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Abstract

Newton’s iteration is modified for the computation of the group inverses of singular
Toeplitz matrices. At each iteration, the iteration matrix is approximated by a matrix with
a low displacement rank. Because of the displacement structure of the iteration matrix,
the matrix-vector multiplication involved in Newton’s iteration can be done efficiently. We
show that the convergence of the modified Newton iteration is still very fast. Numerical
results are presented to demonstrate the fast convergence of the proposed method.
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1. Introduction

Let A be an n × n Toeplitz matrix [9, 12, 13], i.e.,

A =





a0 a−1 · · · a2−n a1−n

a1 a0 a−1
. . . a2−n

...
. . .

. . .
. . .

...

an−2
. . . a1 a0 a−1

an−1 an−2 · · · a1 a0




.

The main aim of this paper is to modify Newton’s iteration for the computation of the group
inverse of A if A is singular with index 1, i.e.,

rank(A) = rank(A2) < n.

The group inverse of A is the unique solution of the following three equations [1, 4, 14]

A2X = A XAX = X and AX = XA

and we denote it Ag throughout the paper. The application of the group inverses of matrices
can be found in the field of Markov chains [4] and numerical analysis [5, 15, 16, 18, 19]. The
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computation of the inverses and the Moore-Penrose inverses of structured matrices [3, 2, 17] is
a recent interesting problem in matrix computation, see for instance [6].

In this paper, Newton’s iteration is modified for the computation of the group inverses of
singular Toeplitz matrices. At each iteration, the iteration matrix is approximated by a matrix
with a low displacement rank. Because of the displacement structure of the iteration matrix,
the matrix-vector multiplication involved in Newton’s iteration can be done efficiently. We show
that the convergence of the modified Newton iteration is still very fast.

The outline of this paper is as follows. In Section 2, we review the concept of ǫ-displacement
rank [3]. In Section 3, we introduce the modified Newton iteration and show the convergence
results. Numerical results in Section 4 are presented to demonstrate the fast convergence of the
proposed method. In Section 5, we present some concluding remarks.

2. ǫ-Displacement Rank

2.1 Displacement Rank

The concept of displacement rank was introduced by Kailath and his coauthors (see [10])
for close-to-Toeplitz matrices and was systematically studied in the general case in [9]. There
are many definitions for displacement rank. Here we briefly describe two of them that will be
used in the following discussion. Let us denote

C+ =





0 1
1 0

. . .
. . .

1 0



 ∈ Rn×n, C− =





0 −1
1 0

. . .
. . .

1 0



 ∈ Rn×n.

The displacements for an n-by-n matrix B can be defined by

∆+(B) = C+B − BC−, ∆−(B) = C−B − BC+.

The rank of ∆+(B) (or ∆−(B)) is called the (+)-displacement (or (−)-displacement) rank of
B and are denoted by drk+(B) (or drk−(B)). For a Toeplitz matrix A, we have drk+(A) ≤ 2
and drk−(A) ≤ 2, see for instance [9].

The operators ∆+(·) and ∆−(·) are both invertible. If we know the displacement of B, then
B can be recovered by the sum of a series of products of circulant matrix and anti-circulant
matrices. Let h = [h1, h2, · · · , hn]T and C+(h) be a circulant matrix with its first column h:

C+(h) =





h1 hn · · · h3 h2

h2 h1 hn

. . . h3
...

. . .
. . .

. . .
...

hn−1
. . . h2 h1 hn

hn hn−1 · · · h2 h1





and C−(h) be an anti-circulant matrix with its first column h:

C−(h) =





h1 −hn · · · −h3 −h2

h2 h1 −hn

. . . −h3
...

. . .
. . .

. . .
...

hn−1
. . . h2 h1 −hn

hn hn−1 · · · h2 h1




.
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Theorem 1.[3] We have the following results:

∆+(B) =
k∑

i=1

gih
T
i ⇐⇒ B =

1

2

k∑

i=1

C+(gi)C
−(Jhi), (1)

∆−(B) =

k∑

i=1

gih
T
i ⇐⇒ B = −1

2

k∑

i=1

C−(gi)C
+(Jhi), (2)

where J is the permutation matrix having 1 on the anti-diagonal.

