 2005; accepted June 29, 2006.



596 M. WEI AND Q. LIU

is the weight matrix in which the scalar parameters di,--- ,d,, vary widely in size. The stiff
WLS problem (1) is widely used, e.g., in electronic networks, certain classes of finite element
problems, the interior point method for constrained optimization (e.g., see [12]), and for solving
the equality constrained least squares problem (e.g., see [1, 13, 14]),

min |Kz —g| s.t. Lz =h,
IG?R"

(%) ()

. 1 . .
where 7 is a large parameter; one usually chooses 7 ~ u~2 with u the machine roundoff unit.

by the method of weighting,

min
T

)

The upper bound and the stability of weighted pseudoinverses and WLS problems are very
important subjects in areas like numerical linear algebra and optimization, especially after the
appearance of the famous paper of Karmarkar [8] which introduced the interior point method
for solving optimization problems. The authors of [11, 10, 15, 16, 6] studied the supremum of
the weighted pseudoinverses.

Wei [15, 16], Wei and De Pierro [19] proved that when W ranges over D that is a set
of positive definite diagonal matrices, the perturbations are stable to weighted pseudoinverses
AI/V = (W%A)TW% and corresponding WLS problems, if and only if any rank(A) rows of the
matriz A are linearly independent.

In practical scientific computations, the above condition is too restrictive to hold, and the
weight matrix W is usually fixed and severely stiff. In [17], Wei found that the stiff weighted
pseudoinverse is close to a related multi-level constrained pseudoinverse ATC and the solution
set of Eq. (1) is close to a related multi-level constrained least squares problem. Based on this
observation, Wei [18] derived the stability conditions of perturbed stiff weighted pseudoinverses
and stiff WLS problems.

Without loss of generality, we make the following notation and assumptions for the matrices
A and W.

Assumption 1.1. The matrices A and W in Eq. (1) satisfy the following conditions: ||A(Z,:)||

have the same order for it =1,--- ,m, wy > ws > -+ > wg >0, my +mo + -+ +mg =m, and
we denote W = diag (w1 I, , Walmy, - Wilm, ),
Ay my Ay
A= : : 70].: : , j=1,--- Kk,
Ak myg Aj

and assume
0<e€j=wi/w; <1, for1 <j<i<ksoe= Eaxk{ej“’j} < 1.
<J<
We also set
Po=1I, Pj=I1-ClC;, rank(Cj)=r;, j=1,--- k.

With above mentioned matrices A, A;, C; and the parameters ¢;;, denote A, Zj, 6]-, € as
the perturbed versions of A, A;, C;, €;;, respectively. Then Wei (in Theorems 3.1-3.5, 4.1-4.2
of [18]) proved the following results.
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Theorem 1.1. Suppose that A and W are given matrices satisfying the notation and conditions
in Assumption 1.1. Then perturbed stiff pseudoinverses and perturbed stiff WLS problems are
stable, if and only if

rank(C;) = rank(C;) =r;, j=1,2,--- k. (3)
o 1. If the conditions of Eq. (3) hold, and E - HALVH <1 with

ve

= . T . .
B = |A] + Al - I1BI] - |7 | max [ 4.Q
1
PR, Al +2vV2|| 4 - ||CTsC;
i) 12 (164 + 2v21 4] - 1650851
where
v = o o =l e

then we have the following estimates:

il < il
1—E- | Al
2 1= E-[| Ay

e 2. Ifrank(A) < min{m, n} and we allow

rank(A4) > rank(A4),
then for any value 0 < & < 1, there exists a perturbed matrix

A=A+6A

satisfying ||0A|| = &, rank(A) > rank(A), such that

and ||AL, — Al | >

i 1
Ay || > =
[Aw | = > ¢

Al

e 3 Let M; = Z§‘=1 m;. We enforce the condition rank(A) = rank(A) < min{m,n}, and
suppose that there exists an integer i with 1 < i < k, such that

rank(C;_1) = M;_1, rank(C;) < min{M;,n} <n.
Let 1 be the largest integer satisfying k > 1 > i and
rank(Cj_1) < n,rank(C;) = n.

If we allow

rank(C;) > rank(C;),
then for any value 0 < £ < 1, there exists a perturbed matric A = A+ §A satisfying

I0A|l = ¢, rank(A) = rank(A) = n, such that

—t ¢ —t n ¢
Al —> A Al > S
lAwllz > €5 aen [Aw — Ayl = 5 aen

where a > 0 is a constant independent of &.
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Based on the above stable conditions for perturbed stiff weighted pseudoinverses and stiff
WLS problems, we propose a numerically stable row block modified Gram-Schmidt (MGS)
algorithm with column pivoting. We show that with appropriately chosen tolerance, this algo-
rithm can correctly determine the numerical ranks of these row partitioned sub-matrices, and
computed QR factor R contains small roundoff error therefore is also row-wise stable.

Notice that for the MGS, one needs to perform column pivoting to ensure that the algorithm
can correctly determine the numerical rank of the matrix A and has backward roundoff stability
[2, 3, 4]. On the other hand, from the stability conditions mentioned in Eq. (3), it is not enough
only to perform column pivoting for numerical stability when solving stiff WLS problem Eq.
(1). To see this, let us consider the following example.

Example 1.1. Suppose that

-4 2 =3 -9
A= ;l . b= ‘11 , D = diag(1,1,1072,d).
1 - 4

Then rank(A4) = 3, and the unique WLS solution is xw s = [-3.8, 0.8, 8.6]7.
In the numerical computations, we use the MGS method with column pivoting, and take
d =107 with j =0, -2, —4, —6, —8, —10.

Table 1.1. Numerical results for different j
J 0 -2 -4 -6 -8 -10
|6zwrs|| 1.78e-15 2.04e-14 2.1de-11  1.22e-6 2.0le-3  2.0le+1

From Table 1.1 we see that the ordinary MGS with column pivoting is numerically unstable,
because rank(A(1 : 2,:)) = rank(A(1 : 3,:)) = 2, so with probability one, perturbed rank(A(1 :
3,:)) = 3 which violates the stability conditions in Eq. (3). Therefore, for this example the
ordinary MGS with column pivoting is not enough for numerical stability in solving stiff WLS
problem Eq. (1).

In this paper we will study situations similar to the above example, and propose a numerical
stable row block MGS algorithm with column pivoting under Assumption 1.1.

