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Abstract

In this paper we present some new absolute and relative perturbation bounds for the
eigenvalue for arbitrary matrices, which improves some recent results. The eigenvalue
inclusion region is also discussed.
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1. Introduction

Let A be an n× n matrix and Ã = A + E whose spectrum are {λ1, ..., λn} and {µ1, ..., µn},
respectively. Let ‖·‖F and ‖·‖2 denote the Frobenius norm and the spectral norm, respectively.
For a positive integer n, let 〈n〉 = {1, 2, ..., n}.

Classical absolute type perturbation bounds were established by the well-known Hoffman-
Wielandt theorem [1]. When A and Ã are normal matrices, there exists a permutation τ of 〈n〉
such that √√√√

n∑

i=1

|µτ(i) − λi|2 ≤ ‖E‖F . (1.1)

In the case that A is normal but Ã is arbitrary, Sun proved [2,3] that there exists a permutation
τ of 〈n〉 such that √√√√

n∑

i=1

|µτ(i) − λi|2 ≤
√

n‖E‖F . (1.2)

The factor
√

n in (1.2) is optimal in some sense [2]. Furthermore, Song [4] studied the more
general case. For two arbitrary matrices, he obtained

√√√√
n∑

i=1

|µτ(i) − λi|2 ≤
√

n(1 +
√

n − p)max
{
‖Q−1EQ‖F , ‖Q−1EQ‖1/m

F

}
(1.3)

and
|µτ(i) − λi| ≤

√
n(1 +

√
n − p)max

{
‖
√

nQ−1EQ‖2, ‖
√

nQ−1EQ‖1/m
F

}
(1.4)

where Q−1AQ = diag(J1, ..., Jp) defines the Jordan form of A and m is the order of the largest
Jordan block.
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As well known for any matrix Ã ∈ Cn×n, there is a unitary matrix U such that U∗ÃU =
diag(Ã1, ..., Ãs), where Ãi is an upper triangular matrix, i = 1, ..., s. In [5] the authors showed

that if A is normal then for any matrix Ã there exists a permutation τ such that
√√√√

n∑

i=1

|µτ(i) − λi|2 ≤
√

n − s + 1||E‖F . (1.5)

It is noted that s in (1.5) is not unique. In fact, it need not to decompose Ã so that Ãi is upper

triangular. Now let Ã ∈ Cn×n, we denote by s(Ã)

s(Ã) = max
U is unitary

{q : U∗ÃU = diag(Ã1, ..., Ãq), Ãi is square, i = 1, ..., q}. (1.6)

This means that s(Ã) is the most diagonal block numbers for which Ã is unitarily similar to

a block diagonal matrix. Hence s(Ã) exists and is unique for any matrix, and for any unitary

matrix Q, s(Q∗ÃQ) = s(Ã) ≥ 1. Notice if Ã is normal, then s(Ã) = n.
By (1.5) it is easy to prove the following result.

Theorem 1.1. Let s(Ã) be given by (1.6), and let A be normal. Then for any matrix Ã there
exists a permutation τ such that

√√√√
n∑

i=1

|µτ(i) − λi|2 ≤
√

n − s(Ã) + 1||E‖F . (1.7)

In this paper, we shall improve the bounds in (1.3) and (1.4) for arbitrary matrices Ã and
A based on Theorem 1.1. The relative bound and the eigenvalue inclusion region are also
considered.

2. The Absolute Bound

First we write A into its Jordan canonical form

Q−1AQ = J = diag(J1, ..., Jp), (2.1)

where Ji be an mi × mi Jordan block matrix with the form

Ji =




λi 1 0

λi
. . .

. . . 1
0 λi




, i = 1, ..., p.

For ε 6= 0, let

T = diag(T1, ..., Tp), Ti = diag(1, ε, ε2, ..., εmi−1), i = 1, ..., p. (2.2)

Then from (2.1) it is easy to check that

T−1Q−1AQT = Λ′ + ∆′
ε,

where Λ′ = diag(λ1Im1
, ..., λpImp

), ∆′
ε = diag(∆′

1, ..., ∆
′
p) and

∆′
i =




0 ε 0

0
. . .