It is well-known that both circulant and anti-circulant matrices can be diagonalized by the
discrete Fourier transform matrix F [3, 13], more precisely, we have

C+(h) = FDiag(g)FH

C−(h) = DFDiag(ĝ)FHD
g = FHh ĝ = FHDh. (3)

Here D is a suitable diagonal matrix. From (3), we find that both matrix-vector multiplications
C+(h)x and C−(h)x can be done efficiently by fast Fourier transforms (FFTs), i.e., the number
of operations required are O(kn log n).

2.2 ǫ-Displacement Rank

The ǫ-displacement rank [3] is about the rank of the perturbed displacement. More precisely,
it can be defined as follows:

Definition 1. For a given ǫ > 0 define the ǫ-(+)-displacement rank of a matrix B as

drk+
ǫ (B) = min

‖E‖≤ǫ
rank[∆+(B) + E]

and the ǫ-(−)-displacement rank of a matrix B as

drk−
ǫ (B) = min

‖E‖≤ǫ
rank[∆−(B) + E].

Let

∆+(B) = U+Σ+(V +)T =

drk+(B)∑

i=1

σ+
i u+

i (v+
i )T (4)

and

∆−(B) = U−Σ−(V −)T =

drk−(B)∑

i=1

σ−
i u−

i (v−
i )T ,

be the singular value decomposition of ∆+(B) and ∆−(B) respectively.

Theorem 2. (i) Let σ+
1 ≥ · · · ≥ σ+

k > 0 be the nonzero singular values of ∆+(B) and ǫ be
such that ǫ < σ+

1 . Then drk+
ǫ = r if and only if σ+

r > ǫ ≥ σ+
r+1.

(ii) Let σ−
1 ≥ · · · ≥ σ−

k > 0 be the nonzero singular values of ∆−(B) and ǫ be such that ǫ < σ−
1 .

Then drk−
ǫ = r if and only if σ−

r > ǫ ≥ σ−
r+1.

The proof of this theorem is similar to Theorem 2.1 in [3], so we omit it.

2.3 Matrix Approximation
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With the help of the ǫ-displacement rank, a matrix B can be approximated by a matrix with
small displacement rank. Let us take (+)-displacement as an example to illustrate it. According
to Theorem 2, we know that the ǫ-displacement rank of B is r if and only if σ+

r > ǫ ≥ σ+
r+1. It

is well-known that the best rank r approximation of ∆+(B) is given by

r∑

i=1

σ+
i u+

i (v+
i )T . (5)

Using (5),we approximate B by B+
ǫ

B+
ǫ =

1

2

r∑

i=1

σ+
i C+(u+

i )C−(Jv+
i ).

It is clear that the (+)-displacement rank of B+
ǫ is smaller than that of B. Similarly, we use

B−
ǫ = −1

2

r∑

i=1

σ−
i C−(u−

i )C+(Jv−
i ),

where σ−
r > ǫ ≥ σ−

r+1, to approximate B.
The following theorem gives the distances between B and B+

ǫ , and B and B−
ǫ . We use these

results to show the convergence theory of the modified Newton iteration.

Theorem 3. (i) Let r = drk+
ǫ (B) ≤ drk+(B) = k, and let σ+

1 ≥ · · · ≥ σ+
k > 0 be the nonzero

singular values of ∆+(B). Then it holds

‖B − B+
ǫ ‖ ≤ 1

2
n

k∑

i=r+1

σ+
i ≤ 1

2
n(k − r)ǫ.

(ii) Let r = drk−
ǫ (B) ≤ drk−(B) = k, and let σ−

1 ≥ · · · ≥ σ−
k > 0 be the nonzero singular

values of ∆−(B). Then it holds

‖B − B−
ǫ ‖ ≤ 1

2
n

k∑

i=r+1

σ−
i ≤ 1

2
n(k − r)ǫ.

Proof. For any h such that ‖h‖ = 1, it holds that

‖C+(h)‖ = ‖
n∑

i=1

hi(C
+)i−1‖ ≤

n∑

i=1

|hi| ‖(C+)i−1‖ =
n∑

i=1

|hi| ≤
√

n‖h‖ =
√

n

and

‖C−(h)‖ = ‖
n∑

i=1

hi(C
−)i−1‖ ≤

n∑

i=1

|hi| ‖(C−)i−1‖ =

n∑

i=1

|hi| ≤
√

n‖h‖ =
√

n.