The paper is organized as follows. In §2 we review some basic results for the ordinary
MGS with column pivoting; in §3 we propose a numerical stable row block MGS algorithm
with column pivoting for solving stiff WLS problem (1); in §4 we provide the roundoff error
estimates of our new algorithm; in §5 numerical results of several examples are shown to verify
the goodness of new algorithm and the roundoff error estimates in §4.

2. The MGS with Column Pivoting (PMGS)

In this section we first review some well-known results of the MGS with column pivoting
(PMGS). The detailed description for the PMGS can be found in [9, 3, 7].

Suppose A € R7**"™ then the PMGS start with A = A R = O,, and then a sequence of
matrices A®) ... | AT+ will be computed, where AT+t (:1:7) = Q, ATtV (:,r +1:n) =0
and A®) has the form

AP =10, - ,07%(;“)7... La®)], (4)
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where the first (k — 1) columns of AWMTI, are generally used to store the known qi,--- , gr—1

for storage saving, Ilj is a permutation such that ||a§€k) | = max;>g ||a§-k) I, then compute g as
k

i = llag |, ae = al fri, (5)

and orthogonalize a( )(] > k) against

rej = g a(k), a§k+1) _ agk) —Thjqr, j=k+ 1, 0. (6)

After r steps, with I = II; - - - II,,, Q1 = (q1,- - ,¢r), R1 = R(1 : r,:), we obtain the factorization
All = Q1 Ry, and the columns of (Q; are orthogonal by construction.
Bjorck and Paige [3, 4] pointed out that the PMGS of A is numerically and mathematically

equivalent to performing a sequence of Householder transformations on (ZH) Denote

@@(i:),RmOmmDﬂl

Then the k-th step of MGS of AIl is equivalent to the following Householder transform:
G = PG, P, =1 —vpof,
—_e (k) 7
Vi = * y 4k = a(k) ( )
dk I

Thus, after r steps, with P = P, Py --- P, Il = II11I, - - - II,, we have the factorization

Oy, R
=P
where R = ( o, 17 ) € R'*" is upper trapezoidal R-factor.

3. The Row Block PMGS Algorithm

Although the PMGS is row-wise stable, in general it is not numerically stable for solving the
stiff WLS problem Eq. (1), as mentioned in §1 and Example 1.1. In order to ensure numerical
stability of an algorithm for solving the stiff WLS problem, we need to keep

rank(éj) = rank(Cj)ﬂ for j = ]-7 2; e aka

in the numerical computation. The following row block MGS algorithm with column pivoting
(the RBPMGS algorithm) is stable for solving the stiff WLS problem (1).

Before presenting the RBPMGS algorithm, we first review the MMGS method, which is the
slight modification of the ordinary MGS.

For A € R7*" and A = A, let R = O,,, then at the kth step of MMGS, compute

k k k
rie = a2, ar = o frige, iy = qFal?,

(8)
k+1 k k k k k
ij ) (agj) Z(az(‘k)) ( ) Za( ) )) /Tkkv s=1:m,

i#£Ss

where the last equality is equivalent to the second equality of (6) in the accurate arithmetic.



600 M. WEI AND Q. LIU

Algorithm 3.1: RBPMGS Given matrix A € R™*", b € ™, and weighting matrix
D satisfying Assumption 1.1, in which rank(C;) = p; for j = 1,--- ,k. Choose tolerances
m>0forl=1,2,--- k.

o Step 1. Set A :=[A,b], take C; = dj A1, evaluate the p; times PMGS of Cj:

R =[ RY R =@,
141 1 1+1
Cf;v-i-)::( (1)’0(;04-))’

where
R(l) c §R;v1><(n+1), le) c %mlxpl, [le)]Tle) -7

p1»

and I is a permutation matrix (do not permute the last column), such that

Rﬁ)(lv 1) > Rﬁ)(272) > > Rﬁ)(pl,m) > dym,
ICPHV ) <dim, G=pi41,-n

Set A := AW,
o Step 2. For l =2:k, set
RU=D) Di—1
cl.( L > e (9)
Perform p;_1 times MMGS without column pivoting on Cj :
Fo=(RY RY ) =1QV1C
ri_1+1 l ri_1+1
Cl( l )= (Qg),Cl(Ql ))7

where
él c §szf1><(n+1), Q(ll) c R(;Dl—ﬂrml)><pl,17 [Q(U]TQU)

Pl 1°
e Continue performing p; — p;—1 times PMGS on C’l(Qpl’l-’_l):

R(l) — [ l)]Tc("‘l—l-‘rl)H(l)

ri+1 1) ri+1
C( 1), (Q( 2 7 l(31+ )),
where
(l) € RPr—pi-1)x(ntl-pi_1) Qél) € RPi—aitm)x(pr—pi1)
and [Qél)]Tle = Iy —p_,, IV is a permutation matrix (do not permute the last

column), such that

Rélz)(L 1) > 352(272) > > Rglz)(l?l — pi—1,P1 — Pi—1) > dymi,
ICPIC N <dimy, j=pi41,--m

Set

l l
A= ATV RO .— R%f R%Q) Pi—1 '
’ 0 RY | pi—pi

e If [ < k goto Step 2.
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We give several remarks on Algorithm 3.1.

Remark 3.1. The tolerances 7; are chosen to correctly determine the numerical ranks of
forl=1,2,---,k. We will explain in the next section how to choose proper 7;.

Remark 3.2. We assume that dy > --- > dj, so from Lemma 4.1 in the next section, we see
that
i—1+1 — . i .
1COF =) = all ROV (it + 12 pis )| = o RO (i1 +1: 1, )

fort=1:1—1, where a ~ 1. On the other hand,
ROy +1,pi1 +1) > RD(piy +2,p;m1 +2) > - > RO (py, py),

and therefore in the Step 2 of Algorithm 3.1, there is no need to interchange columns during
the first p;_1 times MMGS method.

Remark 3.3. After performing Algorithm 3.1, we obtain a linear system of consistent equations
RO 1: )T (;,1:n)e = RP(;,n+1),

where II = TIW ... TI®) and when r = n, R(k)(:, 1 : n) is upper-triangular and nonsingular;
when r < n, R(k)(:,l : n) is upper-trapezoidal and has full row rank r. There are standard
algorithms to solve the above system, see, e.g., [7]. Here we omit the details.

