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Abstract

The Filled Function Method is a class of effective algorithms for continuous global
optimization. In this paper, a new filled function method is introduced and used to solve
integer programming. Firstly, some basic definitions of discrete optimization are given.
Then an algorithm and the implementation of this algorithm on several test problems are
showed. The computational results show the algorithm is effective.
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1. Introduction

An integer programming problem is very difficult to be solved. In [1], it is pointed out
that the integer programming with a linear objective function and quadratic constrained is
algorithmically unsolved, that is, there no algorithms can be created to solve them. Because of
these reasons, the approximate algorithms have been rapidly developed in recent years(see [2]).
In publishing literatures, approximate algorithms for integer programming can be sorted into
two categories: stochastic approach(see [3-5]) and deterministic approach(see [6-8]). The filled
function method applied for continuous global optimization is proposed firstly by Ge in [9]. This
method is consist of two stages: 1. finding a local minimizer, x∗

1, of the original continuous
global optimization by any local minimization method; 2. constructing a filled function and
then minimizing this filled function to get another local minimizer of original problem whose
objective function value is smaller than that of x∗

1. Repeat the above two steps to find the
global minimizer of original problem. The key of this method is to construct a filled function.
Now we extend the filled function method to solve the integer programming problem. In this
paper, a new filled function is introduced. At the same time, we show a new filled function
method for discrete global optimization by this new filled function. This is an approximate and
direct approach. By solving some testing problems, it is showed to be an effective and efficient
method. In [10], Tian and Zhang give a filled function with two parameters. But the filled
function in this paper has only one parameter. Moreover this parameter is chosen easily.

We consider integer programming problem given by(P)
{

min f(x)
s.t. x ∈ Ω ∩ Rn

I
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where Ω is a bounded closed box with all vertices integral, Rn

I
is the set of integer points in

Rn. Furthermore, we suppose that f(x) is coercive, that is, f(x) → +∞ as ‖x‖ → +∞. So all
local minimizers of f(x) which values are more small can’t be on the boundary of Ω ∩ Rn

I
if Ω

is sufficiently large. In the following of this paper, we let

XI = Ω ∩ Rn

I
.

The paper is organized as follows: Section 2 gives the preliminary knowledge about discrete
optimization; A new filled function for discrete optimization is proposed in section 3; We show
an algorithm and the numerical experiments in section 4; Some conclusions are in section 5.

2. Preliminaries

In this section, we firstly introduce some basic definitions and method for discrete optimiza-
tion.

Definition 2.1 The set of all directions in discrete analysis is defined by

D = {ei,−ei; i = 1, 2, ..., n}.

where ei is the i− th unit vector which is the n− dimensional vector with the i− th component
equal to one and all other components equal to zero.

Definition 2.2 For any x ∈ Rn

I
, the neighborhood of x is defined as

N(x) = {x, x ± ei : i = 1, 2, ..., n}.

Definition 2.3 An integer point x∗

1 ∈ XI is called a discrete local minimizer of f(x) if f(x) ≥
f(x∗

1), for all x ∈ N(x∗

1)∩XI . Furthermore, if f(x) > f(x∗

1) for all x ∈ (N(x∗

1)∩XI)\x
∗

1, then
x∗

1 is called a strict discrete local minimizer of f(x).

Suppose x∗

1 is a (strict) discrete local minimizer of f(x), then x∗

1 is a (strict) discrete local
maximizer of −f(x).

Definition 2.4 An integer point x∗ ∈ XI is called a discrete global minimizer of f(x) if f(x) ≥
f(x∗), for all x ∈ XI. Furthermore, if f(x) > f(x∗) for all x ∈ XI\x

∗, then x∗ is called a
strict discrete global minimizer of f(x).

Suppose x∗ is a (strict) discrete global minimizer of f(x), then x∗ is a (strict) discrete global
maximizer of −f(x).

Definition 2.5 Suppose x∗

1 is a discrete local minimizer of f(x). A function P (x, x∗

1) is said
to be a discrete filled function of f(x) at x∗

1 if P (x, x∗

1) satisfies the following properties:

1. x∗

1 is a strict discrete local maximizer of P (x, x∗

1);

2. if f(x) ≥ f(x∗

1) and f(x + di) ≥ f(x∗

1), ∀di ∈ D, x 6= x∗

1, then x is not a local minimizer
of P (x, x∗

1);

3. for x1, x2, if ‖x1 − x∗

1‖ > ‖x2 − x∗

1‖ > 0 and f(x1), f(x2) ≥ f(x∗

1), then P (x1, x
∗

1) <

P (x2, x
∗

1);

4. for x1, x2, if ‖x1 − x∗

1‖ > ‖x2 − x∗

1‖ > 0 and f(x2) ≥ f(x∗

1) > f(x1), then P (x1, x
∗

1) >

P (x2, x
∗

1).

