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Abstract

In this paper, we propose a feasible QP-free method for solving nonlinear inequality
constrained optimization problems. A new working set is proposed to estimate the active
set. Specially, to determine the working set, the new method makes use of the multiplier
information from the previous iteration, eliminating the need to compute a multiplier
function. At each iteration, two or three reduced symmetric systems of linear equations
with a common coefficient matrix involving only constraints in the working set are solved,
and when the iterate is sufficiently close to a KKT point, only two of them are involved.
Moreover, the new algorithm is proved to be globally convergent to a KKT point under
mild conditions. Without assuming the strict complementarity, the convergence rate is
superlinear under a condition weaker than the strong second-order sufficiency condition.
Numerical experiments illustrate the efficiency of the algorithm.
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1. Introduction

Consider the following inequality constrained optimization problem.

min f(x) subject to c(x) ≤ 0 (1.1)

where f(·) : Rn → R and c(·) : Rn → Rm are twice continuously differentiable functions. Define
F := {x ∈ Rn | c(x) ≤ 0} and let I = {1, · · · , m}. For any x ∈F , the active set is denoted by
I0(x) = {i ∈ I|ci(x) = 0}.

It is well known that sequential quadratic programming(SQP) methods is one of the most
efficient methods for solving nonlinear constrained optimization problems. Under certain condi-
tions SQP methods also possess good global and superlinear convergence properties. Therefore,
SQP methods have received much attention in recent decades. However, there are still some
defaults existed in SQP methods. For example, the QP subproblem may be inconsistent, that
is, the feasible set of the QP subproblem may be empty. Moreover, it is usually difficult to
use some good spare and symmetric properties of the original problem, which may restrict the
application of the SQP algorithm, especially for large-scale problems. We refer to the review
paper [1] for an excellent survey about SQP methods.
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Sequential systems of linear equations(SSLE in short) method, also called QP-free method,
is proposed mainly to overcome the shortcomings of SQP method mentioned above. Panier,
Tits and Herskovits [2] first proposed a feasible QP-free algorithm for solving problem (1.1).
At each iteration, they first solve two systems of linear equations with the following form

(

Hk A(xk)
MA(xk)T G(xk)

)(

d
λ

)

=

(

−∇f(xk)
△k

)

(1.2)

where A(xk) = (∇c1(x
k), · · · ,∇cm(xk))T , G(xk) = diag((ci(x

k)) and M = diag(µi). diag
((ci(x

k)) and diag(µi) denote the m × m diagonal matrix whose i-th diagonal element are
ci(x

k) and µi(i = 1, · · · , m), respectively. To avoid the Maratos effect, locally a second order
correction is computed by solving a least squares subproblem. It is shown that any accumulation
point of the iterates generated by the algorithm is a stationary point of problem (1.1). If further
the stationary points are assumed to be finite, the point is proved to be a KKT point. It is
also shown that the algorithm has a two-step superlinear convergence rate. Later, Z. Gao,
G. He and F. Wu[4] improved the algorithm in the sense that any accumulation point is a
KKT point without assuming the isolatedness of the accumulation point. To achieve this, they
solve an extra linear system obtained from (1.2) by slightly perturbing the right-hand side of
(1.2). Recently, their algorithm is further improved in [5] by themselves, which proved the
one-step superlinear convergence under the strict complementarity and second order sufficient
condition. The same idea is also used to develop a primal-dual logarithmic barrier interior-point
method by Urban, Tits and Lawrence [3] and an infeasible SSLE algorithm for solving general
constrained optimization problems in [6]. However, the coefficient matrix in linear system (1.2)
may become ill-conditioned if the multiplier µi corresponding to a nearly active constraint ci(x)
becomes very small. This may easily occur if the strict complementarity doesn’t hold at the
solution of problem (1.1). To avoid the ill-conditionedness, H. Qi and L. Qi [10] proposed
a new QP-free algorithm for solving problem (1.1), that is based on a nonsmooth equation
reformulation of the KKT system of problem (1.1) by using the Fisher-Burmeister function. It
is shown that under the Linear Independence Constraint Qualification, the coefficient matrix
in [10] is uniformly nonsingular and well-conditioned even if the strict complementarity does
not hold at the accumulation point. But they still need strict complementarity to prove the
superlinear convergence of their algorithm.

On the other hand, Z. Gao, G. He and F. Wu [7] proposed an infeasible SSLE method
for general constrained optimization problems. At each iteration, they solve three symmetric
systems of linear equations of the following form

(

Hk ∇cIk
(xk)

∇cIk
(xk)T 0

)(

d
λ

)

=

(

−∇f(xk)
△k

)

(1.3)

where Ik ⊆ I is a working set and an estimate of the active set I0(x
k). The same idea is also

used in [8] by Y.F. Yang, D.H. Li and L. Qi to develop a feasible QP-free algorithm for solving
problem (1.1), based on an active constraints identification technique proposed by Facchinei,
Fischer and Kanzow [9]. Different from algorithms in [2-6,10], algorithms in [7,8] are not affected
by the ill-conditionedness of coefficient matrix triggered by dual degeneracy. However, in order
to prove superlinear convergence, they still need strict complementarity to hold. Other similar
QP-free methods can also be seen in [11-13].

Ever since the first QP-free algorithm was proposed, it has always been an important re-
search area to establish superlinear convergence without strict complementarity. Facchinei and
Lucidi[14], Bonnans[15] have proposed several local QP-free algorithms whose rapid convergence
does not need the strict complementarity to hold. Facchinei , Lucidi and Palagi[16] proposed a
globally convergent truncated Newton method for solving box constrained optimization prob-
lem, whose superlinear convergence also does not rely on the strict complementarity. However,
globally convergent QP-free algorithm for generally constrained optimization problems without
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strict complementarity still need to be further studied.
In this paper, we propose a new feasible SSLE algorithm for solving problem (1.1). This

study is motivated by successful application of Facchinei-Fisher-Kanzow accurate identifica-
tion technique for active set (see, [8] [9]). The new algorithm not only possesses almost all
the favorable global convergence properties of existing QP-free methods, it also enjoys the lo-
cal superlinear convergence without strict complementarity. Other interesting features of the
algorithm includes:

(a) A different rule from that of [6], [10] and [11] is used to construct the term △k in linear
systems (1.2) and (1.3). Based on the new rule, only two or three symmetric systems of linear
equations with a common coefficient matrix need to be solved at each iteration. Specially, when
the iterate is sufficiently close to a KKT point, only two of them are involved.

(b) In order to determine the working set Ik, we use the multiplier λk−1 from the last
iteration instead of the following multiplier function used in [8,9].

λ(x) := (∇c(x)T∇c(x) + diag(c2
i (x)))−1∇c(x)T∇f(x) (1.4)

(c) Another remarkable feature of the new algorithm is that under mild conditions, the
working set Ik eventually identifies the strong active I+

0 (x∗) as the iterate is sufficiently close
to a KKT point x∗. It is also an accurate identification of I0(x

∗) under additional assumptions.
Moreover, we prove that Ik = I0(x

∗) without using the corresponding results given in [9].
The remainder of the paper is organized as follows. In the following section, we give the new

algorithm and prove that it is well defined. Section 3 is devoted to show the global convergence
of the new algorithm. Its local superlinear convergence is discussed in section 4. We present in
section 5 some preliminary numerical experiments. The last section is about some conclusions.

A few words for the notation. Throughout the paper, we use ‖ · ‖ to stand for the Euclidean
vector norm. For λ ∈ Rm and J ⊆ I, | J | denotes the cardinal number of set J . We denote by
cJ(x) the subvector of c(x) with components ci(x), i ∈ J and by ∇cJ (x) the transposed Jacobin
matrix of cJ (x). eJ ∈ R|J| and 0J ∈ R|J| are the vectors of all ones and zeros, respectively. Let
K be an infinite subset of the integer set N , the symbol K − 1 denote the set {k − 1 | k ∈ K}.
We use the notation uk |K= 0(or1) if for all k ∈ K, uk = 0(or1). If the set Ik = ∅ for all k ∈ K,
we denote Ik |K= ∅ and Ik |K 6= ∅ if Ik 6= ∅ for all k ∈ K. If the working set Ik keeps changeless
for all k ∈ K, we write Ik |K= con, and Ik is rewritten by IK .