4. The Roundoff Error Analysis for Algorithm 3.1

In this section we provide the roundoff error estimates for Algorithm 3.1. We show that if
the number of row blocks £ is not too large, then with properly chosen tolerances n;, Algorithm
3.1 is backward row-wise stable and can correctly determine the numerical ranks of C; for
l=1,--- k.

4.1. Notation

Let D=W3 = diag(di Iy, dolpmy, -+ o dilm,), €q = (d;/d))* < 1fori >l and A, Cj,b take
forms as in Assumption 1.1. Let m = my +ma +--- +my, po = 0,rank(C;) =p;, j=1,--- , k.

Suppose that IT is the permutation matrix taking account of the overall column interchanges
during the RBPMGS algorithm of DA. Denote

Agl) mi b1 Agl)
A = AT = ; ; b=| ol = ; , j=1:k (10)
A,(cl) mg bi; A;U

Let (R{, z{) be a null matrix, and

O, 0
O 0
1 1 _ n d d
( Y[EJ) w[(a) ) = < ) W ) = R[é—lu Fle—a |
0] ] dgA; ) by
(t+1) (t+1)
Rd(t+1) 4G+ Ri] Z[i] (11)
( Y(t+1) (t+1) ) _ ) Z[e] _ Rd(t+1) 4+
(6] Wiey —\ pt gy )= e -1 e - 2 )
€] (€] dzAEH ) dgb,(er )

[R%Hl)’zd(wl)] c éR;zx(nJrl)’ ].—‘[([t]+1)(:,1 : t) —0, 1<t<py,

[
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for £ = 1,---,k, where [Y(Hl) [(Z]H)] is accurately computed from [Y[g]l) w[(el])] via min{¢,

pe—1} times MMGS and max{t — pg_1,0} times MGS of [F(l ,g ], and [R{, z [Rd(pﬁl)

(e [e]
dPet1) nx(n+l) .
1] ] € §Rm

Y

is the corresponding upper trapezoidal R—factor taking the form

diRy ARy - diRy dizl
BRE R g
(Rip [e)ED[eJ (R, 210)) = : : ; (12)
0 dﬁR[Ze’f dezf,
On_p, O

where
Di = diag(dily,, -, delpy—py 1y In-p,), djR} € RPs=Pi=1)x@i=pi=0)

are nonsingular
Let R , Ry, (T []),g i )s -+ be the computed versions of Rd Ry (I‘(t),g(t)) -+, Write

RS]) = ((E[ ])(t)) (t) = ((T, )(t)) For{ =1:k,t=1:psi=1:n;+me, where ny =0, and

n; = n; otherwise, deﬁne

¢ T\ £ g
st = mauc|C)"lle, 4 = 1588z
w0 = () 0 _ ()
@ *15?;3'@ )|’ N (Gi)i”:
Rfy _
= s, )
¢ = max{1, > mox  max, (Vt /St 2 (13)

_ 1 (0) . (0)
G = maxll, G, e 040/

14
= .H2p12‘5a Ry = H S’i . )
=

¢
- _ i = 1,4)
ooy = 191%1&),{]'21' H(Aé H27 Ty = 11;[2 max{1, L (B 1)) I

where the s (t j) satisfy

d (Rd) .
m ti) =1, S £, j) =

. ! L
sffl“ ) = det((Rm)(till i k,t +2—i: tJ))’ P9k
hUO(Rg])t_h,t_h

Furthermore, we assume

> oni@) =0, J[nrG) =1, ifs>t,

=5
where h(7) is an expression in 4.

R ., R
Remark 4.1. In (13), S, " can be replaced by SR[”, since vi_;41 = (1) 1s; (¢, 4), for

i =1:t solve the equation: R%(1:¢,1:t)v = R4

o (1 :t,7). Pre-multiplying D;;' on the two
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sides of the equality yields
Ry(1:¢,1:t)v=Ry(1:1t,7),

- . RE Ry, -
which is equivalent to s, " (¢,4) = s, " (¢, J)-
Remark 4.2. When the number of row blocks & is not too large, then we see from Theorem

4.1 that the computed R[z] contains small roundoff errors, and

> min{p¢—1+1,p:}
(Ru)in ~ Z (Ruw)3;s 1<h<p, j=h,
i=h

Rd
where t is an integer satisfying p;—1 < h < pq; thus s; "(t,j) are generally of unit order, as
mentioned in [20].

4.2. The forward roundoff errors of the RBPMGS algorithm

We first discuss the forward roundoff errors of the RBPMGS algorithm. We have studied
the forward roundoff errors of the PMGS for a single matrix A; in [20]. From now on we assume
that k£ > 2 in Assumption 1.1.

The following lemma explains why the MMGS is needed in the RBPMGS algorithm.

Lemma 4.1. Let €31 = (do/d1)?, Rﬁ] =diRy € ?)‘EZIX",FS]) be defined as (11), and

ypi+l) ng2)...p2(2)p1(2)y(1)
Rd(p1+1) d1R[(§1+1)
- < F[(211’1+1) )E RV
(2] do(Ag)Prt1)

be obtained from YV = 0{1‘) via p1 times accurate MGS without column pivoting. Then for
Lloj

l= ]-7 T D1y

| (Rie) 7l = (1R ll2(1 + Olean)), G =1:m;
141

(Re)fp ™ = (Ruin (1 + Olean), h>1;
(o)™ = Oear), i <1j>1+1;
(

A = ()0~ G+ Ofean) (42) (1)

—~

= (P =Y Ea s o)
7 = (B "

Proof. Using the invariance of the 2-norm under orthogonal transformations, we obtain

141 i+1
dil|(Re)P V2 = dill(R)Y TV
1) N2 = dill(Rpy)jll2(1 + Oean)).
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We now prove the remaining part of (14). When [ = 1, then for j = 2,--- ,n, we have

) Ty
ESIIE
B (R (Rio)un + d3(42)" (Az) )
(3 (R)3, + d311(A2)V]13)
d3(Ri)11 (Rp)1n (1 + Olean))
di(Rpy)11(1+ O(ear))
= di(Ry)in(l + O(e21)),

1
di(R) Y =

=

15 15
nr 1
— )W (D) (Fm);)(r )V
= 1)1 — (21)11
S (1]

1 (R | (A1 = (R (o) (42))")
& (Ry))3, + d3]|(A2) V13
(Ru) 11 (A2)$7 13 — (Ri)1a(A2)1) (A2)8

= dje (14 O(ea1))
v (Rt ( (en

= O(d1€21)a

and

HT 1
d5(A9)? = dy(49) V) — A (R (R + d%(“b)g ) (A2)§' )
’ ’ d3(Rp)?, + 3 (A2) 1|13

