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Abstract

The monotone variational inequalities VI(Ω, F ) have vast applications, including opti-

mal controls and convex programming. In this paper we focus on the VI problems that

have a particular splitting structure and in which the mapping F does not have an explicit

form, therefore only its function values can be employed in the numerical methods for solv-

ing such problems. We study a set of numerical methods that are easily implementable.

Each iteration of the proposed methods consists of two procedures. The first (prediction)

procedure utilizes alternating projections to produce a predictor. The second (correction)

procedure generates the new iterate via some minor computations. Convergence of the

proposed methods is proved under mild conditions. Preliminary numerical experiments for

some traffic equilibrium problems illustrate the effectiveness of the proposed methods.

Mathematics subject classification: 65K10, 90C25, 90C30.
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1. Introduction

A variational inequality problem, denoted by VI(Ω, F ), is to find a vector u∗ ∈ Ω such that

(u − u∗)T F (u∗) ≥ 0, ∀ u ∈ Ω, (1.1)

where Ω is a nonempty closed convex subset of R
l, and F is a mapping from R

l into itself. In

this paper, we consider the VI problem with the following structure:

(x∗, y∗) ∈ D,

{

(x − x∗)T f(x∗) ≥ 0,

(y − y∗)T g(y∗) ≥ 0,
∀ (x, y) ∈ D, (1.2)

where

D = {(x, y)|x ∈ X , y ∈ Y, Ax + By = b}, (1.3)

X and Y are given nonempty closed convex subsets of R
n and R

p, respectively, A ∈ R
m×n and

B ∈ R
m×p are given matrices, b ∈ R

m is a given vector, f : X → R
n and g : Y → R

p are

monotone operators. Problem (1.2)-(1.3) is a special case of the general VI problem (1.1), which
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has numerous important applications, including applications in the fields of optimal controls

and convex programming (see [1, 6, 7]).

Since in practice such problems usually involve large number of variables, numerical methods

that can make use of the decomposed structure of problem (1.2)-(1.3) can greatly save computer

storage as well as computing time. A number of decomposition methods have been proposed,

for examples, see [3, 4, 5, 7, 8, 9, 15].

In many applications, the mapping f (resp. g) cannot be expressed explicitly and for a given

x ∈ X (resp. y ∈ Y), the function value f(x) (resp. g(y)) can only be obtained via certain

procedures. Given a variable value, the evaluation of f or g can be costly and time-consuming,

and sometimes may pose social or political impact (such as posing toll charges to evaluate the

traffic flow), therefore should not be taken lightly. In such applications, efficient numerical

methods which only employ function values are highly desired.

Among all the existing decomposition methods which achieve linear convergence, in each

iteration a subproblem equivalent to an implicit projection calls to be solved, as illustrated

below. Solving each subproblem usually requires numerous function evaluations. In this paper

we present a set of decomposition methods that involve only explicit projections, therefore

require only one function evaluation in each iteration, yet they also yield linear convergence.

The numerical experiments presented in Section 6 illustrate the effectiveness of the methods.

The proposed methods are motivated by the existing proximal alternating directions meth-

ods (abbreviated as PADMs) proposed in [15]. We briefly describe the PADMs as follows: First,

by attaching a Lagrange multiplier vector λ ∈ R
m to the linear constraint Ax +By = b, the VI

problem (1.2)-(1.3) is converted into the following equivalent non-constrained form:

(x∗, y∗, λ∗) ∈ W ,







(x − x∗)T (f(x∗) − AT λ∗) ≥ 0,

(y − y∗)T (g(y∗) − BT λ∗) ≥ 0,

(λ − λ∗)T (Ax∗ + By∗ − b) ≥ 0,

∀ (x, y, λ) ∈ W (1.4)

where

W = X × Y × R
m. (1.5)

We denote VI problem (1.4)-(1.5) by VI(W , Q), where

Q(w) = Q(x, y, λ) =





f(x) − AT λ

g(y) − BT λ

Ax + By − b



 . (1.6)

Given a triplet wk = (xk, yk, λk) ∈ X × Y × R
m, the PADMs generate a new iterate

w̃k = (x̃k, ỹk, λ̃k) ∈ X × Y × R
m via the following general procedure:

Given (xk, yk, λk) ∈ W, first find an x̃k ∈ X such that

(x′ − x̃k)T {f(x̃k) − AT [λk − β(Ax̃k + Byk − b)] + r(x̃k − xk)} ≥ 0, ∀ x′ ∈ X . (1.7)

Then find a ỹk ∈ Y such that

(y′ − ỹk)T {g(ỹk) − BT [λk − β(Ax̃k + Bỹk − b)] + s(ỹk − yk)} ≥ 0, ∀ y′ ∈ Y. (1.8)

Finally, update λ̃k via

λ̃k = λk − β(Ax̃k + Bỹk − b). (1.9)

Here β > 0 is a given penalty parameter of the linear constraint Ax+By−b = 0. The coefficients

r > 0 and s > 0 in formulas (1.7) and (1.8) respectively are referred to as proximal parameters.

The method is convergent by taking wk+1 = w̃k (for a proof see [12]).
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Note that the solutions of subproblems (1.7) and (1.8) are equivalent to the solutions of the

following projection equations (for details see Lemma 2.1 in Section 2):

x̃k := PX

{

xk − 1

r

[

f(x̃k) − AT [λk − β(Ax̃k + Byk − b)]
]}

(1.10)

and

ỹk := PY

{

yk − 1

s

[

g(ỹk) − BT [λk − β(Ax̃k + Bỹk − b)]
]}

. (1.11)

Solving the projections (1.10)-(1.11) exactly is not an easy task, since each is an implicit pro-

jection.

For those problems in which only the function value is available, in order to overcome the

difficulty of solving the projections (1.10)-(1.11) directly, a natural simple idea is to apply a

Gauss-Seidel type of step. By setting the known vectors in the unknown seat of the right-

hand-sides of the (1.10)-(1.11), one obtains the new iteration triplet w̃k = (x̃k, ỹk, λ̃k) via the

following alternating procedure with explicit projections:

x̃k := PX

{

xk − 1

r

[

f(xk) − AT [λk − β(Axk + Byk − b)]
]}

, (1.12)

ỹk := PY

{

yk − 1

s

[

g(yk) − BT [λk − β(Ax̃k + Byk − b)]
]}

(1.13)

and

λ̃k = λk − β(Ax̃k + Bỹk − b). (1.14)

Unfortunately, this method does not guarantee convergence if one simply takes wk+1 = w̃k as

in some inexact methods [11]. In this paper, we present a set of methods that take w̃k produced

by (1.12)-(1.14) as a predictor. The new iterate wk+1 = (xk+1, yk+1, λk+1) is then generated

by a minor correction to the predictor. Since the main labor of the proposed methods is the

alternating projection, they are referred to as alternating projection based prediction-correction

methods.