Remark. The 2-th item of this definition notes: if there exists di0 ∈ D such that f(x + di0) <

f(x∗

1), then let x0 = x + di0 to find another discrete local minimizer x∗

2 of f(x) which holds
f(x∗

2) < f(x∗

1).
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Definition 2.6 For any x ∈ XI , d ∈ D is said to be a descent direction of f(x) at x if
x + d ∈ XI and f(x + d) < f(x).

Now we present the discrete local search method for finding a discrete local minimizer of
problem (P) from a given initial point x0 ∈ XI .

Algorithm 2.1 (discrete local search method)
1. Give an initial integer point x0 ∈ XI;
2. If x0 is a discrete local minimizer of f(x) over XI , stop; otherwise, a descent direction, d,
of f(x) at x0 over XI can be found;
3. Let x0 = x0 + d, go to 2.

3. A New Filled Function

We extend the filled function for continuous global optimization to the discrete case in this
section. And this function is proved to be a filled function of f(x). Then, a new filled function
method for discrete global optimization is given.

Now, we construct a filled function

P (x, x∗

1, r) = −‖x − x∗

1‖
2hr(f(x) − f(x∗

1)) (1)

where x∗

1 , a minimizer of f(x) , has been found.

(∗) hr(t) =







c, t ≥ 0

− 2ct
3

r3 − 3ct
2

r2 + c, −r ≤ t ≤ 0
0, t ≤ −r

Parameter c can be any positive constant. Therefore, P (x, x∗

1, r) has only one parameter r in
fact. Now we prove P (x, x∗

1, r) is a discrete filled function of f(x) at x∗

1.

Theorem 3.1 x∗

1 is a strict discrete local maximizer of P (x, x∗

1, r).

Proof. Because x∗

1 is a discrete local minimizer of f(x), for any d ∈ D, x∗

1 + d ∈ XI and
f(x∗

1 + d) ≥ f(x∗

1).
Hence hr(f(x∗

1 + d) − f(x∗

1)) = c.
Therefore

P (x∗

1 + d, x∗

1, r) = −‖x∗

1 + d − x∗

1‖
2hr(f(x∗

1 + d) − f(x∗

1)) (2)

= −‖d‖2 · c

= −c

< 0

= P (x∗

1, x
∗

1, r) (3)

Thus x∗

1 is a strict discrete local maximizer of P (x, x∗

1, r).

Theorem 3.2 For x1, x2, if ‖x1 − x∗

1‖ > ‖x2 − x∗

1‖ > 0 and f(x1), f(x2) ≥ f(x∗

1), then
P (x1, x

∗

1, r) < P (x2, x
∗

1, r).

Proof. For x1, x2, since f(x1) ≥ f(x∗

1),f(x2) ≥ f(x∗

1), it has

hr(f(x1) − f(x∗

1)) = hr(f(x2) − f(x∗

1)) = c. (4)

Thus

P (x1, x
∗

1, r) = −‖x1 − x∗

1‖
2hr(f(x1 + d) − f(x∗

1))

= −‖x1 − x∗

1‖
2 · c

< −‖x2 − x∗

1‖
2 · c (5)

= P (x2, x
∗

1, r).
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Corollary 3.1 For any x 6= x∗

1, x ∈ XI , if f(x) ≥ f(x∗

1), then P (x, x∗

1, r) < 0 = P (x∗

1, x
∗

1, r).

Proof. Because f(x) ≥ f(x∗

1), hr(f(x) − f(x∗

1)) = c.
So

P (x, x∗

1, r) = −‖x − x∗

1‖
2hr(f(x) − f(x∗

1)) (6)

= −‖x − x∗

1‖
2 · c (7)

< 0

= P (x∗

1, x
∗

1, r).

Theorem 3.3 For any x 6= x∗

1, x ∈ XI, if f(x) ≥ f(x∗

1) and f(x + di) ≥ f(x∗

1), ∀di ∈ D, then
x is not a discrete local minimizer of P (x, x∗

1, r).