. . . ε

0 0




mi×mi

, i = 1, ..., p.
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For two general matrices A and Ã, we have the following bound.
Theorem 2.1. Let A∈ Cn×n with (2.1) and Ã = A+ E. Then there exists a permutation τ of
〈n〉 such that

n∑

i=1

|µτ(i) − λi|2

≤
{

(n − s1 + 1)
[
(n − p + 1) + 2

√
n − p||Q−1EQ‖F

]
||Q−1EQ‖

2

m

F , if ||Q−1EQ‖F < 1

(n − s2 + 1)
[
||Q−1EQ‖F + (n − p + 2

√
n − p)

]
||Q−1EQ||F , if ||Q−1EQ‖F ≥ 1

,(2.3)

where m = maxi mi, s1 = s(T−1Q−1ÃQT ), s2 = s(Q−1ÃQ) and T is as in (2.2) with ε =

(||Q−1EQ||F )
1

m

Proof. Let T be as in (2.2). Clearly, we have

T−1Q−1EQT + ∆′
ε = T−1Q−1ÃQT − Λ′.

Hence
‖T−1Q−1ÃQT − Λ′‖2

F = ‖T−1Q−1EQT + ∆′
ε‖2

F

It is easy to see that

‖T−1Q−1EQT + ∆′
ε‖2

F

= ‖T−1Q−1EQT ‖2
F + ‖∆′

ε‖2
F + 2 Re tr(∆′∗

ε T−1Q−1EQT ) (2.4)

≤ ‖T−1||22||T ||22||Q−1EQ‖2
F + (n − p)ε2 + 2 Re tr(∆′∗

ε T−1Q−1EQT )

Let Ẽ = Q−1EQ. Now partition Ẽ into the block form Ẽ = (Ẽij)p×p conformable with (2.2),
then

Re tr(∆′∗
ε T−1Q−1EQT ) = Re tr(∆′∗

ε T−1ẼT ) = Re

p∑

i=1

tr(∆′∗
i T−1

i ẼiiTi)

= Re

p∑

i=1

mi∑

k=2

ε(T−1
i ẼiiTi)k−1,k.

It is easy to see
(T−1

i ẼiiTi)k−1,k = ε(Ẽii)k−1,k.

Thus

Re tr(∆′∗
ε T−1Q−1EQT ) = Re

p∑

i=1

mi∑

k=2

ε2(Ẽii)k−1,k

≤ ε2

p∑

i=1

mi∑

k=2

|(Ẽii)k−1,k|

≤ ε2√n − p

√√√√
p∑

i=1

mi∑

k=2

|(Ẽii)k−1,k|2

≤ ε2√n − p

√√√√
p∑

i=1

||Ẽii||2F , (2.5)

which together with (2.4) gives

‖T−1Q−1EQT − ∆′
ε‖2

F

≤ max{ε2(m−1), ε2(1−m)}||Q−1EQ‖2
F + (n − p)ε2 (2.6)

+2ε2√n − p||Q−1EQ||F .



144 W. LI AND J.X. CHEN

If ||Q−1EQ||F < 1, take ε = (||Q−1EQ||F )
1

m . By (2.6) we have

‖T−1Q−1EQT − ∆′
ε‖2

F ≤ ε2(n − p + 1) + 2
√

n − pεm+2. (2.7)

Applying the inequality (1.5) to T−1Q−1ÃQT and Λ′, one may deduce
n∑

i=1

|µτ(i) − λi|2 ≤ (n − s1 + 1)||T−1Q−1ÃQT − Λ′||2F ,

which together with (2.7) gives the first inequality in (2.3).
If ||Q−1EQ||F ≥ 1, take ε = 1. Hence by (2.6) we have

‖T−1Q−1EQT − ∆′
ε‖2

F

≤ ||Q−1EQ‖2
F + (n − p) + 2

√
n − p||Q−1EQ||F

≤ ||Q−1EQ‖2
F + (n − p + 2

√
n − p)||Q−1EQ||F .

Again applying the inequality (1.5) to T−1Q−1ÃQT and Λ′, one may deduce the second in-
equality in (2.3).

The bound in (2.3) seems more complicated. But we can reduce it to some simple forms.