The rest of this paper is organized as follows: In Section 2 we summarize some preliminaries

of variational inequalities. In Section 3 we present our methods and illustrate that our methods

can be easily implemented. The main theorem of the proposed methods is proved in Section

4. In Section 5 we investigate some contractive properties of the iterates and prove the conver-

gence. Preliminary numerical results for network equilibrium problems are reported in Section

6. Finally, some concluding remarks are drawn in Section 7.

2. Preliminaries

In this section, we summarize some basic properties and related definitions that will be used

in the following discussions. Let G be a positive definite matrix, we denote ‖v‖G =
√

vT Gv

as the G-norm of vector v. Let Ω be a nonempty closed convex subset of R
l. The projection

under G-norm will be denoted by PΩ,G(·), i.e.,

PΩ,G(v) = argmin{‖v − u‖G | u ∈ Ω}.
From the above definition, it follows that

(v − PΩ,G(v))T G(u − PΩ,G(v)) ≤ 0, ∀v ∈ R
l, ∀u ∈ Ω. (2.1)

Consequently, we have

‖PΩ,G(v) − PΩ,G(w)‖G ≤ ‖v − w‖G, ∀v, w ∈ R
l (2.2)
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and

‖u − PΩ,G(v)‖2
G ≤ ‖v − u‖2

G − ‖v − PΩ,G(v)‖2
G, ∀v ∈ R

l, ∀u ∈ Ω. (2.3)

Definition 2.1. a). F is said to be monotone if

(u − v)T (F (u) − F (v)) ≥ 0, ∀u, v ∈ Ω.

b). F is strongly monotone if there exists a constant µ > 0 such that

(u − v)T (F (u) − F (v)) ≥ µ‖u − v‖2, ∀u, v ∈ Ω.

c). f is Lipschitz continuous with respect to X if there exists a constant Lf > 0 such that

‖f(x) − f(x̃)‖ ≤ Lf‖x − x̃‖, ∀x, x̃ ∈ X .

Lemma 2.1. Let Ω be a closed convex set in R
l and G be any positive definite matrix. Then

u∗ is a solution of VI(Ω, F ) if and only if

u∗ = PΩ,G[u∗ − αG−1F (u∗)], ∀ α > 0. (2.4)

Proof. See ([2], p. 267).

According to Lemma 2.1, for any positive definite matrix G ∈ R
l×l, p ∈ R

l and α > 0,

u∗ = PΩ,G[u∗ − αG−1p] is equivalent to u∗ ∈ Ω, (u − u∗)T p ≥ 0, ∀ u ∈ Ω. (2.5)

Moreover,

if ũ = PΩ[u − p], then ũ = PΩ{ũ − [(ũ − u) + p]} = PΩ,G{ũ − G−1[(ũ − u) + p]}. (2.6)

Lemma 2.2. The VI(W , Q) problem (1.4)-(1.5) can be equivalently solved by seeking a zero

point of the mapping

e(w,W , Q) :=





ex(w)

ey(w)

eλ(w)



 =





x − PX{x − [f(x) − AT λ]}
y − PY{y − [g(y) − BT λ]}

Ax + By − b



 . (2.7)

Throughout this paper, we make the following standard assumptions:

Assumption A:

A1. X and Y are simple closed convex sets. Here a set is said to be simple means that the

projection onto the set is simple to carry out, for example, the nonnegative orthant, a

ball or a box.

A2. f(x) (resp. g(y)) is monotone and Lipschitz continuous with respect to X (resp. Y). Lf

(resp. Lg) is the Lipschitz constant of mapping f (resp. g).

A3. The solution set of VI(W , Q), denoted by W∗, is nonempty.

Because f and g are monotone mappings and X and Y are closed convex sets, the mapping

Q(w) is monotone on W and the solution set W∗ of VI(W , Q) is closed and convex. For any

w ∈ W , we denote the Euclidean distance from w to W∗ by

dist(w,W∗) := min{‖w − w∗‖ | w∗ ∈ W∗} .

It is clear that

dist(w,W∗) = 0 ⇐⇒ e(w,W , Q) = 0.

Historically, the term ‖e(w,W , Q)‖ is referred to as the error bound of VI(W , Q), since it

measures the magnitude of w being away from the solution set W∗.
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3. The Framework of the Proposed Methods

Each iteration of the proposed methods consists of two procedures. Given (xk, yk, λk) ∈
R

n×R
p×R

m in the k-th iteration, the first procedure is a Gauss-Seidel type explicit projection

which generates a predictor (x̃k, ỹk, λ̃k) ∈ X × Y × R
m. The second procedure produces the

new iterate (xk+1, yk+1, λk+1) ∈ R
n×R

p×R
m via some simple computations. We let ν ∈ (0, 1)

be a given constant, H be a given proper symmetric positive definite matrix.

3.1. Prediction

Given triplet (xk, yk, λk) ∈ R
n × R

p × R
m, the predictor (x̃k, ỹk, λ̃k) ∈ X × Y × R

m is

generated by the following procedure:

Step 1. Set

x̃k := PX

{

xk − 1

rk

(

f(xk) − AT [λk − H(Axk + Byk − b)]
)}

, (3.1)

where rk > 0 is a chosen parameter such that

‖ξk
x‖ ≤ νrk‖xk − x̃k‖, ξk

x := f(xk) − f(x̃k) + AT HA(xk − x̃k). (3.2)

Step 2. Set

ỹk := PY

{

yk − 1

sk

(

g(yk) − BT [λk − H(Ax̃k + Byk − b)]
)}

(3.3)

where sk > 0 is a chosen parameter such that

‖ξk
y‖ ≤ νsk‖yk − ỹk‖, ξk

y := g(yk) − g(ỹk) + BT HB(yk − ỹk). (3.4)

Step 3. Update λ̃k via

λ̃k = λk − H(Ax̃k + Bỹk − b). (3.5)

The details for finding suitable sequences {rk} and {sk} will be discussed later. Since the

predictor w̃k = (x̃k, ỹk, λ̃k) ∈ W is produced in the following order,

• obtain x̃k ∈ X from given (xk, yk, λk) ∈ W ;

• obtain ỹk ∈ Y from given (x̃k, yk, λk) ∈ W ;

• update λ̃k ∈ R
m from given (x̃k, ỹk, , λk) ∈ W ,

this prediction procedure adopts the new information whenever possible. This step somewhat

resembles the projection step proposed in [3]. However, the projection step in [3] can be viewed

as a Jacobi type, while the prediction process proposed here can be viewed as a Gauss-Seidel

type. The main task in the prediction step is to obtain the definitive projections. This process

only requires the function values f(xk) and g(yk).