= () — o1+ Ofea)) ()

do(A2){V

Thus (14) holds for I = 1. Assume that (14) holds for 1 <1 < s. Then for [ = s, we obtain

(s)
s di(Rp
(Fm);l) = 1( : ])(Z) 3 h Z S,
da(Az);,

where
(R = (R s Ra) s RS (R 0.+, 0)7,

and (R[I])Ez) = O(e21),i=1,---,5—1 by assumption; and for i > s and all j, (R[I])E;) = (Ry))ij
since Ry, is upper trapezoidal. Thus

i) = Lo L)
1) 2
O(dea) + d3(Rin)ss (s + d3(A2)8) (Ag)L
(O(d3e2) + d3 (Ri))2, + d3 | (A2)8[3)
= di(Ry)sn(1+ O(en)),

N
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and for i <s, j > s+1,

. . g )P T
di(Ry)i; ™ = (D)5 = (T - ————;—4mw2=wam>
()7 13
s s (F[2]) 5) (FP])(S) s
di(Rp)5T = o) = (00) ) — 5 2T
() m
s)

_ (R 10473 — (Fin)od (A2)s” " (42){} + O(didBean)
B (Ri)” + d3(A2)7 3 + O(dBen)

Ry)s; Az SS) 5 — (Rpy)ss(As2 gs) A (=)
(Rixp)sill (A2)s” 13 (R[(l])[;») (A2)s" (A2); (11 Olenr)) = O(dreas).

(0 Oden) + B (Ruy)ss(Rin)sy + d3(A2)” (A)]”
! O(dgen) + d3(Rpy)2, + d3)|(A2)8” |13

=di€en

da(A2) T = dy(A)

J

d2(A2)Y

B(4) - $320+amDM%$
2(A2)SH) — g[“ ™ (14 O(ea1))(A)\M.
h=1 1 1

Thus (14) holds for | = s. By induction, we see that (14) holds for [ =1,2,--- ,p;.

From Lemma 4.1 we see that, when

dy < di, 1§l§p1, q = (Fp] /H( [2]) ||2Nela

(1+1)

and therefore if we orthogonalize (I', ]) - against g; during the floating point arithmetic of the

)(-‘r)

MGS, then cancellation will arise in the computation of (I )i

digits of (I';y )( 1) We can avoid this by the MMGS method.

Using the same technique as in Lemma 4.1, we can prove the following lemma.

, and reduces the significant

Lemma 4.2. Let ¢;; = (d;/d;)? < 1 fori > 1, and

Rd
(1) _ e—-1
Ly’ = ( eAél))

be defined as (11), where
R[Cff— 1= Dy yRy -y

takes the form of (12). Suppose that Rfﬂ] = D, Ry, is the upper trapezoidal R—factor accurately
computed from I‘[(,_}]) via pg—1 times MMGS and py — pe—1 times MGS. Set

r.)®
qt:([#)t’ M, = —thtT7 t=1:pe,

t
T2
v—1+th 1
F[(Z])} 1tin) = Mph71+tn—1 o 'MQMlF[(e])v
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forh=1:4—1,t, =1:pp —pnh_1. Then

O(dsel,s)a 1 < 1< Ph—1+ tha 31 <s< h st Ps—1 < 1 < Ds;

(R[ifu)ijv Ph—1+itp <1< ppq,
(F[Z])(p;L71+t;L) _ 0, o1 <i<n,
*J Ph—1t+tp—1 66(R ) ) o
*dé MAZ 4l n<z§n+m4
; (R[z - 1])ll ( )ll ’
(15)

where ﬂf =14 O(er,s), and s is an integer satisfying ps—1 < 1 < ps. Moreover,
(Rie)pn_s+tnd = (R - 1)pnsttnt = = (Bp)pp_s 40t @~ 1 (16)

forl > pp_1+ty, and if we let

2 =Dy yn, 2Pt — My, g1 MazW,
where ngl) ~u, fori=1:pe_1; and ngl) = 0 otherwise, then
O(dseé,s)a 1 < 1< Ph—1+ tha 31 <s< h st Pps—1 < { < Ds,
Zi(l), Ph—1+tn <t < pe_q,
ZPnetin) 0, peo1 <i<m, (17)

Ph—1t+tn—1 gn(l) o

—dy #(Ag)il , n<i<n+my.

Z=Z1 (R[ef 1])” :

Based on the above lemmas, we now study the forward roundoff errors of the RBPMGS
algorithm.

Theorem 4.1. Define j, = min{j, h}, and under the notations in (10)—(13) consider the
RBPMGS of (DAY, Db) without column pivoting. If

~ 1
’)’m?}gn) (R[l])ll < (R[l])Pl,PU

~ 4
Ty ey 08 [(Fig)ig| < (B for £=2:F,

then we have the following estimates:

g7 ~ (k)
|(R[f])Ph71+th7j - (R[f])Ph,71+th,,j| < ’Ym(z)t,“e 19‘?;1%]‘21 |(R[£])ij|a

il —1+t v—1+th ~ J(h
[T = @) s < Ay |_max [(Ria)il, 18)
i =0 <iSpms
|Zia)on—s+tnd = Ga)nosrinal < Tmty G| _max  |(Rig)igl,
SUSPhJ 20

G )Pho1tin - 5 g
@) #) — (g) Pl < Ay e, _max (Rl

forh=1:4¢, andtp, =1:6n¢+ pn — pr—1, where 6p¢ =1 for h ={; o, 0 = 0 otherwise, and
~n) _ ) Upn —Pr-1—s+ 1)0‘5(jph, *Ph—l)o's(#h*l)Pme’fm é11)7 h=1:4-1,
(pe—1 + 5)2'577[4 — g YR ;S;ll)a h=1¢,

¢(11) =1, ¢l(1) = min{Sf“]lZs, 2l —1} for 2<1<p.
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Proof. Since the proof is lengthy, we outline the proof in the following steps.
Step 1. For l=1:pp,j=1:n,let