Proof. Let di0 ∈ D satisfying ‖x + di0 − x∗

1‖ > ‖x − x∗

1‖ for x 6= x∗

1, x ∈ XI .
Because f(x) ≥ f(x∗

1) and f(x + di) ≥ f(x∗

1), ∀di ∈ D, obviously f(x + di0) ≥ f(x∗

1).
Therefore, we have

P (x + di0 , x
∗

1, r) = −‖x + di0 − x∗

1‖
2hr(f(x + di0) − f(x∗

1)) (8)

= −‖x + di0 − x∗

1‖
2 · c

< −‖x − x∗

1‖
2 · c (9)

= −‖x − x∗

1‖
2hr(f(x) − f(x∗

1)) (10)

= P (x, x∗

1, r).

That is, there exists a descent direction di0 ∈ D for x. So x is not a discrete local minimizer
of P (x, x∗

1, r).
Remark. By the above theorem, if x satisfies the conditions of theorem, x is not a discrete local
minimizer of P (x, x∗

1, r). Thus, if x is a discrete local minimizer of P (x, x∗

1, r) and f(x) ≥ f(x∗

1),
x 6= x∗

1, x ∈ XI , then there must exist di0 ∈ D for x satisfying f(x+di0) < f(x∗

1); let x0 = x+di0

and start from this point to minimize f(x) to obtain its another discrete local minimizer x∗

2 of
f(x), and f(x∗

2) < f(x∗

1).

Theorem 3.4 If x∗

1 is not a discrete global minimizer of f(x), then there must exist another
discrete local minimizer x̄ of f(x), x̄ ∈ XI satisfying P (x̄, x∗

1, r) = 0 and f(x̄) < f(x∗

1) − r.

Proof. Let L = {f(x)|f(x) is a discrete local minimum of f(x)}, M = {f(x)|f(x) ∈ L and
f(x) < f(x∗

1)}.
Because x∗

1 is not a discrete global minimizer of f(x), M is not empty.
Let

r < α0 =

{

max (f(x∗

1) − f(x))
s.t. f(x) ∈ M

(11)

Since M is not empty, there must exist x̄ ∈ XI satisfying

f(x∗

1) − f(x̄) = α0. (12)

Therefore f(x∗

1) − f(x̄) > r.

That is f(x̄) − f(x∗

1) < −r i.e. f(x̄) < f(x∗

1) − r.
So hr(f(x̄) − f(x∗

1)) = 0.

Thus
P (x̄, x∗

1, r) = −‖x̄ − x∗

1‖
2hr(f(x̄) − f(x∗

1)) = 0. (13)

Remark. If there exists x 6= x∗

1 satisfying P (x, x∗

1, r) = 0, then f(x̄) ≤ f(x∗

1)−r, f(x̄) < f(x∗

1).

Corollary 3.2 If x∗

1 is not a discrete global minimizer of f(x) and r satisfying

r <

{

min (f(x∗

1) − f(x))
s.t. f(x) < f(x∗

1)
(14)

then P (x, x∗

1, r) = 0 for x satisfying f(x) < f(x∗

1).
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If r is chosen according to Corollary 3.2, then for x1, x2 satisfying ‖x1−x∗

1‖ > ‖x2−x∗

1‖ > 0
and f(x2) ≥ f(x∗

1) > f(x1), it must have P (x1, x
∗

1, r) = 0 > −‖x2 − x∗

1‖c = P (x2, x
∗

1, r).
That is, during minimizing the discrete filled function P (x, x∗

1, r) along the direction d, if
P (xk+1, x

∗

1, r) > P (xk, x∗

1, r), then f(xk+1) < f(x∗

1)(obviously f(xk) ≥ f(x∗

1), ‖xk+1 − x∗

1‖ >

‖xk − x∗

1‖ > 0). If not (that is, f(xk+1) ≥ f(x∗

1) ), then P (xk+1, x
∗

1) < P (xk, x∗

1) by Theorem
3.2.

From the above theorems, We can know P (x, x∗

1, r) is the discrete filled function of f(x) at
x∗

1. Moreover c > 0 is any constant and r > 0 can be chosen sufficiently small by Theorem 4,
so P (x, x∗

1, r) can be regarded a discrete filled function without parameter.