Remark 3.1. With a proper large scalar r (resp. s), we can obtain a pair of x̃k and ξk
x (resp.

ỹk and ξk
y ) to satisfy (3.2) (resp. (3.4)). In fact, for any

r ≥ Lf + ‖AT HA‖
ν

, (3.6)

it follows that

‖ξk
x‖

(3.2)

≤ (Lf + ‖AT HA‖)‖xk − x̃k‖
(3.6)

≤ νr‖xk − x̃k‖.
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Similarly, for any

s ≥ Lg + ‖BT HB‖
ν

, (3.7)

we have

‖ξk
y‖

(3.4)

≤ (Lg + ‖BT HB‖)‖yk − ỹk‖
(3.7)

≤ νs‖yk − ỹk‖.

To simplify our following analysis, we denote Rk = rkI, Sk = skI,

Mk = Sk + BT HB, Gk =





Rk 0 0

0 Mk 0

0 0 H−1



 and ξk =





ξk
x

ξk
y

0



 . (3.8)

Now, ignoring the index k in the matrices Rk, Mk and Gk, we adopt a compact form for the

predictor w̃k. Note that

x̃k (3.1)
= PX ,R

{

xk − R−1
(

f(xk) − AT [λk − H(Axk + Byk − b)]
)}

(3.5)
= PX ,R{xk − R−1[f(xk) − AT λ̃k + AT H(A(xk − x̃k) + B(yk − ỹk))]}

(3.2)
= PX ,R{xk − R−1[f(x̃k) − AT λ̃k + AT HB(yk − ỹk) + ξk

x ]}. (3.9)

Since M = S + BT HB, it follows that

ỹk (3.3)
= PY,S

{

yk − S−1
[

g(yk) − BT [λk − H(Ax̃k + Byk − b)]
]}

(3.5)
= PY,S

{

ỹk − S−1
[

g(yk) − BT λ̃k + BT HB(yk − ỹk) + s(ỹk − yk)
]}

(2.6)
= PY,M

{

ỹk − M−1
[

g(yk) − BT λ̃k + 2BT HB(yk − ỹk) + M(ỹk − yk)
]}

(3.4)
= PY,M{yk − M−1[g(ỹk) − BT λ̃k + BT HB(yk − ỹk) + ξk

y ]}. (3.10)

Using the notation of Q(w) (see (1.6)), it follows from (3.9), (3.10), and (3.5) that the predictor

w̃k satisfies

w̃k = PW,G{wk − G−1[Q(w̃k) + (A, B, 0)T HB(yk − ỹk) + ξk]}. (3.11)

Denote

q(wk, w̃k) := Q(w̃k) + (A, B, 0)T HB(yk − ỹk), (3.12)

then equation (3.11) can be written as

w̃k = PW,G{wk − G−1[q(wk, w̃k) + ξk]}. (3.13)

Before ending this subsection, we introduce another useful notation in the coming analysis

d(wk, w̃k, ξk) := (wk − w̃k) − G−1ξk. (3.14)

Moreover, we notice that

(ξk
y )T S−1ξk

y ≥ (ξk
y )T M−1ξk

y (3.15)

and thus

‖S−1ξk
y‖2

S ≥ ‖M−1ξk
y‖2

M . (3.16)

3.2. Correction

The task of the correction step is to produce the new iterate based on the predictor. We

suggest to use the following correction forms:

(Correction-I) wk+1 := wk+1
I = wk − αkd(wk, w̃k, ξk) (3.17)
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or

(Correction-II) wk+1 := wk+1
II = PW,G{wk − αkG−1q(wk, w̃k)}. (3.18)

Both correction forms have the same step-size

αk = γα∗
k, (3.19)

where

γ ∈ (0, 2) and α∗
k =

(λk − λ̃k)T B(yk − ỹk) + (wk − w̃k)T Gd(wk, w̃k, ξk)

‖d(wk, w̃k, ξk)‖2
G

. (3.20)

Note that the computational load of setting the new iterate by (3.17) (resp. (3.18)) is

insignificant. For example, when we use Correction-II (3.18), it follows that

xk+1 (3.18)
= PX ,R{xk − αkR−1[f(x̃k) − AT λ̃k + AT HB(yk − ỹk)]}
= PX ,R{x̃k − αkR−1[f(x̃k) − AT λ̃k + AT HB(yk − ỹk) + R(x̃k − xk)/αk]}

(2.5)
= PX {x̃k − αk[f(x̃k) − AT λ̃k + AT HB(yk − ỹk) + R(x̃k − xk)/αk]}
= PX {[Rxk + (I − R)x̃k] − αk[f(x̃k) − AT λ̃k + AT HB(yk − ỹk)]}. (3.21)

A similar manipulation indicates that yk+1 and λk+1 in (3.18) can be obtained by

yk+1 = PY{[Myk + (I − M)ỹk] − αk[g(ỹk) − BT λ̃k + BT HB(yk − ỹk)]} (3.22)

and

λk+1 = λk − αkH(Ax̃k + Bỹk − b), (3.23)

respectively. Since x̃k, ỹk, λ̃k, f(x̃k), and g(ỹk) are known from the prediction procedure, the

computational load in correction procedure (3.18) is insignificant.

Finally, it is worth mentioning that the Correction II (3.18) is different from the usual

correction step in the hybrid proximal point method (HPPA). The Correction II is

wk+1 := PW,G{wk − αkG−1q(wk, w̃k)},

while the correction step in the HPPA can be expressed as

wk+1 := PW,G{wk − αkG−1Q(w̃k)}.

The difference between q and Q in the two equations is listed in the form (3.12).