2. Algorithm

Define the Lagrangian function of problem (1.1) by

L(x, λ) = f(x) + λT c(x)

A point x∗ ∈F is called a stationary point of problem (1.1), if there exits λ∗ ∈ Rm such that

∇xL(x∗, λ∗) = 0, and ci(x
∗)λ∗

i = 0, ∀i ∈ I (2.1)

If further λ∗ ≥ 0, then x∗ is called a KKT point. Sometimes, we also call (x∗, λ∗) satisfying
(2.1) with λ∗ ≥ 0 a KKT point of problem (1.1). For a KKT point (x∗, λ∗), we denote the
strong active set by I+

0 (x∗) := {i ∈ I0(x
∗) | λ∗

i > 0}. The working set is defined by

I(x, y, λ, ε) := {i ∈ I | ci(x) + ε min{ρ(y, λ), M} > 0} (2.2)

where x, y ∈F , λ ∈ Rm, ε is a nonnegative parameter, M is a positive constant and

ρ(y, λ) :=
√

‖ Φ(y, λ) ‖ with Φ(y, λ) :=

(

∇yL(y, λ)
min{−c(y), λ}

)

It is easy to see that ρ(·) is continuous and nonnegative with ρ(x∗, λ∗) = 0 if and only if (x∗, λ∗)
is a KKT point of problem (1.1). For a given xk and Hk, we denote the matrix MJ(xk) by

MJ(xk) :=

(

Hk ∇cJ (xk)
∇cJ (xk)T 0

)
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Now we formally state our algorithm.

Algorithm 2.1.
(S.0)(Initialization)

Parameters: σ ∈ (0, 1), σ1 ∈ (0, 1), α ∈ (0, 1), β ∈ (0, 1), δ ∈ (0, 1), η ∈ (2, 3), u ∈ (0, 1
2 ).

Data: ε0 > 0, w0 > 0, M > 0, λ0 = 0, u0 = 0, x0 = x1 ∈F and ci(x
0) < 0, ∀i ∈ I,

H0 ∈ Rn×n is a symmetric positive definite matrix; set k := 1
(S.1) (Compute working set)

(S1.1) Set t = 0.
(S1.2) Compute Jt := I(xk, xk−1, λk−1, εt).
(S1.3) If Jt = ∅, then set εk = εt, wk := wt, Ik = ∅, d̄k = dk = −H−1

k ∇f(xk) , λk = 0,
goto (S.3).

(S1.4) If det(∇cJt
(xk)T∇cJt

(xk)) < wt, then set t = t + 1, εt = σεt−1, wt = σ1wt−1, goto
(S1.2).

(S1.5) Set εk = εt, wk = wt, and Ik = Jt.
(S.2) (Computation of search direction)

(S2.1) Set Ak :=‖ ∇cIk
(xk)λ̂k

Ik
+ ∇f(xk) ‖3 + ‖ cIk

(xk) ‖3, where

λ̂k
Ik

=

(

λk−1

Ik∩I
+

k−1

, 0Ik\I
+

k−1

)

, I+
k−1 = {i ∈ Ik−1 | λk−1

i > 0}

Compute (dk0, λk0
Ik

) by solving the following linear system in (d, λ)

MIk
(xk)

(

d
λ

)

=

(

−∇f(xk)
−cIk

(xk) − Ak · eIk

)

(2.3)

Set Γ−
k0 := {i ∈ Ik | λk0

i < 0}. If

∇f(xk)T dk0 ≤ −δ(dk0)T Hkdk0, ‖ cIk
(xk) ‖≤

√

‖ dk0 ‖, | λk0
i |≤

√

‖ dk0 ‖, i ∈ Γ−
k0 (2.4)

then set λk := λk0 :=
(

λk0
Ik

, 0I\Ik

)

, else set uk = 1 and goto (S2.3).

(S2.2) Compute (dk1, λk1
Ik

) by solving the following linear system in (d, λ).

MIk
(xk)

(

d
λ

)

=

(

−∇f(xk)
ωk

)

(2.5)

where ωk = (ωk
i , i ∈ Ik) and

ωk
i = ∇ci(x

k)T dk0 − ci(x
k + dk0)− ‖ dk0 ‖η, i ∈ Ik

Set dk = dk0, d̄k = dk1, λk1 :=
(

λk1
Ik

, 0I\Ik

)

; goto (S.3).

(S2.3) Compute (dk2, λk2
Ik

) by solving the following linear system in (d, λ)

MIk
(xk)

(

d
λ

)

=

(

−∇f(xk)
0

)

(2.6)

Set Bk := −α
(

1+
∑

i∈Ik
|λk2

i
|

)

(

∇f(xk)T dk2 −
∑

i∈Ik
λk2

i min{−ci(x
k), λk2

i }
)

, λk2 :=
(

λk2
Ik

, 0I\Ik

)

.

(S2.4) Compute (dk3, λk3
Ik

) by solving the following linear system in (d, λ)

MIk
(xk)

(

d
λ

)

=

(

−∇f(xk)
min{−cIk

(xk), λk2
Ik
} − BkeIk

)

(2.7)

Set λk := λk3 :=
(

λk3
Ik

, 0I\Ik

)

and d̄k = dk = dk3

(S.3) If ρ(xk, λk) = 0, stop; else if uk = 0 and ‖ d̄k − dk ‖>‖ dk ‖, set d̄k = dk .
(S.4)(Line search) Choose tk, the first number t in the sequence {1, β, β2, · · ·} satisfying

f(xk + tdk + t2(d̄k − dk)) − f(xk) ≤ ut∇f(xk)T dk (2.8)
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ci(x
k + tdk + t2(d̄k − dk)) < 0, i ∈ I (2.9)

(S.5) Set xk+1 := xk + tkdk + t2k(d̄k−dk), uk+1 = 0. Generate a new symmetric positive definite
matrix Hk+1. Set k := k + 1, goto (S.1).

Remarks. The main purpose of (S.1) is to generate a working set and ensure that the matrix
MIk

(xk) is nonsingular for every k. Thus, (dkj , λkj) is well defined for all j ∈ {0, 1, 2, 3}.
Besides, at each iteration, two or three reduced linear systems need to be solved, where the
main purpose of solving (2.3) and (2.5) is to guarantee the one-step superlinear convergence of
Algorithm 2.1 without strict complementarity. Moreover, a judging system of inequalities (2.4)
is introduced, through which we can decide which equation need to be solved at each iteration.

The rest of the section is devoted to show that Algorithm 2.1 is well defined. To this end,
we first assume that the following hypotheses hold throughout the paper.
Assumption A1. The set F∩{x|f(x) ≤ f(x0)} is nonempty and compact.
Assumption A2. At every x ∈F , {∇ci(x), i ∈ I0(x)} are linearly independent.
Assumption A3. There exist constants C1 > 0 and C2 > 0 such that for all k

C1 ‖ d ‖2≤ dT Hkd ≤ C2 ‖ d ‖2, ∀d ∈ Rn

Lemma 2.1. The inner iteration (S1.2)-(S1.4) terminates finitely.

Proof. Assume to contrary that for all t ∈ N , Jt 6= ∅ and

det(∇cJt
(xk)T∇cJt

(xk)) < ωt (2.10)

Besides, by Assumption A1 and the finiteness of set I, we can suppose without loss of generality
that there exists an infinite set N∞ ⊆ N such that Jt |N∞

= con. Letting t ∈ N∞ → ∞ in
(2.10) yields that

det(∇cJN∞
(xk)T∇cJN∞

(xk)) = 0 (2.11)

On the other hand, since εt → 0, we have that JN∞
⊆ I0(x

k). It follows from Assumption A2
that

det(∇cJN∞
(xk)T∇cJN∞

(xk)) 6= 0.