Corollary 2.2. Let A∈ Cn×n with (2.1) and Ã = A + E.
(1) If A is diagonalizable, i.e., there exists a nonsingular matrix Q such that A = QΛQ−1,

then there exists a permutation τ of 〈n〉 such that

n∑

i=1

|µτ(i) − λi|2 ≤ (n − s + 1)||Q−1EQ‖2
F ≤ (n − s + 1)κ2(Q)‖E‖2

F , (2.8)

where κ(Q) = ‖Q−1‖2‖Q‖2 denotes the spectral condition number of Q and s = s(Q−1ÃQ).
(2) If A is not diagonalizable, then

n∑

i=1

|µτ(i) − λi|2 ≤ (n − ŝ + 1)f(||Q−1EQ‖F )max{||Q−1EQ‖
2

m

F , ||Q−1EQ‖F}. (2.9)

where f(x) = x + (n − p + 2
√

n − p), ŝ = min{s(T−1Q−1ÃQT ), s(Q−1ÃQ)}
Proof. (1) Since A is diagonalizable, from (2.1) and (2.2) we have p = n, mi = 1, i = 1, ..., n

and T = I. This implies that s1 = s. Then the first inequality in (2.8) follows from Theorem 2.1.
The second in (2.8) follows from the fact that ||Q−1EQ‖F ≤ ||Q||2||Q−1||2‖E‖F = κ(Q)‖E‖F .

(2) Since A does not diagonalizable, we have p < n, and thus 2
√

n − p > 1. Notice that if
||Q−1EQ‖F < 1, then (n − p + 1) + 2

√
n − p||Q−1EQ‖F ≤ ||Q−1EQ‖F + (n − p + 2

√
n − p),

from which and (2.3) one may deduce (2.9).

Remark 2.1. If ||Q−1EQ‖F < 1, then max{||Q−1EQ‖
2

m

F , ||Q−1EQ‖F } = ||Q−1EQ‖
2

m

F and

f(||Q−1EQ‖F ) < (
√

n − p + 1)2. If ||Q−1EQ‖F ≥ 1, then max{||Q−1EQ‖
2

m

F , ||Q−1EQ‖F } =
||Q−1EQ‖F and f(||Q−1EQ‖F ) ≤ (

√
n − p + 1)2||Q−1EQ‖F . From this argument we have the

bound below√√√√
n∑

i=1

|µτ(i) − λi|2 ≤
√

n − ŝ + 1(1 +
√

n − p)max
{
‖Q−1EQ‖F , ‖Q−1EQ‖1/m

F

}
. (2.10)

From (2.10) it is easy to see that our bounds (2.8) and (2.9) improve the bound (1.3). It is also
noted that if A is normal, then (1.7) can be deduced from (2.8).
Remark 2.2. In practice the perturbation E may be small enough, so we may assume that
||E‖F < 1

κ(Q) . Hence from Theorem 2.1 we may obtain a simple bound below.
√√√√

n∑

i=1

|µτ(i) − λi|2 ≤
√

n − s1 + 1(1 +
√

n − p)‖Q−1EQ‖1/m
F .
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Applying our recent bound (1.5) we can deduce the following result.

We write Ã into Jordan canonical form

P−1ÃP = J̃ = diag(J̃1, ..., J̃p̃), (2.11)

where J̃j be an m̃j × m̃j Jordan block matrix with the form

J̃i =




µj 1 0

µj
. . .

. . . 1
0 µj




, j = 1, ..., p̃.

Corollary 2.3. Let Ã∈ Cn×n with (2.11). If P−1AP is a normal matrix. Then there exists a
permutation τ of 〈n〉 such that

√√√√
n∑

i=1

|µτ(i) − λi|2 ≤
√

n − p̃ + 1κ(P )‖E‖F . (2.12)

Proof. Applying (1.7) to the matrices P−1ÃP and P−1AP , it is easy to deduce the inequality
(2.12).