4. Contractive Properties and the Optimal Step Length

Let w∗ = (x∗, y∗, λ∗) ∈ W∗ be any solution point for VI(W , Q). In the case that W∗ is not

a singleton, for any given w, we denote

‖w − w∗‖G := inf{‖w − w∗‖G | w∗ ∈ W∗}.

Throughout this section, we let wk = (xk, yk, λk) ∈ R
n × R

p × R
m be a given vector, w̃k =

(x̃k, ỹk, λ̃k) ∈ X × Y × R
m be the predictor generated by the prediction step, and wk, w̃k and

ξk satisfy (3.2) and (3.4) in Section 3.1. In order to investigate the convergence behavior for

any α > 0 in the correction forms, we denote the step-size dependent new iterate in both the

correction forms I and II by wk+1(α). Namely,

wk+1
I (α) = wk − αd(wk , w̃k, ξk) and wk+1

II (α) = PW,G{wk − αG−1q(wk, w̃k)}.
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Let

Θk(α) := ‖wk − w∗‖2
G − ‖wk+1(α) − w∗‖2

G (4.1)

be referred as a profit-function of the proposed methods, since it measures the improvement

obtained in the k-th iteration of the methods. Note that the progress Θk(α) is a function of

the step length α. It is natural to consider maximizing this function by choosing an optimal

parameter α. However, since w∗ is the solution point and thus is unknown, we can not maximize

Θk(α) directly. The first part of this section aims at providing a lower bound for Θk(α), called

Ψk(α), which does not include the unknown solution w∗. The theorem hereby converts the task

of maximizing the function Θk(α) to maximizing the function Ψk(α).

4.1. A lower-bound of the progress function

Theorem 4.1. Let wk+1(α) be the step-size dependent new iterate in the correction form I or

II and Θk(α) be defined in (4.1), then we have

Θk(α) ≥ Ψk(α), (4.2)

where

Ψk(α) = 2αϕ(wk, w̃k, ξk) − α2‖d(wk, w̃k, ξk)‖2
G (4.3)

and

ϕ(wk, w̃k, ξk) = (λk − λ̃k)T (Byk − Bỹk) + (wk − w̃k)T Gd(wk, w̃k, ξk). (4.4)

The assertion of this theorem provides the fundamental result in the convergence analysis of

the proposed methods. This result will be proved for Correction forms I and II in Subsections

4.1.1 and 4.1.2, respectively.

4.1.1. Proof of Theorem 4.1 for correction form I

First, we prove a proposition which is devoted to prove Theorem 4.1 for correction form I.

Proposition 4.1. For correction form I, we have

(wk − w∗)T Gd(wk , w̃k, ξk) ≥ ϕ(wk, w̃k, ξk). (4.5)

Proof. Since w∗ is a solution of VI(W , Q) and x̃k ∈ X , ỹk ∈ Y, we have

(x̃k − x∗)T {f(x∗) − AT λ∗} ≥ 0 (4.6)

and

(ỹk − y∗)T {g(y∗) − BT λ∗} ≥ 0. (4.7)

Setting v = xk − 1
rk

(

f(xk) − AT [λk − H(Axk + Byk − b)]
)

and u = x∗ in (2.1), it follows from

(3.1) that

{

xk − 1

rk

(

f(xk) − AT [λk − H(Axk + Byk − b)]
)

− x̃k
}T

(x∗ − x̃k) ≤ 0.

Using (3.5) and the notation of ξk
x (see (3.2)), it follows that

(x∗ − x̃k)T {f(x̃k) − AT λ̃k + AT H(Byk − Bỹk) + R(x̃k − xk) + ξk
x} ≥ 0. (4.8)

Similarly, setting v = yk − 1
sk

(

g(yk) − BT [λk − H(Ax̃k + Byk − b)]
)

and u = y∗ in (2.1), it

follows from (3.3) that

{

yk − 1

sk

(

g(yk) − BT [λk − H(Ax̃k + Byk − b)]
)

− ỹk
}T

(y∗ − ỹk) ≤ 0.
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Using (3.5) and the notation of ξk
y (see (3.4)), it follows that

(y∗ − ỹk)T {g(ỹk) − BT λ̃k + S(ỹk − yk) + ξk
y} ≥ 0. (4.9)

Since f is monotone, adding (4.6) and (4.8), we have

(x̃k −x∗)T {R(xk − x̃k)− ξk
x}+(Ax̃k −Ax∗)T (λ̃k −λ∗) ≥ (Ax̃k −Ax∗)T H(Byk −Bỹk). (4.10)

Similarly, adding inequalities (4.7) and (4.9) and utilizing the monotonicity of g, we obtain

(ỹk − y∗)T {S(yk − ỹk) − ξk
y} + (Bỹk − By∗)T (λ̃k − λ∗) ≥ 0.

Adding (Bỹk − By∗)T H(Byk − Bỹk) to both sides of the above inequality and using M =

S + BT HB, we get

(ỹk − y∗)T {M(yk − ỹk)− ξk
y}+(Bỹk −By∗)T (λ̃k −λ∗) ≥ (Bỹk −By∗)T H(Byk −Bỹk). (4.11)

Now adding inequalities (4.10) and (4.11), using Ax∗+By∗ = b and Ax̃k +Bỹk−b = H−1(λk −
λ̃k) (see (3.5)), we obtain

(x̃k − x∗)T {R(xk − x̃k) − ξk
x} + (ỹk − y∗)T {M(yk − ỹk) − ξk

y} + (λ̃k − λ∗)T H−1(λk − λ̃k)

≥ (λk − λ̃k)T (Byk − Bỹk). (4.12)

Using the notation of G and d(wk, w̃k, ξk), (4.12) can be written as

(w̃k − w∗)T Gd(wk, w̃k, ξk) ≥ (λk − λ̃k)T (Byk − Bỹk)

and it follows that

(wk − w∗)T Gd(wk, w̃k, ξk) ≥ (λk − λ̃k)T (Byk − Bỹk) + (wk − w̃k)T Gd(wk , w̃k, ξk). (4.13)

The right-hand-side of (4.13) is ϕ(wk, w̃k, ξk) and then the assertion of this proposition is

proved.