This is a contradiction. The proof is completed.
Similar to the proof of Lemma 2.1, we can easily obtain the following lemma:

Lemma 2.2. There exists a ε̄ > 0 such that εk > ε̄, ∀k ∈N .

Assumption A1 and Lemma 2.2 then directly imply the following Lemmas 2.3-2.4.

Lemma 2.3. {MIk
(xk)} is nonsingular and uniformly bounded with respect to k, that is, there

exist W̄ > 0 and M̄ > 0 such that, for all k and xk ∈F ,

W̄ ≤| det(MIk
(xk)) |≤ M̄

Lemma 2.4. The sequences {(dkj , λkj)}, j = 0, 1, 2, 3 are all bounded.

Lemma 2.5. If uk = 1, then ∇f(xk)T dk ≤ −(1 − α)(dk2)T Hkdk2.

Proof. From (2.6) and (2.7), we can obtain that

∇f(xk)T dk2 = −(dk2)T Hkdk2, ∇f(xk)T dk2 = −(dk2)T Hkdk3

∇f(xk)T dk3 = −(dk3)T Hkdk2 − (λk2
Ik

)T
(

min{−cIk
(xk), λk2

Ik
} − BkeIk

)

Since

∑

i∈Ik

λk2
i min{−ci(x

k), λk2
i } ≥ 0 and

(

1 −
α
∑

i∈Ik
λk2

i
(

1 +
∑

i∈Ik
| λk2

i |
)

)

≥ (1 − α) > 0,
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it follows that

∇f(xk)T dk = ∇f(xk)T dk3 = ∇f(xk)T dk2 − (λk2
Ik

)T
(

min{−cIk
(xk), λk2

Ik
} − BkeIk

)

= ∇f(xk)T dk2 −
∑

i∈Ik
λk2

i min{−ci(x
k), λk2

i } + Bk

∑

i∈Ik
λk2

i

= ∇f(xk)T dk2 −
∑

i∈Ik
λk2

i min{−ci(x
k), λk2

i }

+





−α
(

1+
∑

i∈Ik
|λk2

i
|

)

(

∇f(xk)T dk2 −
∑

i∈Ik
λk2

i min{−ci(x
k), λk2

i }
)





∑

i∈Ik
λk2

i

=



1 −
α
∑

i∈Ik
λk2

i
(

1+
∑

i∈Ik
|λk2

i
|

)





(

∇f(xk)T dk2 −
∑

i∈Ik
λk2

i min{−ci(x
k), λk2

i }
)

≤ −(1 − α)(dk2)T Hkdk2 − (1 − α)
∑

i∈Ik
λk2

i min{−ci(x
k), λk2

i } ≤ −(1 − α)(dk2)T Hkdk2

(2.12)
This completes the proof.

From Lemma 2.5, inequalities (2.4) and (S1.3) of Algorithm 2.1, we can find that dk is
actually a descent direction of f(·). Hence, it follows from a similar proof of Proposition 3.3
in [2] that there exists a tk, the first number of the sequence {1, β, β2, · · ·}, that satisfies the
inequalities (2.8) and (2.9). That is, we can always obtain a new iterate xk+1 from the current
iterate xk. Therefore, we can claim as follows.

Proposition 2.6. Algorithm 2.1 is well-defined.

3. Global Convergence

In this section, we will show that Algorithm 2.1 is globally convergent.

Lemma 3.1. ρ(xk, λk) = 0 if and only if ∇f(xk)T dk = 0.

Proof. From the construction of Algorithm 2.1, the conclusion is obvious if Ik = ∅. If Ik 6= ∅,
it is not difficult to see that uk = 0 will not occur. Therefore, we need only consider the case:
Ik 6= ∅ and uk = 1.
If ρ(xk, λk) = 0 , it is easy to see from the definition of ρ(xk, λk) that Hkdk3 = 0, and therefore
dk = dk3 = 0. On the contrary, if ∇f(xk)T dk = 0, we have from (2.12) that

0 = ∇f(xk)T dk ≤ −(1 − α)(dk2)T Hkdk2 − (1 − α)
∑

i∈Ik

λk2
i min{−ci(x

k), λk2
i } ≤ 0 (3.1)

Hence,
dk2 = 0 and (λk2

Ik
)T min{−cIk

(xk), λk2
Ik
} = 0 (3.2)

This and the fact that ci(x
k) < 0, ∀i ∈ I further implies that λk2 = 0. Therefore, by (2.6),

∇f(xk) = 0. Moreover, from (3.2) and the definition of Bk, we have that

min{−cIk
(xk), λk2

Ik
} − BkeIk

= 0 (3.3)

Since MIk
(xk) is nonsingular, it follows from (2.7) and (3.3) that dk3 = 0 and λk = 0. This

completes the proof.
From Lemma 3.1 we know that if Algorithm 2.1 finitely terminate at iteration k, i.e.

ρ(xk, λk) = 0, then xk is an unconstrained stationary point and also a KKT point of prob-
lem (1.1). Therefore, in the following discussion we assume, without loss of generality, that
Algorithm 2.1 generates an infinite sequence {xk}, that is, ρ(xk, λk) 6= 0 for all k ∈N .

Lemma 3.2. Suppose the following conditions hold.
(i) {(xk, λk)}K → (x∗, λ∗), (ii) Ik |K= ∅
(iii) There exists K0 ⊆ K such that {(xk−1, λk−1)}K0

→ (x̄∗, λ̄∗) and ρ(x̄∗, λ̄∗) 6= 0
then λ∗ = 0 and ∇f(x∗) = 0.
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Proof. It is obvious from λk = 0 for all k ∈ K that λ∗ = 0. Hence, we need only show
that ∇f(x∗) = 0. Assume to the contrary that ∇f(x∗) 6= 0. First, by condition (ii), dk =
−H−1

k ∇f(xk). This combined with Assumption A3 implies that there exists a γ1 > 0 such that

∇f(xk)T dk = −∇f(xk)T H−1
k ∇f(xk) < −γ1, ∀k ∈ K (3.4)

Besides, from condition (ii) , (iii) and the definition of Ik, we have that a γ2 > 0 exists such
that

ci(x
k) ≤ −ε̄ρ(xk−1, λk−1) ≤ −γ2, ∀k ∈ K0, i ∈ I (3.5)

Let γ = min{γ1, γ2}. Since the sequences {xk + δdk | δ ∈ [0, 1]} and {dk} are bounded and
f(x) is twice continuously differentiable, we have from (3.4) that there is a ξ ∈ [0, 1] such that
for all k ∈ K

f(xk + tdk) − f(xk) = t∇f(xk)T dk +
1

2
t2(dk)T∇2f(xk + ξtdk)dk

= t∇f(xk)T dk + o(t) ≤ ut∇f(xk)T dk − (1 − u)tγ + o(t) (3.6)

Similar to the proof of (3.6), we have from (3.5) that for all i ∈ I and k ∈ K0

ci(x
k + tdk) = ci(x

k) + O(t) ≤ −γ + O(t) (3.7)

Hence, we have from (3.6) and (3.7) that there exists a t̄ > 0 independent of k such that for
any t ∈ (0, t̄ ], both (2.8) and (2.9) hold. Moreover, (3.4) and (3.6) implies that there exists a
k0 such that for all k ≥ k0 and k ∈ K0, tk ∈ [βt̄, t̄] and

f(xk + tkdk) − f(xk) ≤ −ut̄βγ (3.8)

On the other hand, it is easy to see that, for all k, ∇f(xk)T dk ≤ 0. Thus, together with (2.8),
we get

∞
∑

k=k0

(f(xk+1) − f(xk)) ≤
∞
∑

k≥k0,k∈K0

(−ut̄βγ) → −∞

This implies that f(xk) → −∞, a contradiction with Assumption A1. The proof is completed.