From (4) and (5), we have

‖B − B+
ǫ ‖ =

1

2

k∑

i=r+1

σ+
i ‖C+(u+

i )‖ ‖C−(Jv+
i )‖ ≤ 1

2
n

k∑

i=r+1

σ+
i ≤ 1

2
n(k − r)ǫ.

Thus we obtain the first assertion. The second assertion can be proved analagously.
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3. The Proposed Algorithm

3.1 Newton’s Iteration

The classical Newton iteration for computing the inverse or the generalized inverse of A is
given by

Xi+1 = 2Xi − XiAXi, i = 0, 1, 2, · · · (6)

If A is singular, the sequence {Xi} may converge to different generalized inverses, and the limit
depends on the initial guess X0. For example, {Xi} converges to the Moore-Penrose inverse if
X0 = αAT (see [1]), or the group inverse if X0 = αA (see [5]).

Note that A is a Toeplitz matrix. The initial guess X0 has the low displacement rank.
The limit X∞, the inverse or the generalized inverse of A, has also the low displacement rank,
see [8, 9, 19]. However, the iteration matrices Xi in the Newton iteration may not have low
displacement rank. In the worst case, the displacement rank of Xi can increase exponentially.
It follows that the displacement rank of Xi must be controlled in order to develop an efficient
Newton’s iteration.

By using ǫ-displacement rank, Bini and his coauthors in [3, 2] modified the classical Newton
iteration to compute the inverses of nonsingular Toeplitz matrices, and the Moore-Penrose
inverses of rectangular full-column rank Toeplitz matrices. For a given Toeplitz matrix A, they
set

X0 = αAT

and construct the sequence {Xi} as follows:

Yi = 2Xi − XiAXi, and Xi+1 = (Yi)ǫi
, (7)

where (Yi)ǫi
is a low displacement rank approximation of Yi. We note that the displacement

rank of Xi is controlled via ǫi.
If we directly apply their method to compute the generalized inverses of rank-deficient

Toeplitz matrices, the sequence {Xi} may converge to other generalized inverses. For example,
the group inverse, whose entries are corrected to 4 places after the decimal, of a Toeplitz matrix
(n = 12) in Section 4 is given by





0.2707 −0.0045 −0.0051 −0.0058 −0.0068 −0.0083 −0.0105 −0.0143 −0.0220 −0.0430 −0.2554 0.2707

−0.2554 1.0828 −0.0090 −0.0101 −0.0116 −0.0137 −0.0166 −0.0211 −0.0287 −0.0440 −0.0861 −0.2554

−0.0430 −0.5109 1.0828 −0.0090 −0.0101 −0.0116 −0.0137 −0.0166 −0.0211 −0.0287 −0.0440 −0.0430

−0.0220 −0.0861 −0.5109 1.0828 −0.0090 −0.0101 −0.0116 −0.0137 −0.0166 −0.0211 −0.0287 −0.0220

−0.0143 −0.0440 −0.0861 −0.5109 1.0828 −0.0090 −0.0101 −0.0116 −0.0137 −0.0166 −0.0211 −0.0143

−0.0105 −0.0287 −0.0440 −0.0861 −0.5109 1.0828 −0.0090 −0.0101 −0.0116 −0.0137 −0.0166 −0.0105

−0.0083 −0.0211 −0.0287 −0.0440 −0.0861 −0.5109 1.0828 −0.0090 −0.0101 −0.0116 −0.0137 −0.0083

−0.0068 −0.0166 −0.0211 −0.0287 −0.0440 −0.0861 −0.5109 1.0828 −0.0090 −0.0101 −0.0116 −0.0068

−0.0058 −0.0137 −0.0166 −0.0211 −0.0287 −0.0440 −0.0861 −0.5109 1.0828 −0.0090 −0.0101 −0.0058

−0.0051 −0.0116 −0.0137 −0.0166 −0.0211 −0.0287 −0.0440 −0.0861 −0.5109 1.0828 −0.0090 −0.0051

−0.0045 −0.0101 −0.0116 −0.0137 −0.0166 −0.0211 −0.0287 −0.0440 −0.0861 −0.5109 1.0828 −0.0045

0.2707 −0.0045 −0.0051 −0.0058 −0.0068 −0.0083 −0.0105 −0.0143 −0.0220 −0.0430 −0.2554 0.2707




.