From the bound (2.10) and the fact that ‖E‖F ≤ √
n‖E‖2, we have the spectral norm bound

as follows.
Corollary 2.4. Let A∈ Cn×n with (2.1) and Ã = A + E. Then there exists a permutation τ

of 〈n〉 such that

|µτ(i) − λi|2 ≤
√

n − s + 1(1 +
√

n − p)max
{
‖
√

nQ−1EQ‖2, ‖
√

nQ−1EQ‖1/m
2

}
. (2.13)

3. The Relative Bound

Relative perturbation bounds of eigenvalues were studied by Eisenstat and Ipsen [5] for

diagonalizable matrices. It was proved in [6] that when A = XΛX−1, Ã = Y Λ′Y −1 and A is
nonsingular, there exists a permutation τ of 〈n〉 such that

√√√√
n∑

i=1

∣∣∣∣
µτ(i) − λi

λi

∣∣∣∣
2

≤ κ(X)κ(Y )‖A−1E‖F . (3.1)

(noting that a slight modification form of (3.1) can be found in [7]). In [5] the authors considered

that case that A is normal and Ã is arbitrary, the new relative perturbation bound was obtained
below.

Let A ∈ Cn×n be a normal matrix with

A = V ΛV ∗, (3.2)

where V is a unitary matrix, and let Ã = A + E ∈ Cn×n. Then there exists a permutation τ

of 〈n〉 such that √√√√
n∑

i=1

∣∣∣∣
µτ(i) − λi

λi

∣∣∣∣
2

≤
√

n − s(Ã) + 1||A−1||2||E||F . (3.3)

Here we consider the case that A is diagonalizable, i.e., there is a nonsingular matrix X

such that
A = XΛX−1 (3.4)
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and Ã is arbitrary with Schur upper triangular decomposition

Ã = U(Λ′ + ∆)U∗, (3.5)

where U is unitary. We have the following bound.
Theorem 3.1. Let Ã = A + E∈ Cn×n, and let A be a nonsingular diagonalizable matrix with
(3.4). Then there exists a permutation τ of 〈n〉 such that

√√√√
n∑

i=1

∣∣∣∣
µτ(i) − λi

λi

∣∣∣∣
2

≤ min

{
ρ(A−1)

√
n − s(X−1ÃX) + 1, ||A−1||2

√
n

}
κ(X)||E||F . (3.6)

Proof. Since
A−1Ã − I = A−1E ,

by (3.4) and (3.5) we have

Λ−1X−1UΛ′ − X−1U = X−1A−1EU − X−1A−1U∆ (3.7)

where ∆ is defined in (3.5). Let T = X−1U , Λ1 = Λ−1, Λ2 = Λ′ and Λ3 = Λ4 = I. Then by
Theorem 3.2 of [8] we obtain

σn(X−1U)

√√√√
n∑

i=1

|µτ(i)

λi
− 1|2 ≤ ||Λ−1X−1UΛ′ − X−1U ||F

= ||X−1A−1EU − X−1A−1U∆||F
≤ ||X−1||2||A−1||2||E − U∆U∗||F
= ||X−1||2||A−1||2||U∗EU − ∆||F (3.8)

By the proof of Theorem 4.9 of [3] (see (4.41) of [3]) it is easy to see ‖U∗EU − ∆‖2
F ≤

n‖U∗EU‖2
F = n‖E‖2

F , which together with (3.8) gives
√√√√

n∑

i=1

∣∣∣∣
µτ(i) − λi

λi

∣∣∣∣
2

≤
√

nκ(X)||A−1||2||E||F . (3.9)

On the other hand by (3.4) we have

X−1ÃX − Λ = X−1EX. (3.10)

Since Λ is normal, from (3.3) and (3.10) we have
√√√√

n∑

i=1

∣∣∣∣
µτ(i) − λi

λi

∣∣∣∣
2

≤
√

n − s(X−1ÃX) + 1||Λ−1||2||X−1EX ||F

≤
√

n − s(X−1ÃX) + 1κ(X)ρ(A−1)||E||F ,

which together with (3.9) gives (3.5).
By Theorem 3.1 it is easy to prove the following spectral norm relative bound.

Corollary 3.2. Under the same assumption as Theorem 3.1, there exists a permutation τ of
〈n〉 such that

max

∣∣∣∣
µτ(i) − λi

λi

∣∣∣∣ ≤ min{
√

n − s(X−1ÃX) + 1ρ(A−1),
√

n||A−1||2}
√

nκ(X)||E||2 (3.11)

Remark 3.1. The bound (3.6) reduces to (3.3) provided A is normal. In fact, if A is normal,

then X in (3.4) is unitary, and thus s(X−1ÃX) = s(Ã) and κ(X) = 1.