Lemma 3.3. Suppose the following conditions hold.
(i) {(xk, λk)}K → (x∗, λ∗), (ii) Ik |K= ∅,
(iii) There is a K0 ⊆ K such that {(xk−1, λk−1)}K0

→ (x̄∗, λ̄∗) and ρ(x̄∗, λ̄∗) = 0.
If Ik−1 |K0−1= ∅, then λ∗ = 0 and ∇f(x∗) = 0.

Proof. First, conditions (i)-(iii) imply that ∀k ∈ K, λk = 0 and ∇f(x̄∗) = 0. Hence, by
Assumption A3, we have ‖ dk−1 ‖=‖ Hk−1

−1∇f(xk−1) ‖→ 0 as k ∈ K0 → ∞. Therefore,
xk = xk−1 + tk−1d

k−1 → x̄∗ = x∗ as k ∈ K0 → ∞. This completes the proof.

Lemma 3.4. Suppose the conditions (i)-(iii) in Lemma 3.3 hold. If Ik−1 |K0−1 6= ∅, then
λ∗ = 0 and ∇f(x∗) = 0.

Proof. Without loss of generality, suppose that Ik−1 |K0−1= con. Then, from condition (iii)
in Lemma 3.3 we have

{ρ(xk−1, λk−1)}K0
→ 0 (3.9)

If uk−1 |K0−1= 1, (3.9) implies that d̄k−1 = dk−1 → 0 as k ∈ K0 → ∞. If uk−1 |K0−1= 0, again
by (3.9), {dk0−1}K0

→ 0. Hence, by (2.4),

{cIK0−1
(xk−1)}K0

→ cIK0−1
(x̄∗) = 0 (3.10)
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This implies that {ωk−1}K0
→ 0. Meanwhile, (3.10) and Assumption A2 also imply that

MIK0−1
(x̄∗) is nonsingular. Thus, by (2.3) and (2.5), {dk1−1}K0

→ 0. Letting k ∈ K0 → ∞,
we get

xk = xk−1 + tk−1d
k−1 + t2k−1(d̄

k−1 − dk−1) → x̄∗ (3.11)

Denote I+
0 (x̄∗) = {i ∈ I | λ̄∗

i > 0}. Since (x̄∗, λ̄∗) is a KKT point of problem (1.1), it follows
from (3.9) and the definition of IK0−1 that I+

0 (x̄∗) ⊆ IK0−1. Hence, by (3.11),

x∗ = x̄∗ and ci(x
∗) = ci(x̄

∗) = 0, i ∈ I+
0 (x̄∗) (3.12)

Moreover, for ∀i ∈ I+
0 (x̄∗) and sufficiently large k ∈ K0, we have

ci(x
k) + ε̄ρ(xk−1, λk−1)

= ci(x
k) + ε̄[‖ ∇xL(xk−1, λk−1) ‖2 +

m
∑

i=1

| min{−ci(x
k−1), λk−1

i } |2]
1
4

= ci(x
k) + ε̄[‖ Hk−1d

k−1 ‖2 +

m
∑

i=1

| min{−ci(x
k−1), λk−1

i } |2]
1
4

≥ ci(x
k) + 2−

3
4 ε̄[‖ Hk−1d

k−1 ‖
1
2 +(

m
∑

i=1

| min{−ci(x
k−1), λk−1

i } |2)
1
4 ]

= ci(x
k−1) + O(‖ dk−1 ‖)

+2−
3
4 ε̄[‖ Hk−1d

k−1 ‖
1
2 +(

m
∑

i=1

| min{−ci(x
k−1), λk−1

i } |2)
1
4 ] > 0

This implies that
I+
0 (x̄∗) ⊆ IK ⊆ I0(x

∗) (3.13)

Since IK = ∅ from (ii), it follows that I+
0 (x̄∗) = ∅. Hence, λ̄∗ = λ∗ = 0 and ∇f(x∗) = 0. This

completes the proof.

Lemma 3.5. Suppose that {(xk, λk)}K → (x∗, λ∗). If {∇f(xk)T dk}K → 0, then (x∗, λ∗) is a
KKT point of problem (1.1).

Proof. If Ik |K= ∅, the result can be directly obtained from dk = −H−1
k ∇f(xk) and λk = 0.

Hence, without loss of generality, we suppose that Ik |K 6= ∅ and denote Ik |K := con. If
uk |K= 0, by (2.3) and (2.4), the conclusion is obvious. If, instead, uk |K= 1, we have from
(3.1) that

∇f(xk)T dk ≤ −(1 − α)(dk2)T Hkdk2 − (1 − α)
∑

i∈IK

λk2
i min{−ci(x

k), λk2
i } → 0

This implies that

{dk2}K → 0 and {(λk2
IK

)T min{−cIK
(xk), λk2

IK
}}K → 0 (3.14)

Let η∗ = (λ∗
i | i ∈ IK). Since {λk2} and {dk3} are bounded, we can suppose that {λk2}K̄ → λ̄∗,

{dk3}K̄ → d̄, where K̄ ⊆ K is an infinite index set. Therefore, it follows from (2.6) and (3.14)
that (x∗, λ̄∗) is a KKT point of problem (1.1). Moreover, it is easy to see from (3.14) that

{min{−cIK
(xk), λk2

IK
} − BkeIK

}K → 0

Thus, by (2.6) and (2.7), both (d̄, η∗) and (0, λ̄∗
IK

) are solutions of the following linear system

MIK
(x∗)

(

d
λ

)

=

(

−∇f(x∗)
0

)

(3.15)

Since MIK
(x∗) is nonsingular by Lemma 2.3, it follows that η∗ = λ̄∗

IK
. Hence, λ∗ = λ̄∗. This

completes the proof.



A New Constraints Identification Technique-based QP-free Algorithm . . . 599

Lemma 3.6. Assume that {(xk, λk)}K → (x∗, λ∗) and Ik |K 6= ∅. If either {Bk}K → 0,
uk |K= 1 or {Ak}K → 0, uk |K= 0, then (x∗, λ∗) is a KKT point of problem(1.1).

Proof. If uk |K= 1, by the definition of Bk and in a way similar to the proof of Lemma
3.5, we can easily obtain the conclusion. If uk |K= 0, without loss of generality, we can assume

that Ik |K= con. Since {λ̂k
IK

} is bounded by Lemma 2.4, we can suppose that {λ̂k
IK

}K0
→ λ̂∗

IK
,

where K0 ⊆ K is an infinite index set. Thus, by {Ak}K → 0 and (2.3), we get

∇cIK
(x∗)λ̂∗

IK
+ ∇f(x∗) = 0, cIK

(x∗) = 0 (3.16)

Let λ̂∗ =
(

λ̂∗
IK

, 0I\IK

)

. Then, (3.16) and the definition of λ̂k
IK

imply that (x∗, λ̂∗) is a KKT

point of problem (1.1). Moreover, from (3.16) and linear system (2.3), we have

Hkdk0 + ∇cIK
(xk)(λk0

IK
− λ̂∗

IK
) = −(∇f(xk) −∇f(x∗)) − (∇cIK

(xk) −∇cIK
(x∗))λ̂∗

IK

∇cIK
(xk)T dk0 = −cIK

(xk) − AkeIK

(3.17)
Since cIK

(x∗) = 0, it follows from Assumption A2 that MIK
(x∗) is nonsingular. Hence,

{dk0}K0
→ 0 and {λk0

IK
}K0

→ λ̂∗
IK

This implies that λ∗ = λ̂∗. This proof is completed.
By the definition of Bk, the following Lemma 3.7 is obvious.

Lemma 3.7. ρ(xk, λk) = 0 if and only if Bk = 0 and uk = 1.