Proof of Theorem 4.1. By a straightforward manipulation we have

Θk(α)
(4.1)
= ‖wk − w∗‖2

G − ‖wk+1(α) − w∗‖2
G

(3.17)
= ‖wk − w∗‖2

G − ‖wk − αd(wk, w̃k, ξk) − w∗‖2
G

= 2α(wk − w∗)T Gd(wk, w̃k, ξk) − α2‖d(wk, w̃k, ξk)‖2
G

(4.5)

≥ 2αϕ(wk, w̃k, ξk) − α2‖d(wk, w̃k, ξk)‖2
G

(4.3)
= Ψk(α). (4.14)

The proof of Theorem 4.1 for correction form I is completed.

4.1.2. Proof of Theorem 4.1 for correction form II

The following proposition is devoted to prove Theorem 4.1 for correction form II.

Proposition 4.2. For correction form II, we have

(w − w∗)T q(wk, w̃k) ≥ (w − w̃k)T q(wk, w̃k) + (λk − λ̃k)T B(yk − ỹk), ∀w ∈ R
n × R

p × R
m.

Proof. Since w̃k ∈ W and w∗ ∈ W∗ is a solution of VI(W , Q), we have

(w̃k − w∗)T Q(w∗) ≥ 0.

Using the monotonicity of Q it follows that

(w̃k − w∗)T Q(w̃k) ≥ (w̃k − w∗)T Q(w∗) ≥ 0.
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Because Q(w̃k) = q(wk, w̃k) − (A, B, 0)T HB(yk − ỹk) (see (3.12)), from the above inequality

we obtain

(w̃k − w∗)T q(wk, w̃k) ≥ (w̃k − w∗)T (A, B, 0)T HB(yk − ỹk). (4.15)

Using (A, B, 0)(w̃k − w∗) = A(x̃k − x∗) + B(ỹk − y∗) = Ax̃k + Bỹk − b = H−1(λk − λ̃k), it

follows from (4.15) that

(w̃k − w∗)T q(wk, w̃k) ≥ (λk − λ̃k)T B(yk − ỹk)

and consequently we derive the assertion of this proposition immediately.

Proof of Theorem 4.1. Since w∗ ∈ W and wk+1(α) = PW,G[wk −αG−1q(wk, w̃k)], it follows

from (2.3) that

‖wk+1(α)−w∗‖2
G ≤ ‖wk−αG−1q(wk, w̃k)−w∗‖2

G−‖wk−αG−1q(wk, w̃k)−wk+1(α)‖2
G. (4.16)

Consequently, we get

‖wk − w∗‖2
G − ‖wk+1(α) − w∗‖2

G

≥ ‖wk − w∗‖2
G + ‖wk − wk+1(α) − αG−1q(wk, w̃k)‖2

G − ‖wk − w∗ − αG−1q(wk, w̃k)‖2
G

= ‖wk − wk+1(α)‖2
G + 2α{wk+1(α) − w∗}T q(wk, w̃k). (4.17)

Applying the result of Proposition 4.2 to the last term in the right-hand-side of (4.17) and using

the notation of Θk(α), we obtain

Θk(α) ≥ ‖wk −wk+1(α)‖2
G + 2α{wk+1(α)− w̃k}T q(wk, w̃k)+ 2α(λk − λ̃k)T B(yk − ỹk). (4.18)

Since w̃k = PW,G{wk − G−1[q(wk, w̃k) + ξk]} and wk+1(α) ∈ W , it follows from (2.1) that for

any α > 0,

0 ≥ 2α{wk+1(α) − w̃k}T G{[wk − G−1q(wk, w̃k) − G−1ξk] − w̃k}. (4.19)

Adding (4.18) and (4.19) and using d(wk, w̃k, ξk) = (wk − w̃k)−G−1ξk (see (3.14)), we obtain

Θk(α) ≥ ‖wk − wk+1(α)‖2
G + 2α{wk+1(α) − w̃k}T Gd(wk, w̃k, ξk)

+2α(λk − λ̃k)T B(yk − ỹk). (4.20)

By regrouping the right-hand-side of (4.20), we obtain

Θk(α) ≥ ‖(wk − wk+1(α)) − αd(wk, w̃k, ξk)‖2
G − α2‖d(wk, w̃k, ξk)‖2

G

+2α{(λk − λ̃k)T B(yk − ỹk) + (wk − w̃k)T Gd(wk, w̃k, ξk)}
(4.4)

≥ 2αϕ(wk, w̃k, ξk) − α2‖d(wk, w̃k, ξk)‖2
G.

(4.3)
= Ψk(α).

and the proof is completed.

4.2. The step-size in the correction step

Based on the the result in Theorem 4.1 we get

‖wk+1(α) − w∗‖2
G ≤ ‖wk − w∗‖2

G − Ψk(α). (4.21)

It is natural to maximize Ψk(α) in each iteration. Note that Ψk(α) is a quadratic function of

α (see (4.3)) and it reaches its maximum at

α∗
k =

ϕ(wk, w̃k, ξk)

‖d(wk, w̃k, ξk)‖2
G

, (due to (4.4), this is just the same as defined in (3.20)) (4.22)
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with

Ψk(α∗
k) = α∗

kϕ(wk, w̃k, ξk). (4.23)

To achieve the faster convergence, we propose a relaxation factor γ ∈ [1, 2) and set the step-size

αk by αk = γα∗
k. By simple manipulations, we obtain

Ψk(γα∗
k)

(4.3)
= 2γα∗

kϕ(wk, w̃k, ξk) − (γ2α∗
k)(α∗

k‖d(wk, w̃k, ξk)‖2
G)

(4.22)
= (2γα∗

k − γ2α∗
k)ϕ(wk, w̃k, ξk)

(4.23)
= γ(2 − γ)Ψk(α∗

k). (4.24)

It follows from Theorem 4.1 that

‖wk+1 − w∗‖2
G ≤ ‖wk − w∗‖2

G − γ(2 − γ)α∗
kϕ(wk, w̃k, ξk). (4.25)

Proposition 4.3. Under the same notations, we have

ϕ(wk, w̃k, ξk) >
1

2

(

‖Ax̃k + Byk − b‖2
H + ‖d(wk, w̃k, ξk)‖2

G

)

. (4.26)

Proof. It follows from (4.4) and (3.14) that

ϕ(wk, w̃k, ξk) = (λk − λ̃k)T (Byk − Bỹk) + ‖wk − w̃k‖2
G − (wk − w̃k)T ξk

= (λk − λ̃k)T (Byk − Bỹk) + ‖λk − λ̃k‖2
H−1

+‖xk − x̃k‖2
R − (xk − x̃k)T ξk

x + ‖yk − ỹk‖2
M − (yk − ỹk)T ξk

y

= (λk − λ̃k)T (Byk − Bỹk) + ‖λk − λ̃k‖2
H−1 + ‖B(yk − ỹk)‖2

H

+‖xk − x̃k‖2
R − (xk − x̃k)T ξk

x + ‖yk − ỹk‖2
S − (yk − ỹk)T ξk

y . (4.27)

Using λk − λ̃k = H(Ax̃k + Bỹk − b) (see (3.5)), we have

(λk − λ̃k)T (Byk − Bỹk) +
1

2

(

‖λk − λ̃k‖2
H−1 + ‖Byk − Bỹk‖2

H

)

= (Ax̃k + Bỹk − b)T H(Byk − Bỹk) +
1

2

(

‖Ax̃k + Bỹk − b‖2
H + ‖Byk − Bỹk‖2

H

)

=
1

2
‖Ax̃k + Byk − b‖2

H .