By using (7), the computed group inverse, whose entries are also corrected to 4 places after the
decimal, is given by





−34.9772 −0.0108 −0.0066 −0.0046 −0.0024 −0.0108 −0.0109 −0.0130 −0.0249 −0.0447 −0.2503 35.5217

−0.2532 1.0828 −0.0090 −0.0101 −0.0116 −0.0137 −0.0166 −0.0211 −0.0287 −0.0440 −0.0861 −0.2577

−0.0495 −0.5109 1.0828 −0.0090 −0.0101 −0.0116 −0.0137 −0.0166 −0.0211 −0.0287 −0.0440 −0.0366

−0.0163 −0.0861 −0.5109 1.0828 −0.0090 −0.0101 −0.0116 −0.0137 −0.0166 −0.0211 −0.0287 −0.0277

−0.0149 −0.0440 −0.0861 −0.5109 1.0828 −0.0090 −0.0101 −0.0116 −0.0137 −0.0166 −0.0211 −0.0138

−0.0101 −0.0287 −0.0440 −0.0861 −0.5109 1.0828 −0.0090 −0.0101 −0.0116 −0.0137 −0.0166 −0.0109

−0.0073 −0.0211 −0.0287 −0.0440 −0.0861 −0.5109 1.0828 −0.0090 −0.0101 −0.0116 −0.0137 −0.0093

−0.0156 −0.0166 −0.0211 −0.0287 −0.0440 −0.0861 −0.5109 1.0828 −0.0090 −0.0101 −0.0116 0.0019

0.0058 −0.0137 −0.0166 −0.0211 −0.0287 −0.0440 −0.0861 −0.5109 1.0828 −0.0090 −0.0101 −0.0174

−0.0115 −0.0116 −0.0137 −0.0166 −0.0211 −0.0287 −0.0440 −0.0861 −0.5109 1.0828 −0.0090 0.0013

−0.0042 −0.0101 −0.0116 −0.0137 −0.0166 −0.0211 −0.0287 −0.0440 −0.0861 −0.5109 1.0828 −0.0048

35.5193 0.0018 −0.0035 −0.0071 −0.0113 −0.0058 −0.0102 −0.0157 −0.0190 −0.0414 −0.2606 −34.9810




.

It is clear that there is a big difference between the two matrices. For instance, the (1,1)-th entry
of the group inverse is 0.2707, while the result of (7) is −34.9772. In [17], we have studied how
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to modify the Newton algorithm to deal with rank-deficient Toeplitz matrices and to compute
their Moore-Penrose inverses.

3.2 The Modified Method

If we set the initial guess as the form

X0 = αABA

where α is a scalar and B is a matrix, then the Newton iteration (6) will converge to the group
inverse Ag of A. We note that each iteration matrix Xi is of the form Xi = AYiA. In particular,
the iteration (6) can be written as follows:

Yi+1 = 2Yi − YiA
3Yi, Xi = AYiA, i = 0, 1, 2, · · · .

We modify the Newton iteration by approximating Yi+1 in the above iterative process with a
low displacement rank matrix. We set

X0 = αABA, i.e., Y0 = αB,

and {Xi} is defined by

Zi = 2Yi − YiA
3Yi, Yi+1 = (Zi)

−
ǫi

, and Xi+1 = AYi+1A, (8)

where α is a scalar such that the spectral radius ρ(AAg − AX0) < 1 and ρ(AgA − X0A) < 1.
There are many choices of B to achieve such above objective. For instance, we can choose
B = (A3)T , and therefore AX0 = A2(A3)T A. If the parameter α is equal to 1/ρ(A3(AT )3),
then ρ(AAg −AX0) < 1. We note that the spectral radius of A3(AT )3 can be approximated by
the power method [11] which in fact requires a few steps of matrix-vector multiplication with a
low cost. In the next section, this stragey will be employed to conduct in our experiments.