Lemma 3.8. Assume that the following conditions hold.
(i) {(xk, λk)}K → (x∗, λ∗), (ii) Ik |K 6= ∅,
(iii) There exists K0 ⊆ K such that {(xk−1, λk−1)}K0

→ (x̄∗, λ̄∗) and ρ(x̄∗, λ̄∗) 6= 0,
then (x∗, λ∗) is a KKT point of problem (1.1).

Proof. Assume to the contrary that (x∗, λ∗) is not a KKT pair of problem (1.1). Then, it
follows from Lemma 3.5 that there exists a γ1 > 0 such that

∇f(xk)T dk < −γ1, ∀k ∈ K (3.18)

Without loss of generality, suppose that Ik |K= con. In a way similar to the proof of Lemma
3.2, we have, for all k ∈ K,

f(xk + tdk + t2(d̄k − dk)) − f(xk) ≤ ut∇f(xk)T dk − (1 − u)tγ1 + o(t)

If uk |K= 0, by Lemma 3.6, there is a δ1 > 0 such that Ak > δ1, ∀k ∈ K. If uk |K= 1,
then Lemmas 3.6 and 3.7 imply that there is a δ2 > 0 such that Bk > δ2, ∀k ∈ K. Since
ρ(x̄∗, λ̄∗) 6= 0, there must exist a ρ0 > 0 such that

ρ(xk−1, λk−1) > ρ0, ∀k ∈ K0

Hence, IK ⊇ I0(x
∗). Moreover, for every i ∈ IK and all k ∈ K0

ci(x
k + tdk + t2(d̄k − dk)) = ci(x

k) + t∇ci(x
k)

T
dk + o(t)

=

{

ci(x
k) − tci(x

k) − tAk + o(t) ≤ −tδ1 + o(t), uk = 0
ci(x

k) + t · min{−ci(x
k), λk0

i } − tBk + o(t) ≤ −tδ2 + o(t), uk = 1

If i /∈ IK , then

ci(x
k + tdk + t2(d̄k − dk)) = ci(x

k) + O(t) ≤ −ε̄ρ0 + O(t)

In a way similar to the proof of Lemma 3.2, we get that {f(xk)}K0
→ −∞, which contradicts

with the fact that {f(xk)} has a lower bound. This completes the proof.
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Lemma 3.9. Assume that the following conditions hold.
(i) {(xk, λk)}K → (x∗, λ∗), (ii) Ik |K 6= ∅,
(iii) There exists K0 ⊆ K such that {(xk−1, λk−1)}K0

→ (x̄∗, λ̄∗) and ρ(x̄∗, λ̄∗) = 0
If Ik−1 |K0−1= ∅, then ∇f(x∗) = 0 and λ∗ = 0.

Proof. Without loss of generality, we suppose that Ik |K= con. Since Ik−1 |K0−1= ∅,
condition (iii) implies that

∇f(x̄∗) = 0 and {dk−1}K0
→ 0 (3.19)

where dk−1 = −H−1
k−1∇f(xk−1). Let k ∈ K0 → ∞, then xk = xk−1 + tk−1d

k−1 → x̄∗ = x∗.
Again, from condition (iii) and the definition of Ak, we get

IK ⊆ I0(x
∗), ∀k ∈ K0 (3.20)

Hence, by (3.19) and (3.20), {cIK
(xk) + Ak · eIK

}K0
→ 0. Meanwhile, Assumption A2 and

(3.20) imply that MIK
(x∗) is nonsingular. Therefore, by linear systems (2.3) and (2.6), we

obtain that {dkj}K0
→ 0 and {λ

kj

IK
}K0

→ 0, j = 0, 2. Consequently, if uk |K= 0, then λ∗ = 0

while if uk |K= 1, then {min{−cIK
(xk), λk2

IK
}−Bk ·eIK

}K0
→ 0, which also implies that λ∗ = 0.

This completes the proof.

Lemma 3.10. Suppose the conditions (i)-(iii) in Lemma 3.9 hold. If Ik−1 |K0−1 6= ∅ , then
(x∗, λ∗) is a KKT point of problem (1.1).

Proof. Without loss of generality, we suppose that Ik |K= con and Ik−1 |K0−1:= con, In a
way similar to the proof of Lemma 3.4, we get

x∗ = x̄∗ and I+
0 (x̄∗) ⊆ IK ⊆ I0(x

∗) (3.21)

Let η̄∗ = (η̄∗
i , i ∈ IK), where

η̄∗
i =

{

λ̄∗
i i ∈ I+

0 (x∗)
0 i ∈ IK \ I+

0 (x∗)

Since (x∗, λ̄∗) is a KKT point of (1.1), we have from (3.21) that (0, η̄∗) is the solution of the
following linear system.

MIK
(x∗)

(

d
λ

)

=

(

−∇f(x∗)
0

)

(3.22)

Therefore, the definition of Ak implies that {Ak}K0
→ 0. On the other hand, since MIK

(x∗)
is nonsingular, it follows from condition (i) in Lemma 3.9 that there exist d̄ and λ̄IK

such that
{dk0}K0

→ d̄ and {λk0
IK

}K0
→ λ̄IK

with (d̄, λ̄IK
) being the unique solution of (3.22). Hence,

d̄ = 0, λ̄IK
= η̄∗. Thus, if uk |K= 0, then λ∗ = λ̄∗. Analogously, if uk |K= 1, we can also get

that λ∗ = λ̄∗. This completes the proof.
From Lemmas 3.2-3.10, we have

Theorem 3.11. Algorithm 2.1 either terminates at a KKT point of (1.1) in finite number of
steps or generates an infinite sequence {(xk, λk)}, any accumulation point of which is a KKT
point of (1.1).

4. Rate of Convergence

In this section, we will establish the superlinear convergence of Algorithm 2.1. Let (x∗, λ∗)
be an accumulation point of the sequence {(xk, λk)} generated by Algorithm 2.1, then from
Theorem 3.11, (x∗, λ∗) is a KKT point of (1.1). In the following discussion, we further assume
that ∇2f(x),∇2ci(x), i ∈ I are locally Lipschitz continuous on a neighborhood of x∗. Moreover,
to get the superlinear convergence, we need the following assumption.
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Assumption A4. (x∗, λ∗) is a quasi-regular point of (1.1), i.e., the matrix M(J) is nonsingular
for every J ⊆ I0(x

∗) \ I+
0 (x∗) (empty set included), where M(J) is defined by

M(J) :=





∇2
xxL(x∗, λ∗) −∇cI

+

0
(x∗)(x

∗) −∇cJ(x∗)

∇cI
+

0
(x∗)(x

∗)T 0 0

∇cJ(x∗)T 0 0





Note: The definition of quasi-regular point is first introduced by F. Facchinei, A. Fischer and
C. Kanzow in [9]. Assumption A4 ensures that (x∗, λ∗) is an isolated KKT point(see Theorem
3.15 in [9]). This is essential for our superlinear convergence analysis. We first introduce a
useful proposition as follows.

Proposition 4.1 ([10], Proposition 4.1). Assume that ω∗ ∈ Rt is an isolated accumulation
point of a sequence {ωk} ⊂ Rt such that for every subsequence {ωk}K converges to ω∗, there
is an infinite subset K̄ ⊆ K such that {‖ ωk+1 − ωk ‖}K̄ → 0, then the whole sequence {ωk}
converges to ω∗.

Lemma 4.2. If {xk}K → x∗, then {λk}K → λ∗ and {dk}K → 0.

Proof. Assume that λ∗ is an arbitrary accumulation of {λk}K . Then from Theorem 3.11, we
know that (x∗, λ∗) is a KKT point of problem (1.1). Since Lagrangian multiplier with respect
to x∗ is unique due to Assumption A2, it follows that {λk}K → λ∗ by the boundedness of {λk}.
Next we show that {dk}K → 0 by contradiction. Suppose that there is a K0 ⊆ K such that
{dk}K0

→ d̄ 6= 0 and {Hk}K0
→ H∗. By Algorithm 2.1 and the definition of ρ(·), we have

ρ(xk, λk) ≥
√

‖ Hkdk ‖. Therefore, by Assumption A3,

ρ(x∗, λ∗) ≥
√

‖ H∗d̄ ‖ > 0 (4.1)

which contradicts with ρ(x∗, λ∗) = 0. This completes the proof.