Substituting this into (4.27), it follows that

ϕ(wk, w̃k, ξk) =
1

2

(

‖Ax̃k + Byk − b‖2
H + ‖λk − λ̃k‖2

H−1 + ‖Byk − Bỹk‖2
H

)

+‖xk − x̃k‖2
R − (xk − x̃k)T ξk

x + ‖yk − ỹk‖2
S − (yk − ỹk)T ξk

y . (4.28)

Using (3.2) we obtain

‖xk − x̃k‖2
R − (xk − x̃k)T ξk

x >
1

2
‖xk − x̃k‖2

R − (xk − x̃k)T ξk
x +

1

2
‖R−1ξk

x‖2
R

=
1

2
‖xk − x̃k − R−1ξk

x‖2
R.

Similarly, using (3.4), we obtain

‖yk − ỹk‖2
S − (yk − ỹk)T ξk

y >
1

2
‖yk − ỹk − S−1ξk

y‖2
S.

Therefore, it follows from (4.28) that

ϕ(wk, w̃k, ξk) >
1

2
‖Ax̃k + Byk − b‖2

H +
1

2
‖xk − x̃k − R−1ξk

x‖2
R

+
1

2

(

‖Byk − Bỹk‖2
H + ‖yk − ỹk − S−1ξk

y‖2
S

)

+
1

2
‖λk − λ̃k‖2

H−1 .(4.29)
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By a manipulation, we have

‖Byk − Bỹk‖2
H + ‖yk − ỹk − S−1ξk

y‖2
S

= ‖yk − ỹk‖2
(S+BT HB) − 2(yk − ỹk)T ξk

y + ‖S−1ξk
y‖2

S

(3.16)

≥ ‖yk − ỹk‖2
M − 2(yk − ỹk)T ξk

y + ‖M−1ξk
y‖2

M

= ‖yk − ỹk − M−1ξk
y‖2

M . (4.30)

Substituting (4.30) into (4.29) and using the notation of d(wk, w̃k, ξk) and G, the assertion of

this proposition is proved.

From (4.22), (4.25), and (4.26) we get the following corollaries directly.

Corollary 4.1. α∗
k > 1

2 for all k ≥ 0.

Corollary 4.2. The sequence {wk} generated by the proposed methods satisfies

‖wk+1 − w∗‖2
G ≤ ‖wk − w∗‖2

G − γ(2 − γ)

4

(

‖Ax̃k + Byk − b‖2
H + ‖d(wk, w̃k, ξk)‖2

G

)

.

The above inequality tells us that the proposed methods belong to the projection and

contraction methods [10].

5. Practical Implementation and Convergence

For a given wk = (xk, yk, λk) ∈ R
n × R

p × R
m, x̃k is given by (3.1). The pair of x̃k and

ξk
x with ‖ξk

x‖ ≤ νrk‖xk − x̃k‖ is generated by choosing a suitable large rk > 0. In practical

computation, a self-adaptive scheme is adopted to find such a suitable rk > 0. For the fixed

pk
x = f(xk) − AT [λk − H(Axk + Byk − b)] and a trial rk > 0, we set

x̃k := PX

[

xk − pk
x/rk

]

,

and calculate

ξk
x := f(xk) − f(x̃k) + AT HA(xk − x̃k)

and

νk := ‖ξk
x‖/

(

rk‖xk − x̃k‖
)

.

If νk ≤ ν, the trial x̃k is accepted; otherwise, rk is increased by rk := rk ∗ νk ∗ 1.25, this

procedure is repeated. Since f is Lipschitz continuous, this process will generate an rk ≥
(Lf + ‖AT HA‖)/ν, the related x̃k satisfying condition (3.2). The same technique is used to

obtain sk and ỹk satisfying condition (3.4). In this way, the sequences {rk} and {sk} are

monotonically non-decreasing and finally bounded above. The following is a detailed proposed

method using Correction-II.

A self-adaptive approximate PPA based prediction-correction method

Step 0. Let H ≻ 0, ν = 0.9, r0 = s0 = 1, w0 = (x0, y0, λ0) ∈ R
n × R

p × R
m, γ ∈ [1, 2). For

k = 0, 1, . . . do:

Step 1. Calculate the predictor w̃k = (x̃k, ỹk, λ̃k):

Step 1.1. Calculate x̃k:

1) Set pk
x := f(xk) − AT [λk − H(Axk + Byk − b)].
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2) x̃k := PX

[

xk − pk
x/rk

]

;

ξk
x := f(xk) − f(x̃k) + AT HA(xk − x̃k);

νk := ‖ξk
x‖/

(

rk‖xk − x̃k‖
)

.

3) If νk > ν, then increase rk by rk := rk ∗ νk ∗ 1.25 and go to 2).

4) Prepare (limit the number) a reduced r for the next iteration if νk is too

small:

rk+1 :=

{

rk ∗ νk ∗ 1.25 if νk ≤ 0.5,

rk otherwise.

Step 1.2. Calculate ỹk:

1) Set pk
y := g(yk) − BT [λk − H(Ax̃k + Byk − b)].

2) ỹk := PY

[

yk − pk
y/sk

]

;

ξk
y := g(yk) − g(ỹk) + BT HB(yk − ỹk);

νk := ‖ξk
y‖/

(

sk‖yk − ỹk‖
)

.

3) If νk > ν, then increase sk by sk := sk ∗ νk ∗ 1.25 and go to 2).