In our modified Newton’s iteration we compute and store the SVD of ∆−(Yi) instead of Yi.
Suppose that the SVD of ∆−(Yi) is UYi

ΣYi
V T

Yi
. Noting that

∆−(Zi) = 2∆−(Yi) − ∆−(Yi)A
3Yi − Yi∆

+(A3)Yi − YiA
3∆−(Yi), (9)

we have drk−(Zi) ≤ k+2drk−(Yi) where k = drk+(A3) ≤ 6. Suppose that the SVD of ∆+(A3)
is UAΣAV T

A . Rewriting (9) into matrix form, we obtain

∆−(Zi) = UZi
ΣZi

V T
Zi

= [ UYi
YiA

3UYi
YiUA ]




2ΣYi

0 −ΣYi

−ΣYi
0 0

0 −ΣA 0








V T

Yi

V T
A Yi

V T
Yi

A3Yi



 . (10)

The SVD of of ∆−(Yi+1) = ∆−((Zi)
−
ǫi

) can be computed by the following algorithm:

Algorithm 1. Compute the SVD of ∆−(Yi+1)

Input: The SVD of ∆−(Yi): UYi
ΣYi

V T
Yi
, and the truncation value ǫi.

Output: The SVD of ∆−(Yi+1): UYi+1
ΣYi+1

V T
Yi+1

.

Computation:

1. Compute the SVD of ∆−(Zi) by the following steps.

(a) Compute the matrices UZi
, VZi

, ΣZi
according to (10).

(b) Compute the QR decompositions UZi
= Q1R1 and VZi

= Q2R2.
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(c) Compute the SVD of R1ΣZi
RT

2 = UΣV , where Σ = diag(σ1, · · · , σk) and

determine r such that σr+1 ≤ ǫi < σr.

2. Compute the SVD of ∆−(Yi+1) by the following step.

(a) Set ΣYi+1
= diag(σ1, · · · , σr), UYi+1

= Q1U(:, 1 : r) and VYi+1
= Q2V (:, 1 :

r).

The above algorithm costs about O(h(k + h)) FFTs, O((2h + k)2n) and O((2h + k)3) extra
flops, where h = drk−(Yi) and k = drk+(A3) ≤ 6. It is clear that the computational cost per
iteration step is not expensive if h is small. Moreover, if h is independent of n, the algorithm
is of O(n log n) operations.

Now we can complete our modified Newton’s iteration as follows:

Algorithm 2. Modified Newton’s iteration to approximate Ag.

Input: The first row and column vectors of the Toeplitz matrix A.

Output: An approximation X of Ag given in terms of AY A where Y is

given by its (−)−displacement UY ΣY V T
Y in SVD form.

Computation:

1. Compute the SVD of ∆+(A3).

2. Choose α and B such that ‖AAg − αA2BA‖ < 1 and compute the SVD of

∆−(αX).

3. Determine an ǫi and compute the SVD of ∆−(Yi) by means of Algorithm 1.

4. Let Xi = AYiA. If the residual is small enough, then goto Step 3,

otherwise output the result.

Theorem 4. Let X0 be such that ‖AAg − AX0‖ ≤ 1 − θ. Let Ri = AAg − AXi and Ri =

AgA − XiA be the residual sequences. If ǫi = min(‖Ri‖
2,‖Ri‖

2)θ
n(2hi+k)‖A‖3 , where hi = drk−(Yi) and

k = drk+(A3). Then it holds ‖Ri‖2 ≤ (1 − θ
2 )2

i

and ‖Ri‖2 ≤ (1 − θ
2 )2

i

.

Proof. We denote Ei = Zi − Yi+1, thus,

‖Ei‖ ≤ 1

2
n(2hi + k)ǫi =

min(‖Ri‖2, ‖Ri‖2)θ

2‖A‖3

by Theorem 3. Noting (8), we obtain

Ri+1 = AAg − AXi+1 = AAg − AAYi+1A

= AAg − AAZiA + AAEiA

= AAg − AA(2Yi − YiAAAYi)A + AAEiA

= AAg − AAYiA − AAYiA + AAYiAAAYiA + AAEiA

= AAgAAg − AAgAAYiA − AAYiAAAg + AAYiAAAYiA + AAEiA

= (AAg − AAYiA)2 + AAEiA

= R2
i + AAEiA.