Lemma 4.3. If {(xk, λk)}K → (x∗, λ∗), then {(xk−1, λk−1)}K → (x∗, λ∗)

Proof. Suppose that (x̄∗, λ̄∗) is an arbitrary accumulation point of {(xk−1, λk−1)}K . Then,
from Theorem 3.11, there is a K0 ⊆ K such that

{ρ(xk−1, λk−1)}K0
→ ρ(x̄∗, λ̄∗) = 0,

In a way similar to the proof of Lemmas 3.3, 3.4, 3.9 and 3.10, we get that x∗ = x̄∗, λ∗ = λ̄∗.
Therefore, the accumulation point of {(xk−1, λk−1)}K is unique, and the result follows.

Lemma 4.4. Assume that {xk}K → x∗, Ik |K 6= ∅, then {dkj}K → 0, {λkj}K → λ∗, j =
0, 1, 2, 3.

Proof. If uk |K= 0, by Lemma 4.2, the result is obvious for j = 0. Suppose that (d̄, λ̄) is
an arbitrary accumulation point of {(dk1, λk1)}K . That is, there exists a K0 ⊆ K such that
{(dk1, λk1)}K0

→ (d̄, λ̄). Since the set I is finite, we can suppose without loss of generality that
Ik |K0

= con. Let η̄ = (λ̄i | i ∈ IK0
), η∗ = (λ∗

i | i ∈ IK0
). It follows from Lemma 4.3 that

Ik ⊆ I0(x
∗) for all k ∈ K large enough. Hence, {ωk}K0

→ 0 due to {dk0}K → 0. This implies
that both (0, η∗) and (d̄, η̄) are solutions of the following linear system.

MIK0
(x∗)

(

d
λ

)

=

(

−∇f(x∗)
0

)

(4.2)

Since MIK0
(x∗) is nonsingular, it follows that d̄ = 0 and λ̄ = λ∗. Thus, {dk1}K → 0 and

{λk1}K → λ∗ by the boundedness of {(dk1, λk1)}. By (4.2) and linear system (2.6), the conclu-
sion is obvious for j = 2. Therefore, from the fact that Ik ⊆ I0(x

∗) for all k ∈ K large enough,
we get

{‖ min{−cIK
(xk), λk2

IK
} − BkeIK

‖}K → 0 (4.3)
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This further implies that the result holds for j = 3. In a similar way to the above proof, the
conclusion can be proved easily for uk |K= 1.

Lemma 4.5. Under Assumptions A1-A4, the whole sequence {(xk, λk)} converges to (x∗, λ∗).

Proof. Suppose that {xk}K → x∗. If Ik |K= ∅, by Lemmas 3.2 and 3.3, we have d̄k = dk → 0.
If, instead, Ik |K 6= ∅, then (S.3) in Algorithm 2.1 and Lemma 4.2 imply that ‖ d̄k − dk ‖≤‖
dk ‖→ 0. Let k ∈ K → ∞, we have

‖ xk+1 − xk ‖≤‖ dk ‖ + ‖ d̄k − dk ‖≤ 2 ‖ dk ‖→ 0

Since x∗ is an isolated accumulation point of {xk} by Assumption A4, it follows from Proposition
4.1 that the whole sequence {xk} converges to x∗. Moreover, we have shown in Lemma 4.2 that
the whole sequence {λk} converges to λ∗. Hence, the result follows directly.

Assumption A5. The sequence of matrices {Hk} satisfies

lim
k→∞

‖ (Hk −∇2
xxL(x∗, λ∗))dk ‖

‖ dk ‖
= 0

Lemma 4.6. If Ik = ∅ for all k large enough, then the step tk = 1 in Algorithm 2.1 is accepted
for sufficiently large k.

Proof. Since Ik = ∅, it follows from Algorithm 2.1 and Lemmas 3.2-3.4 that the whole
sequence {∇f(xk)} converges to 0 and λ∗ = λk = 0. Hence,

dk = −H−1
k ∇f(xk) → 0 and ci(x

k) ≤ −ε̄
√

‖ ∇f(xk−1) ‖

Moreover, by Assumption A5, we have, for sufficiently large k,

f(xk + dk) − f(xk) = ∇f(xk)T dk +
1

2
(dk)T∇2f(xk)dk + o(‖ dk ‖2)

= −
1

2
(dk)T Hkdk +

1

2
(dk)T (∇2f(xk) − Hk)dk + o(‖ dk ‖2)

= −
1

2
(dk)T Hkdk + o(‖ dk ‖2) ≤ −µ(dk)T Hkdk = µ∇f(xk)T dk

and

ci(x
k − H−1

k ∇f(xk)) = ci(x
k − H−1

k ∇f(xk−1 − tk−1H
−1
k−1∇f(xk−1)))

= ci(x
k − H−1

k ∇f(xk−1) + O(‖ ∇f(xk−1 ‖))

≤ −ε̄
√

‖ ∇f(xk−1) ‖ + O(‖ ∇f(xk−1 ‖)) < 0

This completes the proof.

Lemma 4.6 shows that if Ik = ∅ for sufficiently large k, then Algorithm 2.1 reduces to a quasi-
Newton method for unconstrained optimization problems. It is well known that a sequence
{xk} generated by quasi-Newton methods converges to an unconstrained stationary point x∗

superlinearly if the sequence {Hk} satisfies

lim
k→∞

‖ (Hk −∇2f(x∗))dk ‖

‖ dk ‖
= 0

Lemma 4.7. If Ik = ∅ when k is sufficiently large, then I0(x
∗) = ∅.
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Proof. Since {xk} converges to x∗ superlinearly by Lemma 4.6, it follows that

‖ xk + dk − x∗ ‖= o(‖ xk − x∗ ‖)

Therefore, ‖ dk ‖= O(‖ xk − x∗ ‖). Moreover, for every i ∈ I0(x
∗) and sufficiently large k,

ci(x
k+1) + ε̄ρ(xk, λk) = ci(x

k + dk) + ε̄ ‖ Hkdk ‖
1
2

= ci(x
k) − ci(x

∗) + O(‖ dk ‖) + ε̄ ‖ Hkdk ‖
1
2

= O(‖ xk − x∗ ‖) + O(‖ dk ‖) + ε̄ ‖ Hkdk ‖
1
2

= O(‖ dk ‖) + ε̄ ‖ Hkdk ‖
1
2 > 0

(4.4)

Hence, Ik+1 = I0(x
∗), which implies that Ik = I0(x

∗) for all sufficiently large k. This completes
the proof.

From the above discussion, we know that if Ik = ∅ for all k large enough, then x∗ is a strictly
feasible KKT point and the superlinear convergence holds. Therefore, next we only need to
consider the case that the active set I0(x

∗) is nonempty.