! = l l -5 o~ AL
€)= T — @)W, My=1—qql, Mi=1-gal,

where
l ! ~ = l = l
a =T /NT) 2@ = TP /1 Ti) o
Then (fm)g‘l) takes the form

where
d _ 5l d
5R[z7 1] — R[é—l] - R[Z—l]’

with the last n — py;_1 rows zero. Consequently,
1 -0.
1€)5 o < i max |- )sl, (19)

since d; < dy for i > 1.
—(1
Because the first py_; transformations performed on I‘[(,Z]) are the MMGS method, and the
last py — p¢—1 times transformations are the MGS method, we then derive from the standard

roundoff error estimates that

(Tu) 0 = My, (D)7 4 @), (20)
holds for
(i) 1<h<{l—-1,1<tp <pp—phr-1,ie. during the MMGS method:
O(diee,1) p1
|(3[z])§‘ph71+th)| < m O(dn-1€¢,p-1) Dh—1 — Dh—2
O(dnee,n) th
0 n—pr-1—1tn
n—1+1 —1+tn
de(|(Ag) @ 5o | + (A ) ) my
which is equivalent to
1) o < A max (A0 2 4+ O(dec  7m)- (21)

(i) h=0,1 <ty <ps—pe—1+1,ie. during the MGS method:

1@ s < Al Ca) 255 N2 < defm (Bua )y 41,0141 (22)
From the formula in [20], we see that the (£ ) U satisfy
(1+1) o T *(Fm)y) )
(‘fm)j = Ml(‘f[z]) + My (& ) Ql + (e )i Ml]m + (5[z])j
ter)r N2

(23)

N Z\If(” A, 1> 2,
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where

A;” = (%);1) = (5[@1);2)§ = (010); S) + ZM My 5[@) g

for s > 2, and

(0)S" = Mi (&) + (M (&) Vgl + a1 (6)( M) ——H2—

+@); + all )5 I5 + 16 13), a~1
(6)$) = (@)% + alll(&e ><5 13+ 11(&, >§”>||2>,2gsgm,

0 (@) = (~1)'s <m'><H Mi_ )t
t=0
1—1
i1 (F[u)yH)T(H M)z .
t [£]

+ t=0 —11-78-747 l_l—t,l—t N
tz:; (R[C{Z])lft,lft ( ) i—1 t( )Ql t

(24)

Step 2. Using (23)—(24) to derive the formula bounding ||(£[l])§ph’1+t”) ll2, forh=1:0—1,t =

Liph = ph-1,J 2 Ph—1 + th.
By (23)-(24), and setting h = 1, t; = 2 in (17), we obtain

2 1 1
1) N1z = 1AM 2 <||M1< ) N2+ BilI M (€)Ml + 1B) M 2

= || M1 (&) " || <1+0<§ ) (25)
§d (]Pl *1) o max (5Rf71])5j|7 Ozwl,

where

@) ICRE )l II(Rd)-||2
b= TS 2 IR il = PT®:

When [ = pp_1 +t, — 1 > 2, note from (17),(21) and (24) that for j > 1+ 1,

1 1 1 = 1
1My Ma(80) P2 < 1M M) 2 + Bl Ma(€)SV 2 + 1151) 12
<dn(Gp, —Pr—1 —th +1)%%a  max |(6Ry _1)sjls
Ph—1<S<pp

and for 2 < s <1, ||M;--- Ma(5, )( )||2 ~ O(d¢Ym). Consequently,

! !
1A 2 < (80 ‘>||2+Z||Ml Mit1(60)8 |12

I A

!
S TG o+ 1M - - Ma(8)5 |2,

=2
) 3\ 5 (M
< de(l - (KSQI%% 1(Ae);”" M1z + 0(62;)) Y A ([ M- M2 ()5 |2, 26)
< dn(jp, =Pt =t + 1% max (R - )],

1 1 R .
1AL )2 < @Sy (0 + DY MMy - My AL, |1
l—1

< s (i 4 1)1 (Z 1(8)s a2+ MMy - - Mo (8)1 mng)

s=2

~ O(dVm), for 1<i<l.



A Numerically Stable Block Modified Gram-Schmidt Algorithm

Thus when [ = pp_1 +t, — 1 > 0, from (19) and (23)—(26), we derive that

1) T o < di (i, — o1 — t +1)%%a max_ [(6R, 1)y,

Ph—1<8<ph

holds for 1 < h </l —1, t, = pr — Ph_1-
D5l

Step 3. Deduce the upper bound of [|(§); where

l=pe1+te—1, tg=1:pp—pe1+1, j2>pe_1+t.
We assume that

max |(5R4,1)Sh|/ min (R[éfl])ss < Am N — -

1<s<pe-1,h>s 1<s<pe_1
y (17), (21) and (24), one can derive for j > py_1 + t¢ that

1
1My, - Ma(8y)) >||2

<[ Mp,_, - Mi(&) SV ll2 + | Mi (&) ll2 + 13,0) )]z
. ”“|<5Rz,1>5j| O o OBl
< ade 3 1, A0 e+ aded o SSREIAOT e

1
+dFm max;>1 [|(A) ) |12 + O(de€] 1 7om)
< dz(peq + 2)5mN[z - 1]([/5 —1,0-

Combining this with the estimates in (23) and (24), we have

l 7
1AL |12 < 11(810) ||2+Z||Mz Mig1(6) 12

Pe—1 l

Z * Z ||(5W)§'i)||2 + | My, - 'M2(5m)§'1)||2

=2  i=py_1+1
< depe—1Ym Ny — 4G - 1.4 + de(te — D)Ym (R pes+1,pe—1+15

1AL )l < a8+ D IMM - My AL

l—1
1 1
< s (i + 1)} <Z (8 ‘5>||2+||Mm1~~M2<am>§_2+1||2)
s=2

RY . 1~
Sd@S@ [[](Z+1)27 (l 1N£71<£71 0 +maX{t€72*1 0}( );Dz 1+1,pe— 1+1)

Thus when | = py_1 + t¢ — 1, we derive from (23), (24) and (29) that

—1+t
()P4

609

(27)

(28)

(29)

-1
Ry~ ; 1 ;
< diS, 1 m Z(Z + 1)"% (Péle[f— G -1, +max{ty — i — 1,0} (Ri)p, 1 +1,p, 1+1) (30)

i=0
R,
< dész m’)/m (pé—l(pé—l + t£)1'5N[z - 1]C[z —1,9t t%'5(R[z])p4,1+1,p4,1+1)-
Step 4. In this stage, we prove the following inequality inductively:

n—1+tn)
(&) P2t

i

5 <d max (R )iq
¢th,27m 1<i§ph,j2i( )i

hOldeOI‘éZQZkZ,h=1:e,th=1:5h7g+ph—ph_1.