4) Prepare (limit the number) a reduced s for the next iteration if νk is too

small:

sk+1 :=

{

sk ∗ νk ∗ 1.25 if νk ≤ 0.5,

sk otherwise.

Step 1.3. Calculate λ̃k: set pk
λ := (Ax̃k + Bỹk − b);

λ̃k := λk − Hpk
λ.

Step 2. Calculate the search direction in Correction-II:

Set qk
x := f(x̃k) − AT λ̃k + AT HB(yk − ỹk);

qk
y := g(ỹk) − BT λ̃k + BT HB(yk − ỹk);

qk
λ := H(Ax̃k + Bỹk − b).

Step 3. Calculate the step-size in the correction step:

Set dk
x = xk − x̃k; dk

y = yk − ỹk, dk
λ = λk − λ̃k;

α∗
k =

(dk
λ)T Bdk

y + (dk
x)T (rkdk

x − ξk
x) + (dk

y)T (Mdk
y − ξk

y ) + (dk
λ)T pk

λ

(rkdk
x − ξk

x)T (dk
x − r−1

k ξk
x) + (Mdk

y − ξk
y )T (dk

y − M−1ξk
y ) + (dk

λ)T pk
λ

;

αk = γα∗
k, (the formula of α∗

k see (3.20)).

Step 4. Calculate the new iterate wk+1 = (xk+1, yk+1, λk+1):

xk+1 = PX {[rkxk + (1 − rk)x̃k] − αkqk
x}; (see (3.21))

yk+1 = PY{[Myk + (I − M)ỹk] − αkqk
y}; (see (3.22))

λk+1 = λk − αkqk
λ; (see (3.23))

k := k + 1, go to Step 1.

Remark 5.1. Numerical experiments indicate that, if rk and sk are chosen too large, then the

convergence becomes very slow. Therefore, in Step 1, when νk is less than 0.5, rk and sk are

reduced. However, the number of times that rk and sk are allowed to reduce is limited (usually

up to 20). Therefore eventually {rk} and {sk} become non-decreasing and finally constant.

It is clear that the implementation of the proposed method is simple and well defined. The

main computational load is the evaluation of f(x) and g(y).

Recall that solving problem VI(W , Q) is equivalent to finding a zero point of eG(w,W , Q)

(see (2.4)). In order to simplify the convergence proof for the proposed methods, we first

introduce the following result:
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Proposition 5.1. For any given triplet (xk, yk, λk) ∈ R
n × R

p × R
m, let the temporal point

(x̃k, ỹk, λ̃k) ∈ X ×Y×R
m be generated by Procedure I in Section 3. Then there exists a constant

a > 0 such that for all k ≥ 0,

‖eG(w̃k,W , Q)‖G ≤ a‖wk − w̃k‖G (5.1)

where

eG(w̃k,W , Q) = w̃k − PW,G{w̃k − G−1Q(w̃k)}. (5.2)

Proof. Replacing the first w̃k in the right-hand-side of (5.2) by PW,G{wk −G−1[q(wk, w̃k)+

ξk]} (see (3.13)), we get

‖eG(w̃k,W , Q)‖G = ‖PW,G{wk − G−1[q(wk, w̃k) + ξk]} − PW,G{w̃k − G−1Q(w̃k)}‖G

(2.2)

≤ ‖(wk − w̃k) − G−1[q(wk, w̃k) − Q(w̃k)] − G−1ξk‖G

(3.12)

≤ ‖wk − w̃k‖G + ‖G−1(A, B, 0)T HB(yk − ỹk)‖G + ‖G−1ξk‖G.

Notice that under the conditions (3.2) and (3.4)

‖G−1ξk‖2
G

def
= ‖R−1ξk

x‖2
R + ‖M−1ξk

y‖2
M

(3.16)

≤ ‖R−1ξk
x‖2

R + ‖S−1ξk
y‖2

S

(3.2,3.4)

≤ ν2
(

‖xk − x̃k‖2
R + ‖yk − ỹk‖2

S

)

≤ ν2
(

‖xk − x̃k‖2
R + ‖yk − ỹk‖2

(S+BT HB)

)

def
≤ ν2‖wk − w̃k‖2

G. (5.3)

Therefore, there exists a constant a > 0 such that

‖eG(w̃k,W , Q)‖G ≤ a‖wk − w̃k‖G

and the proposition is proved.

Theorem 5.1. The sequence {wk} generated by the proposed methods converges to some w∞

which is a solution of VI(W , Q).

Proof. Since

‖d(wk, w̃k, ξk)‖2
G

(3.14)
= ‖(wk − w̃k) − G−1ξk‖2

G

= ‖wk − w̃k‖2
G − 2(wk − w̃k)T ξk + ‖G−1ξk‖2

G

≥ ‖wk − w̃k‖2
G − 2‖wk − w̃k‖G · ‖G−1ξk‖G + ‖G−1ξk‖2

G

=
(

‖wk − w̃k‖G − ‖G−1ξk‖G

)2

(5.3)

≥ (1 − ν)2‖wk − w̃k‖2
G,

from Corollary 4.2 we get

‖wk+1 − w∗‖2
G ≤ ‖wk − w∗‖2

G − γ(2 − γ)

4
(1 − ν)2‖wk − w̃k‖2

G. (5.4)

It follows from (5.4) that

‖wk+1 − w∗‖2
G ≤ ‖w0 − w∗‖2

G, ∀k ≥ 0 (5.5)
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and thus {wk} is bounded. Moreover, we have

γ(2 − γ)

4
(1 − ν)2

∞
∑

k=0

‖wk − w̃k‖2
G ≤ ‖w0 − w∗‖2

G.

Therefore, we have

lim
k→∞

‖wk − w̃k‖2
G = 0 (5.6)

and thus {w̃k} is also bounded and (due to Proposition 5.1)

lim
k→∞

‖eG(w̃k,W , Q)‖G = 0.

Let w∞ be a cluster point of {w̃k} and the subsequence {w̃kj} converges to w∞. Since

eG(w,W , Q) is continuous function of w, it follows that

eG(w∞,W , Q) = lim
j→∞

eG(w̃kj ,W , Q) = 0 and thus e(w∞,W , Q) = 0.

From Lemma 2.2, w∞ is a solution point of VI(W , Q).