4. Algorithm and Numerical Experiments

Algorithm 4.2 (Discrete Filled Function Method)

1. initialization:
x0

1 ∈ XI , M0 = 1, k = 0, D = {±ei, i = 1, 2, · · · , n}, k0 = 2n, r0 = 10−1, N = 11;

2. use discrete local search method to minimize f(x) from x0
1 in XI and obtain x∗

1, which is
a discrete local minimizer of f(x);
r = r0, M = M0;

3. construct P (x, x∗

1, r) = −‖x − x∗

1‖
2hr(f(x) − f(x∗

1));

4. i=1;

5. set x1 = x∗

1 + di, di ∈ D,
let D1 = {d ∈ D : x1 + d ∈ XI};

6. if there exists d ∈ D1 satisfying f(x1 + d) < f(x∗

1), then set x0
1 = x1 + d, k = k + 1, go to

2;

7. let D2 = {d ∈ D1 : ||x1 + d − x∗

1|| > ||x1 − x∗

1||};

8. if D2 is empty, go to 10;

9. if there exists d ∈ D2 satisfying: when minimizing P (x, x∗

1, r) starting from an initial point
x0

2 = x1 + d, we can obtain a local minimizer x∗

2 of P (x, x∗

1, r) which satisfies x∗

2 + d ∈ XI

for any d ∈ XI , then set x0
1 = x∗

2 + di, where f(x∗

2 + di) < f(x∗

1), di ∈ D; k = k + 1, go
to 2;

10. i = i + 1, if i ≤ k0, go to 5;

11. M = M + 1, if M ≤ N , then r = 10−1r, go to 3; otherwise, x∗

1 is a discrete global
minimizer of the original problem.

In the algorithm, ei is an n−dimensional vector with unit length whose i−th coordinate is 1. N

is the terminal rule. That is, when N = 11, r has been changed to be very small, the algorithm
can be terminated and the current minimizer is regarded to be the discrete global minimizer
of the original problem. In the following, computational results of some test problems using
the above algorithm are summarized. hr(t) is chosen (∗). The used computer is equipped with
Intel Pentium 2.5GHz. The symbols are used in the tables are noticed as follows:
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x0
1: the initial point

k: the iteration number
CPU : the CPU time in seconds to obtain the final result
CPUS: the CPU time in seconds to stop
NF : the number of computing f(x) to obtain the final result
NFS: the number of computing f(x) to stop
NP : the number of computing P (x, x∗

1, r) to obtain the final result
NPS: the numberh of computing P (x, x∗

1, r) to stop

Problem 1(in [11]).
minf(x) = x4

1 + x4
2 + 16[x1x2 + (4 + x2)

2]

s.t. |xi| ≤ 10, xi : integer, i = 1, 2
This problem has 441 feasible points. Its global minimal value is 17. We use five initial

points: (0, 0), (1, 1), (−1,−1), (5, 5), (−5,−5). For every experiment, the above discrete filled
function method succeeds in finding the discrete global minimizer x∗ = (2,−3) with f(x∗) = 17.
The maximum CPU time to reach the discrete global minimum is 0.0620 seconds. Results are
given in Table 1.

Table 1
x0

1 k CPU NF NP
(CPUS) (NFS) (NPS)

(0, 0) 0 0.0160 19 0
(0.9220) (239) (6138)

(1, 1) 0 0.0470 34 0
(0.9840) (254) (6138)

(-1, -1) 0 0.0470 16 0
(1) (236) (6138)

(5, 5) 0 0.0470 66 0
(1) (286) (6138)

(-5, -5) 0 0.0620 20 0
(1.0150) (240) (6138)

Problem 2(in [11]).

minf(x) =
10
∑

i=1

(x4
i
− 4.9x2

i
)

s.t. − 5 ≤ xi ≤ 5, xi : integer, i = 1, 2, ..., 10
This problem has 2.5937 × e10 feasible points. Its global minimal value is −39. We

use five initial points: (0, 0, ..., 0), (2, 2, ..., 2), (−2,−2, ...,−2), (4, 4, ..., 4), (−4,−4, ...,−4).
For every experiment, the above discrete filled function method succeeds in finding the dis-
crete global minimum f(x∗) = −39. Starting from initial points: (0, 0, ..., 0), (2, 2, ..., 2) and
(4, 4, ..., 4), the method obtains the discrete global minimizer (1, 1, ..., 1). Starting from initial
points: (−2,−2, ...,−2) and (−4,−4, ...,−4), the method obtains the discrete global minimizer
(−1,−1, ...,−1). The maximum CPU time to reach the discrete global minimum is 0.0940
seconds. Table 2 gives the numerical Results.