(31)
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When ¢ = 2, using the forward roundoff error estimates in [20],

|(5R )é]|<¢él)'7m( )11, 5211])1,j'=l:n7

and (27), (28), (30), one can verify that (31) follows for ¢ = 2.
Assume (31) holds for £ = s. Then from (15), (16) and the standard roundoff error estimates,
we have

(GRE )l = 151 (G T)) = o ()P
< NPl + all E) Pl + Fo KD T2
(T 2
diVm| (R — 1)iil, pro1 <1< pp < ps—1,
dFml|T) P2y pom1 <1< ps,
diYm|(R)i51, Ph-1 <l < pr < ps_1,
d‘s,ym(R[s])p571+1,p571+1; Ps—1 <1 < ps,

l l
< 1)1z + all (€)1 +

)
< 60 + ol + §
where oo ~ 1. Thus from the induction hypothesis, we obtain

o
(OR)pnttn.s| < 04T | _mmax  |(R)igl, h=1:5. (32)

Thus for £ = s+ 1, from (27), (28), (30) and (32) we derive for h = 1: s that

+t . ~ 7(h
1€+ )P s < di(p, — Prot — th + 1%, maxy, 60 max  |(Rp)yl

J 1<i<pp,j>i
~ (k)
< dh’}/md)th s+1 1< rél;?’x]>z |(R '])’ij|a

sttsy1+1 s (s, s
(e ) <dwﬂ%+¢wﬂ%5wflzﬁfﬁﬁﬁx

X,quﬁpé —Ps—1,8 1<1rél]ix_]>’t |(R[S])l.7|

<ds Aoy (i dnax (Rl

and therefore by induction procedure, (31) holds for h=1:¢,t, =1: ¢ + ph — Ph—1-
To bound |( )Ph 1+th,g T (Z[’f])l)h71+thyj|v ||(§[z])(ph71+th+1) - (g[f])(phflththl)”% we can re-
gard g[(l]) as the (n+1)-st column of f[(él]). We can not allow the (n+1)-st column to participate

in the column interchanges, so we should pre-multiply y[(}]) by ¢!, and then apply the error

estimates of

— = 1+t —11+th
(Rie)onstni — Riapn_svtngls [Tt — ()Pt
to evaluate

|| (g[[])(ph—l"rth) _ (g[[])(phfl""th)

|(E[5])ph—1+th7j - (Z[Z])ph—1+thaj|’ 2:

This completes the proof of Theorem 4.1.

4.3. Backward roundoff error of the RBPMGS

Theorem 4.2. Under the notations in (10)—(13), consider the RBPMGS of [DA, Db], and let
II be the permutation matrix taking account of all column interchanges during the RBPMGS.
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Then there exists (nk +m) x (nk + m) orthogonal matrices P such that

Ed —d
AE{T Ahy ‘! “li
—dPrt1) (P+1)
AE,‘: I Ahz 1 Ry, 1 [[ik —kl]
AB{TI Ahd =P gV e |, (33)
d d 1 =
di A1l + AAJIL  dy1b1 + Ab§ dlAgpl-‘rl) d1b5p1+1)
4 4 : :
dp AT+ AALTL  dby + AbS deépk+l) dkg;(ckarl)
where P = PO ... pk) pG) — pU) ... P yphere
0 .
n(k —j)
—e
G §
50) ~DADT ~G) ) "
]3[] — I*"Ul] ,Ul] , ,Ul.] — 11 (34)
o n(j—1)—n; + Zs 1m6
d;(A))
—a m;
B k
0 Zs_]ﬂ My

Here, ny =0 and n; =n for j > 2, and

|AEI| <7, g e 1Q§S)eeriag(1,2, e Dk pR)E, s=1:k—1,

|AAMI <7, P, Q) eeTdiag(1,2, - pr, -+ o) s=1:k— 1,

|AE;‘§H| § 7m9(1 )eeriag(la 27 Pk 7pk7)’ (35)
|AA(]§H| S ?mQ](;;)eerlag(la 27 DRy 7pk)2a

ALY < PGV, A <7, PA G e, s =11k,

where e = [1,--- ,1]7, ¢, is defined in (13),

t
Pl = s H p;, Ph=TI0

i1=s+1 1=s

s . —d —d (36)
Q) = diag((R,,)11,+ » (Bi)peipes Onp.), =11k,
ng) = diag(aizés)Jrl’ T 704511)—%7713); s=1:k

Proof. For simplicity we consider the RBPMGS of (DA™, Db) without column pivoting, in
which A = AII.
Step 1. From the backward error estimates in ([20], Theorem 3.1), we derive the backward
roundoff errors of p; times PMGS performed on dlA(ll) satisfy

On(k—1) On(k—1)
~d —d
AB{ R
mAY A4 | Ay
dr AL R BT 37)
dp AL ALY
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where _ .
|AETI| § ?ng )eeriag(lv 2; Py apl)a

|A/Til| < ?mQ%)eeriag(l, 2, p1y e, p1)2e

Also, similar to the proof of Theorem 3.1 in [20], one can prove that the backward roundoff

(38)

—d
(1]

. R .
error estimates of p; times MMGS and p, — p; times MGS performed on (d A(”) also satisfy
249

On(k—2) 07&}—%
—d AEgl—d _,fza[;]ﬂ)
R[l]_—*z Aﬁ)[l] (1] 1
dlAlpl R _ P(2) dlzgl)l-i- ) : (39)
dy ASY + AAY A
) .
where _
|AEg| < ;?mQ(IQ)eeriag(lﬂ 27 P2yt 7p2)7
—d
AR ~ . (40)
| I | S 7mQ(2)eerlag(]—v2a"' y D2y ap2)2'
AAZ
Here,

0@ = diag(al®)pHme.,

(2 1=

Pre-multiplying (39) by ﬁ(l), and observing the structure of P and (37), we derive

On(k—2) On O"ﬁd—”
AEg : ](:i[z]ﬂ)
~ : —q(p2
(IA)Eii ~ On, &
~ - ~y A —(p1+1
dlA%l) + Aég L pW ARﬁ] _ pwp@ | gAY
d2A2 + AAQ 0m1 dQngerl)
| ' :
Continue to considering the backward roundoff error estimates of p;_; times MMGS and p; —
—d
pj—1 times MGS performed on (};[;’(11)]) for j = 3,---,t. Then one can inductively prove
7435
O (k—t) 07£cd—t)
=y —d\Pt
: A(‘)R[S] [t - 1)
AES "y " ;
hAY + AAL | S pO) LB : _pw o po | aa3® |y
0
. s=1 n .
(M), A O, —(pi+D)
tht + AAt : tht t
| (1) O |
dkAk dkA](:)
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holds for t = 2 : k, where

|AESd| < ?ngs)eeriag(l’Q, Ty DPsy 7ps)7 s=1:1,
|Aﬁd| < ﬁmgglg)eeriag(l 2, PLy e, PL)s