Since limk→∞ ‖w̃k − wk‖ = 0 and {w̃kj} → w∞, for any given ε > 0, there exists an l > 0

such that

‖wkl − w̃kl‖G <
ε

2
, and ‖w̃kl − w∞‖G <

ε

2
. (5.7)

Therefore, for any k ≥ kl, it follows from (5.5) and (5.7) that

‖wk − w∞‖G ≤ ‖wkl − w∞‖G ≤ ‖wkl − w̃kl‖G + ‖w̃kl − w∞‖G < ε

and the sequence {wk} converges to w∞.

6. Numerical Experiment for Traffic Equilibrium Problems

In this section, we present some preliminary numerical results on some capacity traffic

equilibrium problems.

6.1. Traffic equilibrium problem with link capacity bound

The test problems are modified from the problems in [14] which were described in Section

5.2 of [13] as Example 1 and 2. The network equilibrium problem in [13] is a nonlinear com-

plementarity problem of the traffic path-flow x. The modification is additionally to require the

link flow f ≤ b, where b is the link capacity vector. In [13], because A is the path-link incidence

matrix, the link-flow vector f is given by f = AT x. Therefore, the network equilibrium problem

with link-flow restriction is a variational inequality

x ∈ S, (x′ − x)T F (x) ≥ 0, ∀ x′ ∈ S

where

S = {x ∈ R
n | AT x ≤ b, x ≥ 0}

and F is described as in Section 5.2 of [13]. By introducing a positive slack variable y ≥ 0 and

setting g(y) = 0, the problem can be converted into a structured variational inequality of form

(1.2)-(1.3). In the test problems, for the reason of simulation, we give explicit forms of function

t(f) and λw(d) (see the details in Section 5.2 of [13]) and thus F (x) can be calculated. In the

computational process, we restrict us only using the function value F (x) for given x.
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We use the proposed method with Correction-II and take w0 = 0 as the starting point. Since

‖ex(w0)‖∞ > 102, instead of e(w,W , Q) (see (2.7)), we take

max
{‖ex(wk)‖∞
‖ex(w0)‖∞

, ‖ey(w
k)‖∞, ‖eλ(wk)‖∞

}

≤ ε (6.1)

as the stopping criterion.

6.2. Numerical results for problems with link capacity bound

In capacitated traffic equilibrium problems, every link flow up-bound is assigned by 30 or

40. We use the proposed method with Correction-II to solve the test problems. Since in these

test problems g(y) = 0 and B = I, if we take H = βI, the subproblem (3.3) can be directly

obtained by

ỹk (3.3)
= PY{yk − [g(yk) − BT [λk − H(Ax̃k + Byk − b)]]/s}
= PY{yk − [β(Ax̃k + yk − b) − λk]/s}
= PY{[λk − β(Ax̃k − b) + (s − β)yk]/s} (6.2)

and the condition (3.4) is satisfied for any s = β/ν. We use the self-adaptive method described

in Section 5 to solve the test problems, instead of Step 1.2, we use (6.2) with s = β/ν to obtain

ỹk. In the test, we take H = 5I and w0 = 0.
We report the number of iterations, the mapping evaluations, and the CPU time for different

capacities (b = 30 and b = 40) and various ε in Table 6.1.

Table 6.1. Numerical results for various ε in (6.1).

Examples Link flow
capacity

No. of iterations

ε = 10−4 10−5 10−6

No. of F evaluations

ε = 10−4 10−5 10−6

CPU-time
ε = 10−6

Example 1 30 132 159 199 296 350 430 0.06 Sec.

40 150 189 220 329 399 471 0.08 Sec.

Example 2 30 168 200 229 366 399 498 0.10 Sec.

40 203 288 333 440 621 716 0.13 Sec.

The solutions are obtained in a moderate number of iterations and the number of mapping

F evaluations per iteration is approximately 2.

As illustrated in Section 6.1, the output vector x is the path-flow and the link flow vector is

AT x. In fact, λ∗ in the output is referred as the toll charge on the congested link. For the two

examples with link capacities b = 40 we list the optimal link flow and the toll charge in Table

6.2. and Table 6.3., respectively. Indeed, the link toll charge is greater than zero if and only if

the link flow reaches the capacity.

Table 6.2.The optimal link flow and the toll charge on the link of Example 1 with b = 40.

Link Flow Charge Link Flow Charge Link Flow Charge Link Flow Charge

1 0 0 8 32.90 0 15 27.06 0 22 33.95 0

2 12.94 0 9 0 0 16 5.27 0 23 0 0

3 40.00 25.2 10 0 0 17 1.83 0 24 12.94 0

4 12.94 0 11 0 0 18 32.90 0 25 40.00 124.6

5 0 0 12 33.95 0 19 0 0 26 32.33 0

6 40.00 125.4 13 27.06 0 20 0 0 27 34.16 0

7 34.73 0 14 12.94 0 21 0 0 28 0 0
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Table 6.3. The optimal link flow and the toll charge on the link of Example 2 with b = 40.

Link Flow Charge Link Flow Charge Link Flow Charge Link Flow Charge

1 40.00 4.3 11 1.85 0 21 40.00 1.1 31 11.96 0

2 38.15 0 12 11.96 0 22 40.00 136.6 32 40.00 164.2

3 40.00 163.2 13 26.19 0 23 26.19 0 33 40.00 135.7

4 13.81 0 14 13.81 0 24 0 0 34 26.19 0

5 0 0 15 0 0 25 0 0 35 28.04 0

6 0 0 16 0 0 26 0 0 36 40.00 301.3

7 0 0 17 0 0 27 0 0 37 0 0

8 0 0 18 0 0 28 0 0 −− −− −−

9 0 0 19 0 0 29 26.19 0 −− −− −−

10 40.00 1.1 20 40.00 1.8 30 1.85 0 −− −− −−

Remark 6.1. It is worth mentioning that, from the authors’ observation, up to date the ar-

ticles, in that the existing decomposition types of methods were proposed, do not attempt to

derive the numerical results. As has been indicated in the introduction, in each iteration, im-

plementing these methods involves solving a subproblem equivalent to an implicit projection,

hence yields high computation complexity. Since the methods presented here require signifi-

cantly reduced computations, we are able to produce numerical experiments.

7. Conclusion

In this paper we present some alternating projection based prediction-correction methods

for solving monotone variational inequality problems with a special structure. Comparing

with the existing alternating directions methods, we use some corrections which only require

the insignificant amount of additional computations. The implementation is carried out by a

simple projection. Preliminary numerical results with traffic equilibrium problems indicate that

the proposed methods are effective in practice.
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