Table 2
x0

1 k CPU NF NP
(CPUS) (NFS) (NPS)

(0,0,...,0) 0 0.0150 76 0
(197.7650) (4696) (1208570)

(2,2,...,2) 0 0.0160 176 0
(198.0790) (4796) (1208570)

(-2,-2,...,-2) 0 0.0630 76 0
(246.5470) (4696) (1497430)

(4,4,...,4) 0 0.0940 486 0
(198.5160) (5106) (1208570)

(-4,-4,...,-4) 0 0.0630 186 0
(246.2190) (4806) (1497430)
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Problem 3.

minf(x) = 100(x2 − x2
1)

2 + (1 − x1)
2 + 90(x4 − x2

3)
2 + (1 − x3)

2

+ 10.1[(x2 − 1)2 + (x4 − 1)2] + 19.8(x2 − 1)(x4 − 1)

s.t. − 10 ≤ xi ≤ 10, xi : integer, i = 1, 2, 3, 4

This problem has about 194481 feasible points. Its discrete global minimizer is x∗ =
(1, 1, 1, 1) with f(x∗) = 0. We use four initial points: (0, 0, 0, 0), (−1,−1,−1,−1), (−2,−2,−2,

−2), (−5,−5,−5,−5). For every initial point, the above discrete filled function method can
obtain the discrete global minimum f(x∗) = 0. The maximum CPU time to reach the discrete
global minimum is 0.4840 seconds. Results as follows:

Table 3
x0

1 k CPU NF NP
(CPUS) (NFS) (NPS)

(0,0,0,0) 2 0.4680 31 1656
(12.3590) (841) (85124)

(-1,-1,-1,-1) 2 0.4840 41 1656
(12.3590) (851) (85124)

(-2,-2,-2,-2) 2 0.4510 51 1656
(12.3280) (861) (85124)

(-5,-5,-5,-5) 1 0.4070 81 1656
(12.3130) (891) (85124)

Problem 4.

minf(x) =

n
∑

i=1

x4
i +

(

n
∑

i=1

xi

)2

s.t. − 5 ≤ xi ≤ 5, xi : integer, i = 1, 2, ..., n

This problem has about 11n feasible points. Its discrete global minimizer for any n is
x∗ = (0, 0, ..., 0) with f(x∗) = 0. We use four initial points: (1, 1, ..., 1), (−1,−1, ...,−1),
(3, 3, ..., 3), (−3,−3, ...,−3) for n = 4, n = 8, n = 16 respectively. For every experiment,
the discrete filled function method can obtain the discrete global minimum f(x∗) = 0. The
maximum CPU time to reach the discrete global minimum is 0.5150, 21.4370, 1193.2 seconds
for n = 4, n = 8, n = 16 respectively. Computational results are summarized in Table 4, Table
5, Table 6.

From the above computational results, we can know the algorithm can’t stop until it is
forced to stop even though the (approximate)global minimizer is found. The reason is that the
filled function method has no good terminal rule.

Table 4(n=4)

x0
1 k CPU NF NP

(CPUS) (NFS) (NPS)
(1,1,1,1) 1 0.1550 49 0

(8.0310) (841) (42240)
(-1,-1,-1,-1) 1 0.5150 27 1326

(8.3910) (846) (43566)
(3,3,3,3) 1 0.2510 107 425

(8.1880) (908) (42665)
(-3,-3,-3,-3) 1 0.4050 55 1309

(8.2810) (874) (43549)
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Table 5(n=8)

x0
1 k CPU NF NP

(CPUS) (NFS) (NPS)
(1,1,...,1) 3 2.7490 240 9005

(113.9370) (3056) (586285)
(-1,-1,...,-1) 3 21.4370 386 57164

(122.4840) (3202) (634444)
(3,3,...,3) 2 6.1870 441 21135

(115.6250) (3552) (598415)
(-3,-3,...,-3) 3 21.3470 253 56256

(122.6250) (3551) (633536)

Table 6(n=16)

x0
1 k CPU NF NP

(CPUS) (NFS) (NPS)
(1,1,...,1) 7 251.7060 1478 462315

(1790.5) (12742) (8741355)
(-1,-1,...,-1) 6 1193.2 2781 1764407

(2052.2) (14045) (10043447)
(3,3,...,3) 4 365.0950 2899 758374

(1843.7) (14163) (9037414)
(-3,-3,...,-3) 6 1174.5 3377 1742966

(2045.4) (14641) (10022006)

5. Conclusions

In this paper, we propose the new discrete filled function. And it proves that P (x, x∗

1, r) is
truly the discrete filled function of f(x) at the point x∗

1 according to our definition for the filled
function. By solving the above problems, the algorithm constructed by P (x, x∗

1, r) is effective.
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