AR} s (42)
| ( AAdl ) | < ’Y Q( )eerlag(l 2 “yPsy 7ps)27
Q) = diag(a!™)rtme s> 2.
Here, the j-st (ps_1 + 1 < j < n) diagonal entries of Q(*)(s > 2) are all zero.
Step 2. Evaluate the upper bound of the second term in the left side of (41). Denote
(s —d7 = D\ 5(S
7Y = 0,aR 07, BY = BEY = PO .. pOFTY,
for { =s,5s—1,---,1. Thus from ]3](8) =1- 6§s)6§s)T we derive
E§5) _ ﬁ(S)E§S+1) _ ﬁl(s) . ﬁéj)EES*f’l)
(s S(s) 7(s+1) ~(8)T7(s+1)\ (s s) ~(s
= PP BT @) By B )
= ... (43)
s
_ h§s+1) B Z(@(S)Tﬁfﬂ))ﬁf‘g) . ﬁi(j)161(8)7
i=1
where
P P = (= oay ) P Pl
<R PO+ |a§5 57 B Bl
<-
N O ) ) s 44
<[]+ Z(i "B B ) ()
i
<[]+ 2Z| <23 [0 (because [[51) ]2 = v2).
1=1
From the structure of 61(8) in (34) and the roundoff error estimates in (42), we obtain
()T (s+1) = 1
B R = ARyl < min{s® p21 Fmal™, (45)
where aESH) for 1 <i < p, is bounded by (15) as
S Enl —d S
o™t = = (T )| = BE )i = pal?, B,
» o (46)
~ s+1) . . ~ 5d
R = (AR )y < min{, s i (B
Thus from (43)—(46), we derive
E(S) s+1) 9 A(s s+1) ~(s)
h; | |+ Z |v; Z o,
=1
n(kfs) Ps (47)
< min{j2ap§+1}§m Qgs)e + Z( Z S)| )
i=1 =1

Oern(sfl)
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where
(1) 1)
_ o Qo ~
|'U(1)| < [0 , €1, _; R R ! ,0[1]]T,
(R[1])ll (R[ ])ll
(s) (s) o® (s)
« Ap,_y A Xptm, =
|’U(6)| < [O[S]7ela _; y T _pd 0”—1)57170[5]7 _T;+1 y " _Z 70[5]]Ta S Z 2
[s])” (R[s])ll (R[s])ll (R[s])”
Here, 0y, 0,.,,0,., denote zero vectors of order n(k — s),n(s — 2) + Zj;} m; and Z?:s-‘,—l m;,
respectively
Note (R, )” > B(R, )” for I <. Then substitute (42) and (46) into (47) to obtain
(_)[s] 9[5]
Ve | (Byue
Ds 7 (s)
7(s) y ~ 0 Q.
|hj | S mln{]Qap§+1}7m{ On +ZZ 516 }
[s] i=1 I=1 Le]
9” Q;;)e
0[5] 0[5]
< . 2 2 5 di 0 Q(é) Q(é 1) 0 QQ(S) 6
< min{j aps+1}7m iag (0., ps$2y 7, ps P2, 0 e,
where
Q(1) = diag(a ES))z 17Q§§)

is defined by (36).
Step 3. Note that

F(lfl) _

PUYVH

)

Thus using the techniques in deducing (43)—(47), we can derive

(5 1) (0 ~(£—1) ) ~(£—1
D) < 0] +2 3 (oA |Z|< | (48)
i=1 =1
and prove inductively that
E;@) P(e)h(é—i-l) 1:5 ﬁ —(s+1)
for £ =s,---,1 satisfy
7] < min{;? ,zl;ﬁ)l}fymdlaa P Py O P
Ps 05]7P 22"" s— lsﬂs 127P” 52)0 )
Therefore,
) < {2, s Finding 0, P, Py 0170 PLA,
(2
PLQ 12,P 22)a : Pg’s 22)a0u)€'
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Step 4. Take t = k in (41). Then from the estimates in (49), we derive

k=1
s (‘5+1) —(1)
5o pone < S
s=1
(k— k—
< min{;? 7Pk}’7md1ag( 105 Pt 1Q Y s Py 2k719( D
(1 2) k—1) =
Pl oY Pl k- 1912),77 08 P 1,k— ol 1,370[“1])-

Combining this with (41)—(42), and taking into account the permutation II, we then prove the
upper bounds of AEAIL, AAZII in (35).

To bound |Ah¢|,|Ab¢| in (35), we may regard b as the (n41)-st column of A(Y). We can not
allow the (n 4 1)-st column to participate in the column interchanges and improve the value
of 041(-5) during the algorithm, thus we should pre-multiply b by ¢! and then apply the error

estimates of AEZIL, AAZII to evaluate |AhS|, |AbY|.

Remark 4.3. From Theorems 4.1 and 4.2, we see that our upper bounds on forward rounding
errors of the RBPMGS algorithm degrade as k increases. Thus, a tacit assumption is that the
number of row blocks k is not too large.

Remark 4.4. We derive from Theorem 4.1 and Theorem 3.1 (see [20]) that

ITa) P e < didby T, (Ru)1rs = b,
T,

+1 .
I s < g (Rl = e

for £ = 2 : k. Thus if the number of row blocks & is not too large, and A is well-conditioned
satisfying
'Ym(bpl (R[l])ll < (R )plmla

o) _9.
TPy —pe_1 0 19211},(]'21' |(Ri)ij| < (Rie))pepe, £=21k,
then we can choose tolerances 7, to determine the numerical rank of Cy , for £ =1,2,--- | k.

Remark 4.5. Note that ozn‘s)ﬂ/maxj |ds(As)ijl,s = 1 : k are generally of unit order, as
mentioned in [20]. From (35) we see that, if A is well conditioned and the number of row blocks
k is not too large, then the RBPMGS is row-wise stable.