Lemma 4.8. If there is an infinite subset K such that Ik 6= ∅, ∀k ∈ K, then for sufficiently
large k ∈ K, uk = 0 and

‖ xk + dk0 − x∗ ‖= o(‖ xk − x∗ ‖), ‖ λk0 − λ∗ ‖= o(‖ xk − x∗ ‖)

Proof. First, it follows from Lemma 4.5 that the whole sequence {(xk, λk)} converges to a
KKT point (x∗, λ∗) and ρ(xk−1, λk−1) → 0. Lemmas 3.9 and 3.10 further imply that

I+
0 (x∗) ⊆ Ik ⊆ I0(x

∗) (4.5)

Hence, by linear system (2.6), we can obtain that

Ak = o(‖ xk − x∗ ‖2)

Moreover, by linear system (2.3), we have

∇2
xxL(x∗, λ∗)(xk + dk0 − x∗) + ∇cIk

(xk)(λk0
Ik

− λ∗
Ik

)

= −(Hk −∇2
xxL(x∗, λ∗))dk0 + o(‖ xk − x∗ ‖) (4.6)

−∇cIk
(xk)T (xk + dk0 − x∗) = o(‖ xk − x∗ ‖) (4.7)

Let

Gk :=

(

∇2
xxL(x∗, λ∗) ∇cIk

(xk)
−∇cIk

(xk)T 0

)

Then, Assumption A4 and (4.5) imply that when k is sufficiently large, Gk is nonsingular.
Since I is finite, it follows that there exist M > 0 and M̄ > 0 such that M̄ ≤‖ G−1

k ‖≤ M ,
∀Ik ⊆ I0(x

∗). So we have from Assumption A5 that

‖ xk + dk0 − x∗ ‖= o(‖ xk − x∗ ‖) + o(‖ dk0 ‖)

‖ λk0 − λ∗ ‖= o(‖ xk − x∗ ‖) + o(‖ dk0 ‖)

which implies that ‖ xk + dk0 − x∗ ‖= o(‖ xk − x∗ ‖) and ‖ λk0 − λ∗ ‖= o(‖ xk − x∗ ‖). Hence,

‖ dk0 ‖= O(‖ xk − x∗ ‖), ‖ λk0 − λ∗ ‖= o(‖ dk0 ‖) (4.8)

Furthermore, we have from linear system (2.3) that for sufficiently large k,

∇f(xk)T dk0 = −(dk0)T Hkdk0 + cIk
(xk)T λk0 + o(‖ xk − x∗ ‖2)
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≤ −(dk0)T Hkdk0 +
∑

λ∗
i
=0

λk0
i ∇ci(x

∗)(xk − x∗) + o(‖ xk − x∗ ‖2)

= −(dk0)T Hkdk0 + o(‖ dk0 ‖2) ≤ −δ(dk0)T Hkdk0

It is clear from (4.8) that for sufficiently large k, | λk0
i |≤

√

‖ dk0 ‖, i ∈ Γ−
k0 and

‖ cIk
(xk) ‖≤‖ ∇cIk

(x∗)(xk − x∗) ‖ +o(‖ xk − x∗ ‖) ≤
√

‖ dk0 ‖

Therefore, uk = 0. This completes the proof.

Lemma 4.9. When k is sufficiently large, Ik = I0(x
∗).

Proof. Since I0(x
∗) 6= ∅, it follows from Lemma 4.7 that there exits an infinite subset

K such that Ik 6= ∅, ∀k ∈ K. Lemma 4.8 shows that for sufficiently k ∈ K, uk = 0 and
‖ dk0 ‖= O(‖ xk − x∗ ‖). Hence, in a similar way to the proof of Lemma 4.7, we get that, for
sufficiently large k ∈ K, Ik+1 = I0(x

∗), which implies that Ik = I0(x
∗) for sufficiently large k.

This completes the proof.
By Lemmas 4.2-4.5, the following lemma is obvious.

Lemma 4.10. Under Assumptions A1-A4, when k → ∞, we have

dk → 0, d̄k → 0, λk → λ∗, dkj → 0, λkj → λ∗, j = 0, 1, 2, 3.

Lemma 4.11. When k is sufficiently large,

‖ dk1 − dk0 ‖= O(‖ dk0 ‖2), ‖ λk1 − λk0 ‖= O(‖ dk0 ‖2) (4.9)

Proof. Since uk = 0 and ‖ dk0 ‖= O(‖ xk − x∗ ‖) from Lemma 4.8, it follows directly from
linear systems (2.3) and (2.5) that the result holds.

Lemma 4.12. When k is sufficiently large, ‖ xk + dk1 − x∗ ‖= o(‖ xk − x∗ ‖).

Proof. By Lemmas 4.8 and 4.11, we have

‖ xk + dk1 − x∗ ‖≤‖ xk + dk0 − x∗ ‖ + ‖ dk1 − dk0 ‖

= o(‖ xk − x∗ ‖) + O(‖ dk0 ‖2) = o(‖ xk − x∗ ‖)

This completes the proof.

Lemma 4.13. When k is sufficiently large , the stepsize tk = 1 is accepted.

Proof. For i /∈ I0(x
∗), since ci(x

∗) < 0, it is not difficult to see that when k is sufficiently
large, ci(x

k + dk1) < 0. For i ∈ I0(x
∗), by the definition of Ak, there is a M > 0 such that

‖ Ak ‖≤ M ‖ dk0 ‖3. Hence, we have from linear system (2.5) and Lemma 4.11 that

ci(x
k + dk1) = ci(x

k) + ∇ci(x
k)T dk1 + 1

2 (dk1)T∇2ci(x
k)dk1 + O(‖ dk1 ‖3)

= 1
2 (dk1 − dk0)

T
∇2ci(x

k)dk0 + 1
2 (dk1)T∇2ci(x

k)(dk1 − dk0)− ‖ dk0 ‖η +O(‖ dk0 ‖3)
= − ‖ dk0 ‖η +O(‖ dk0 ‖3)

(4.10)
Since η ∈ (2, 3), it follows that for sufficiently large k, ci(x

k +dk1) < 0. So, when k is sufficiently
large , xk + dk1 is a strictly feasible point of problem (1.1). Moreover, by linear systems (2.3),
(2.5) and Lemma 4.11, we have that, for sufficiently large k,

∇f(xk)T (dk1 − dk0)
= −(dk0)T Hk(dk1 − dk0) −

∑

i∈I0(x∗) λk0
i ∇ci(x

k)T (dk1 − dk0)

= 1
2

∑

i∈I0(x∗) λk0
i (dk0)T∇2ci(x

k)dk0 + o(‖ dk0 ‖2)
(4.11)
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Linear system (2.3), Lemmas 4.8 and 4.11 also imply that

∇cI0(x∗)(x
k)(λk − λ∗) + (Hk −∇2

xxL(x∗, λ∗))dk0

= −∇2
xxL(x∗, λ∗)(xk + dk0 − x∗) + o(‖ xk − x∗ ‖) = o(‖ dk0 ‖)

(4.12)

Since Ak = o(‖ xk − x∗ ‖2), it follows from linear system (2.3) that

(dk0)T∇cI0(x∗)(x
k)λ∗ + o(‖ dk0 ‖2)

= (dk0)T∇cI0(x∗)(x
k)λ∗ + Ak

∑

i∈I0(x∗) λ∗
i = −cI0(x∗)(x

k)T λ∗ ≥ 0
(4.13)

Hence, when k is sufficiently large, we get from (4.11)-(4.13) that

f(xk+dk1)−f(xk) = ∇f(xk)T dk1+
1

2
(dk0)T∇2f(xk)dk0

+
1

2
[(dk1 − dk0)T∇2f(xk)dk0 + (dk1 − dk0)T∇2f(xk)dk1] + o(‖ dk0 ‖2)

= ∇f(xk)T dk0 +∇f(xk)T (dk1 − dk0)+
1

2
(dk0)T∇2f(xk)dk0 + o(‖ dk0 ‖2)

= ∇f(xk)T dk0+
1

2

∑

i∈I0(x∗)

λk0
i (dk0)T∇2ci(x

k)dk0+
1

2
(dk0)T∇2f(xk)dk0+o(‖ dk0 ‖2)

≤
1

2
∇f(xk)T dk0 −

1

2
(dk0)T (∇cI0(x∗)(x

k)(λk0 − λ∗) + (Hk −∇2
xxL(x∗, λ∗))dk0) + o(‖ dk0 ‖2)

=
1

2
∇f(xk)T dk0+o(‖ dk0 ‖2)

= u∇f(xk)T dk0+(u−
1

2
)[(dk0)T Hkdk0+(dk0)T∇cI0(x∗)(x

k)λk0]+o(‖ dk0 ‖2)

≤ u∇f(xk)T dk0+(u−
1

2
)[(dk0)T Hkdk0+

∑

λ∗
i
=0

−ci(x
k)λk0

i ]+o(‖ dk0 ‖2)

= u∇f(xk)T dk0 + (u−
1

2
)(dk0)T Hkdk0 + o(‖ dk0 ‖2) ≤ u∇f(xk)T dk0

This completes the proof.
The superlinear convergence rate of Algorithm 2.1 is a direct consequence of Lemmas 4.12 and
4.13.