Therefore,

‖Ri+1‖ ≤ ‖Ri‖2 + ‖A‖3‖Ei‖ ≤ ‖Ri‖2

(
1 +

θ

2

)
.
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Table 1: Results for the modified Newton’s iteration
n Nstep Mdrk Sdrk Time (seconds) Time (seconds) by the standard Newton

32 20 10 112 6.2 0.2
64 22 11 132 9.4 0.4
128 23 13 146 13.0 2.3
256 24 12 153 18.0 7.0
512 25 13 162 19.0 35.0
1024 26 14 174 53.0 190.0
2048 27 14 184 96.0 1500.0
4096 28 15 197 360.0 >10000.0
8192 29 15 205 780.0 Out of Memory
16384 29 15 205 1.6e+3 Out of Memory

Whence we obtain

‖Ri‖ ≤ ((1 − θ)(1 + θ/2))2
i ≤

(
1 − θ

2

)2i

.

The assertion for the sequence {Ri} can be proved analagously.
According to above theorem, it reveals the quadratic convergence of our modified Newton

iteration for the certain ǫi. However, in practice, a larger ǫi is chosen in order to reduce the
computational cost of each step.

In the next section, the numerical results shows that the method still has fast convergence.
On the other hand, it is expensive to compute the residual sequence since Ag is not known in
advance. A cheap method is to compute the res(Xi) defined by

res(Xi) = max{‖(A − A2Xi)e1‖, ‖(Xi − XiAXi)e1‖, ‖(AXi − XiA)e1‖}. (11)

Each term can be computed by a few FFTs. We also use this strategy in our numerical
experiments.

4. Numerical Results

In this section, we test the proposed algorithm for computing the group inverse of a Toeplitz
matrix, whose its first column is (1, 1/2, · · · , 1/(n− 1), 1) and the first row is chosen such that
the last column is same as the first column. We can check that this Toeplitz matrix has index
1. The group inverse of this Toeplitz matrix is given by the following formula:

Ag =

[
I
eT
1

]
(I + e1e

T
1 )−1C−1(I + e1e

T
1 )−1 [ I e1 ] , (12)

where C is a circulant matrix whose the first column is given by (1, 1/2, · · · , 1/(n − 1))T , I is
the (n − 1)-by-(n− 1) identity matrix, and e1 is the first column of the identity matrix I.

The truncation value ǫi is set to be res(Xi)/‖A‖4 throughout the tests. When res(Xi) <
10−6, the iteration is stopped. In Table 1, we report the number of iterations Nstep required
for the iteration which indicates the convergence, the sum drk− of Yi (Sdrk) which indicates
the computational costs for the whole iteration, and the maximum drk− of Yi (Mdrk) which
indicate the maximum computational costs per step. The CPU time used by the modified
Newton method and by the original Newton method are also reported in Table 1.

From the table, we see that both Mdrk and Nstep increase very slowly as the matrix
size increases. Therefore, the computational cost per step of our method is very low, and the
convergence is very fast. The latter fact can be also seen from the curve of convergence history
plotted in Figure 1.
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Figure 1: Convergence of the modified Newton iteration

5. Concluding Remarks

We have modified Newton’s iteration to compute the group inverses Ag of singular Toeplitz
matrices A with index one. In our method, the matrix in the original Newton’s iteration is
approximated with a low displacement rank. The modification guarantees that the iteration
converges to the group inverse, not to other unknown generalized inverses. Moreover, the
computation cost of per step has been greatly deduced due to the low displacement rank ap-
proximation. With suitable assumptions, quadratic convergence has been established. The
numerical experiments has shown that our method is very effective.

It is straightforward to extend our method to compute the Drazin inverse [7, 20] with
arbitrary index, since these two kinds of generalized inverse are very similar and the group
inverse is the special case of Drazin inverse.

Acknowledgement. The authors would like to thank the referees for their useful suggestions.
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