The Eigenvalue Perturbation Bound for Arbitrary Matrices 147

Remark 3.2. Although Ã is diagonalizable, in the following example it is known that the
bound in (3.6) is better than one in (3.1). Let

A =

(
−0.03 0.04
0.04 0.03

)
, Ã =

(
−0.02 0.05
0.01 0.02

)
.

Then A is Hermitian and Ã is diagonalizable, in fact,

Ã =

(
1 −5
1 1

) (
0.03 0
0 −0.03

) (
1 −5
1 1

)−1

.

Let Y =

(
1 −5
1 1

)
. Then κ(Y ) = 4. 4415. A simple calculation gives κ(Y )||A−1(Ã−A)||F =

3. 0772 and
√

2||A−1||2||Ã − A||F = 0. 9798, which show that our relative bound in (3.6) is
sharper than those in (3.1).

4. The Eigenvalue Inclusion Region

As an application of the bound (1.5), in this section we consider the eigenvalue inclusion
region. Let A be unitarily similar to a block diagonal matrix and s(A) be given by (1.6).

A classical region is the Gersgorin discs, i.e., the all eigenvalues of A = (aij) are located in
the union of n discs

n⋃

i=1

{z ∈ C | |z − aii| ≤
n∑

(i6=)j=1

|aij |}. (4.1)

Let λ = (λ1, ..., λn)T be an eigenvalue vector of A. Let τ be a permutation of 〈n〉. By λτ we
denote λτ = (λτ(1), ..., λτ(n))

T . Let DA = diag(a11, ..., ann), a = (a11, ..., ann) and A′ = A−DA.

By the similar idea to [9], we can obtain a new result below.
Theorem 4.1. Let A = (aij) ∈ Cn×n. Then there exists a permutation τ of 〈n〉 such that λτ

is located in the following n-dimension sphere.

{z ∈ Cn | ||z − a||2F ≤ (n − s(A) + 1)||A′||2F }. (4.2)

Proof. Clearly we have A − DA = A′. Notice that DA is normal. It follows from (1.5) that∑n
i=1 |λτ(i) − aii|2 ≤ (n − s(A) + 1)||A′‖2

F , which proves the result.
For some special matrices, e.g., a normal matrix, the eigenvalue inclusion region (4.2) can

be written as follows.

Corollary 4.2. Let A = (aij) ∈ Cn×n be a normal matrix. Then each disc

{z ∈ C | |z − aii| ≤ (

n∑

i6=j

|aij |2)
1

2 } (4.3)

contains at least one eigenvalue of A. If there is an eigenvalue of A located on the boundary of
(4.3), then the other n − 1 eigenvalues of A are ajj , j 6= i

Proof. The first part of this corollary can be found in [10]. It needs only to prove the second
part. Since A is normal, A is unitarily similar to a diagonal matrix, and hence s(A) = n. By
Theorem 4.1 we have

||λσ − a||F ≤ ||A′||F . (4.4)

Let λk be an eigenvalue of A located on the boundary of (4.3), i.e., |λk−aii| = (
∑n

i6=j |aij |2)
1

2 =
||A′||F . By (4.4) we have |λσ(j) − ajj | = 0, σ(j) 6= k. Hence λσ(j) = ajj for σ(j) 6= k and j 6= i.

This proves the corollary.
Remark 4.1. It is difficult to compute s(A) for general matrices. However, since s(A) ≥ 1, by
(4.2) we have

λτ ∈ {z ∈ Cn | ||z − a||F ≤
√

n||A′||F },
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which is a result in [9].

Remark 4.2. If A is normal, then by (4.3) we provide a tighter region in some sense. For
example,

A =




1 −3 −5 −3
−3 1 0 0
−5 0 1 0
−3 0 0 1


 .

Then by Gersgorin discs (4.1) all eigenvalues of A are located in {z ∈ C | |z − 1| ≤ 11}. But
this matrix is Hermitian, and hence normal, then by (4.3) all eigenvalues of A are located in
{z ∈ C | |z − 1| ≤

√
86}. This implies the region in (4.3) is tighter than one in (4.1). In fact,

the eigenvalues of A are 1 +
√

43, 1−
√

43, 1, 1. This example also illustrates that the region in
(4.2) is sharp.
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