Theorem 4.14. Under the stated assumptions, Algorithm 2.1 converges superlinearly, i.e.
‖ xk+1 − x∗ ‖= o(‖ xk − x∗ ‖).

5. Numerical Results

In order to evaluate the performance of the proposed algorithm, we made some preliminary
implementation using Mathlab 6.5. The test is done on a Pentium III PC with 128 MB of
RAM. Experiments were conducted on all test problems from Hock and Schittkowski[17], where
a feasible initial point is provided for each problem except for problem 17 and no equality
constraints are present. The initial point in Ref.[17] is not feasible for problem 17. Moreover,
the solutions of problems 25 are different from that given in Ref.[17]. Therefore, we choose
other feasible starting points for problems 17 and 25 as follows:

HS17’: x0 = (0.3,−3),
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HS25’: x0 = (3, 10, 1),

The initial Lagrangian Hessian estimate is H0 = E and at each iteration Hk is updated by
the following BFGS formula described in [18]:

Hk+1 = Hk −
HksksT

k Hk

skHksk

+ ykyT
k ,

where

yk =

{

ŷk, ŷT
k sk ≥ 0.2ST

k Hksk

v̂kŷk + (1 − v̂k)Hksk, otherwise

and


















sk = xk+1 − xk

ŷk = ∇f(xk+1) −∇f(xk) + (∇cIk
(xk+1) −∇cIk

(xk))λIk

v̂k = 0.8sT
k Hksk/(sT

k Hksk − sT
k ŷk)

The parameters used in the implementation of Algorithm 2.1 are as follows:

ε0 = w0 = σ = σ1 = β = 0.5, α = 0.2, δ = 0.8, η = 2.5, u = 0.1, M = 10.

Algorithm 2.1 stops at iteration k if any of the following termination criteria is satisfied with
εstop = 10−7:

(i) ‖ dk ‖ /(1+ ‖ xk ‖) < εstop; (ii) ‖ Φ(xk, λk) ‖< εstop

The numerical results are summarized in Table 1. In the table, we denote by HS-No. the
label of test problems in Ref.[17], by n the number of variables, by m the number of inequality
constraints, by I the number of iterations, by △f the difference between the final value of f and
the optimal value f(x∗) reported in [17], namely △f = f −f(x∗), by T the label of termination
criteria, by V-stop the final value of the norm function used in the stopping criterion, by W the
number of indices in the final working set, by N the number of linear equations solved at the
last iteration, and by S the step size of the last iteration.

From the results reported in Table 1, we can see that the new method is able to find a very
good approximation of optimal solution within an acceptable number of function evaluations.
In general, the number of iterations are very small. For almost all problems except problem
HS25 , our algorithm can find the solution. For problem HS25, the starting point already
satisfies one of the termination criteria. However, the solution of problems HS25’ can be found
with the given initial points above. For problem HS33, the final iterates are approximate KKT
points of the original problems in the numerical results of Ref.[5] and [10], while our algorithm
can find the approximate optimal solution of problem HS33. Besides, problems HS17’ and HS30
show that Algorithm 2.1 is especially applied to solving problems that do not satisfy the strict
complementarity condition. Moreover, from the last three columns, we can see that, for almost
all problems except problem HS30, the final iteration have satisfied the following conclusions
which are obtained in our superlinear convergence analysis: (1)the working set Ik = I(x∗), (2)
the scalar variable uk = 0, (3)the step size tk = 1. For problem HS30, the final working set Ik

is not equal to I(x∗). This is understandable because the linear independence condition does
not hold at the optimal point for problem HS30. Finally, we note that the choice of parameters
does not influence the behavior of the proposed algorithm significantly .
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Table 1: Numerical results

HS-No n m I △f T V-stop W N S

HS1 2 1 24 1.9864e-16 (i) 1.1060e-08 0 0 1

HS3 2 1 10 3.2258e-10 (ii) 3.8955e-10 1 2 1

HS4 2 2 4 4.8850e-14 (i) 7.0351e-15 2 2 1

HS5 2 2 9 6.6613e-15 (i) 2.2514e-008 0 0 1

HS12 2 1 8 7.1054e-15 (i) 6.2603e-14 1 2 1

HS17’ 2 5 8 5.7082e-11 (i) 4.0362e-11 2 2 1

HS24 2 5 9 1.8993e-10 (i) 6.3767e-11 2 2 1

HS25 3 6 1 3.2835+01 (i) 1.9663e-10 1 0 0

HS25’ 3 6 46 1.3916e-18 (i) 4.7007e-09 0 0 1

HS29 3 1 13 1.7145e-11 (i) 7.7715e-08 1 2 1

HS30 3 7 5 1.4513e-12 (i) 2.4949e-08 1 2 1

HS31 3 7 12 3.8192e-14 (i) 3.5221e-08 1 2 1

HS33 3 6 15 4.3965e-11 (i) 9.3125e-12 3 2 1

HS34 3 8 42 4.0350e-09 (i) 7.8347e-10 3 2 1

HS35 3 4 12 1.0270e-14 (i) 7.2593e-09 1 2 1

HS36 3 7 8 2.5784e-10 (i) 6.4332e-14 3 2 1

HS37 3 8 14 1.3642e-12 (i) 2.1037e-10 1 2 1

HS38 4 8 51 3.0230e-17 (i) 1.0585e-09 0 0 1

HS43 4 3 11 1.8545e-12 (i) 5.6873e-08 2 2 1

HS44 4 10 10 2.4432e-06 (i) 5.4293e-08 4 2 1

HS57 2 3 23 2.9910e-12 (i) 7.2473e-10 1 2 1

HS66 3 8 8 8.1551e-11 (i) 9.5866e-08 2 2 1

HS76 4 7 11 -8.1634e-10 (i) 7.5056e-08 2 2 1

HS84 5 16 20 1.5076e-02 (i) 6.8875e-10 5 2 1

HS93 6 8 20 1.8293e-06 (i) 9.5824e-08 2 2 1

HS100 7 4 18 7.4404e-08 (i) 7.1672e-08 2 2 1

HS110 10 20 6 2.5538e-09 (i) 5.7202e-09 0 0 1

HS113 10 8 35 -3.1819e-08 (i) 1.6528e-09 6 2 1

HS117 15 20 70 -3.4273e-08 (i) 1.7556e-08 11 2 1

HS118 15 59 38 1.9054e-10 (i) 8.6767e-13 15 2 1

6. Conclusions

In this paper, we have proposed a feasible QP-free algorithm for nonlinear optimization
problems with inequality constraints. A new technique is suggested to determine the working
set. An important feature of the new technique is that to update the working set Ik, we directly
make use of the multiplier λk−1 generated by Algorithm 2.1 at the k-1th iteration instead of
using a multiplier funtiuon. This greatly reduces the computational cost. Another remarkable
feature of this technique is that when the sequence {xk} is sufficiently close to a KKT point x∗,
the working set Ik identifies the strong active set I+

0 (x∗) of problem (1.1) under mild conditions.
Specially, the working set is also an accurate identification of active set I0(x

∗) under additional
conditions. We have shown that arbitrary accumulation point of the sequence generated by
the new algorithm is a KKT point of the problem (1.1). Without strict complementarity,
the convergence rate is proved to be locally superlinear under Assumption A4, an assumption
weaker than the strong second order sufficient condition. However, the new QP-free method is
only applied to solving inequality constrained problems. How to extend the QP-free method
to general constrained optimization problems is an important issue for further research. In
addition, it is also an important topic to use QP-free method in the solution of degenerate
optimization problems.
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