5. Numerical Examples

In this section, we provide some examples to compare the ordinary PMGS and the RBPMGS
(Algorithm 3.1) for solving the stiff WLS problem Eq. (1). All the computations are performed
on Matlab software with unit roundoff u = 2.22e-16. Denote

® dTwrs =TWLS — TWLS,

e Method 1 (M1): PMGS;

Method 2 (M2): RBPMGS (Algorithm 3.1);

|62y ||: The 2-norm of dzw s using Method 1; and

[[62pz]]: The 2-norm of dzw s using Method 2.
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Let

"= VA M2 T \(Pet1) _1.
A" = max |4, I B = max |T)f 0l e=1:k,

where Z}i(mﬂ) is numerically computed from A% = DA via p;, times PMGS, and (f[é])g.p”l) is

numerically computed from (Fm )EMH) via py_1 times MMGS and py — py_1 times PMGS.

Example 5.1.
-4 2 =3 -9
4 2 4 .
A= 9 1 s b= 1 y D:dlag(dl,dl,dg,dg).
1 -1 4

Therefore, rank(A) = 3, rank(A(1 : 3,:)) = 2, A is of full rank, /™ = 0, and

zwrs = (=3,0,7)7 +

—4.4. 8).
4+d§( 4:8)

Setting b = A,,41, and applying M1 and M2 respectively on DA (do not interchange (n + 1)-st
column), we obtain the following numerical results as in Table 5.1.

Example 5.2.
1 2 4 2 11
1 3 2 5) —6
A= 11 6 —1 5 b= 28 s D =diag(d1]3,d2,d3).
6 8 0 4 15
4 3 -6 =3 22

So rank(A) = 3,rank(A(1 : 3,:)) = 2, and A is rank-deficient,

1 2d3
TWLS = 15007 T 125(6(2 1 @) + 1LBE) >
where
12936 12(43d3 + 35)
- 8017 = 152d3% + 365
14414 |’ —2(208d3 + 85)
—18563 —1078d3 — 235

Setting b = A,,41, and applying M1 and M2 respectively on DA (do not interchange (n + 1)-st
column), we obtain the following numerical results as in Table 5.2.

Example 5.3.

1 2 4 2 6 23
1 3 2 5 =5 —16
1 1 6 -1 17 62 .
A= | 1 1 1 |r=] y | D=diss(dilsda,ds,da).
1 -1 0 -3 7 41
9 -5 7 -6 1 51
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Table 5.1. d1 = dg =1 Z dg.

ds 1 e-2 e-4 e-6 e-8 e-12
I0zpa ]l 1.99e-15  4.21e-15  2.22e-16 1.04e-14  9.98e-13  9.87e-5
I0zpall2 1.99e-15  4.31e-15  4.31e-15  2.98e-15 2.04e-15 2.04e-15
b 0 3.82e-16 3.82e-16 3.82e-16 3.82e-16 3.82e-16
Table 5.2. d1 =1 Z d2 Z d3.
do 1 e-4 e-6 e-8 e-10 e-12
ds 1 e-4 e-6 e-8 e-10 e-12
02y |l2 1.78e-15  2.04e-15 3.17e-15 1.83e-15 2.00e-12  2.00e-8
[0xpz|l2 1.78e-15  2.04e-15 2.04e-15 3.26e-15 2.74e-15  2.84e-15
s 4.68e-16 1.71e-16 1.71e-16 3.88e-16 2.62e-16 2.62e-16
12 4.68e-16 8.67e-16 8.67e-16 8.67e-16 8.67e-16 8.67e-16
o blank 2.42e-19 1.89e-21 2.73e-23 1.46e-25 1.14e-27
Table 5.3. 1 =di =d2 > d3 > da.
ds e-2 e-4 e-8 e-8 e-4 e-2
da e-4 e-8 e-8 e-12 e-12 e-12
|6zl 4.27e-13  4.21e-9  2.03e-15 5.10e-8  1.58¢-1  9.5le+2
[0xma]l2 1.77e-15  3.35e-15 1.02e-15  2.36e-15 5.09e-16  1.98e-15
BMt 2.33e-15  2.27e-15  9.55e-16  9.06e-16  1.94e-15 9.61e-16
M2 2.95e-15  2.95e-15  2.95e-15  2.95e-15  2.95e-15  2.95e-15
o2 6.98e-18 1.51le-19 7.74e-24 9.73e-24 1.51e-19 6.98e-18
b 2.12e-22  6.24e-24  blank 1.20e-38 1.18e-38 2.21e-39
Table 5.4. d1 =1 Z d2 2 d3 Z d4.
do 1 e-4 e-4 1 1 1
ds 1 e-4 e-4 1 e-4 1
da e-4 e-4 e-8 e-8 e-8 e-12
[0zl 1.65e-9 3.88¢-15  3.42e-10  6.96e-2 4.21e-9 2.61e+6
|6zsz2  1.84e-15  3.08¢-15  6.37e-15  4.00e-15  3.35e-15  3.23e-15
B 2.63e-15  3.12e-16  7.16e-16 1.41e-15 2.26e-15 1.27e-15
b 1.54e-15 1.26e-15 1.26e-15 1.54e-15 2.95e-15 1.54e-15
512 5.65e-23  7.13e-20  6.78e-21  1.32e-23  1.51e-19  1.18e-38
P blank blank 1.85e-23  blank 6.62e-24  blank

So rank(A) = 4, rank(A(1 : 3,:)) = 2,rank(A(1 : 4,:)) = 3, and

where

zZ1 =

1 d3
TWLS = 300321 T 30034(6(a2 + 442) + 5A2E)
—29418 643188d3 + 8314992
—79792 237951d3 + 4603284
157140 |, 2z = | —919758d3 — 7349832
—47074 —257250d3% + 370944
61012 295869d3 + 1855980
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Setting b = A,,41, and applying M1 and M2 respectively on DA (do not interchange (n + 1)-st
column), we obtain the following numerical results as in Tables 5.3 and 5.4.

It is observed from the above examples that if dj/dy > 1, and the first row block A;
of A is not of full row rank, then computational results exhibit numerical instability when
using the PMGS (Method 1), while the RBPMGS algorithm (Algorithm 3.1) gives a numerical
solution with high precision. The quantities ™' are of order O(dlpi‘E’SRﬁm) and ;" are of
order O(d;py kY ;;7m), where R is the accurately computed upper trapezoidal R-factor via
pr times MGS of DA™, The numerical results agree with the estimates in (18).
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