
Journal of Computational Mathematics, Vol. 24, No. 6, 2006, 771–790.

DATA PREORDERING IN GENERALIZED PAV ALGORITHM
FOR MONOTONIC REGRESSION *1)

Oleg Burdakov, Anders Grimvall and Oleg Sysoev

(Department of Mathematics, Linköping University, SE-58183 Linköping, Sweden)

Abstract

Monotonic regression (MR) is a least distance problem with monotonicity constraints

induced by a partially ordered data set of observations. In our recent publication [In Ser.

Nonconvex Optimization and Its Applications, Springer-Verlag, (2006) 83, pp. 25-33],

the Pool-Adjacent-Violators algorithm (PAV) was generalized from completely to partially

ordered data sets (posets). The new algorithm, called GPAV, is characterized by the very

low computational complexity, which is of second order in the number of observations.

It treats the observations in a consecutive order, and it can follow any arbitrarily chosen

topological order of the poset of observations. The GPAV algorithm produces a sufficiently

accurate solution to the MR problem, but the accuracy depends on the chosen topological

order. Here we prove that there exists a topological order for which the resulted GPAV

solution is optimal. Furthermore, we present results of extensive numerical experiments,

from which we draw conclusions about the most and the least preferable topological orders.

Mathematics subject classification: 90C20, 90C35, 62G08, 65C60.

Key words: Quadratic programming, Large scale optimization, Least distance problem,

Monotonic regression, Partially ordered data set, Pool-adjacent-violators algorithm.

1. Introduction

Consider the monotonic regression (MR) problem for a partially ordered data set of n

observations. We denote the vector of observed values by Y ∈ Rn. To express the partial

order, we use a directed acyclic graph G(N, E), where N = {1, 2, . . . , n} is a set of nodes and

E is a set of edges. Each node is associated with one observation, and each edge is associated

with one monotonicity relation as described below. In the MR problem, we must find among

all vectors u ∈ Rn, which preserve the monotonicity of the partially ordered data set, the one

closest to Y in the least-squares sense. It can be formulated as follows. Given Y , G(N, E) and

a strictly positive vector of weights w ∈ Rn, find the vector of fitted values u∗ ∈ Rn that solves

the problem:

min
∑n

i=1
wi(ui − Yi)

2 (1.1)

s.t. ui ≤ uj ∀(i, j) ∈ E

Let ϕ(u) and C denote, respectively, the objective function and the feasible region of this

problem. Note that (1.1) can be viewed as a problem of minimizing the weighted distance

from the vector Y to the convex cone C. Since it is a strictly convex quadratic programming

problem, there exists a unique optimal solution u∗. An example of problem (1.1) is considered

at the end of Section 2.

* Received January 20, 2006.
1) This work was supported by the Swedish Research Council.

772 O. BURDAKOV, A. GRIMVALL AND O. SYSOEV

The MR problem has important statistical applications (see [2, 22]) in physics, chemistry,

medicine, biology, environmental science etc. It is present also in operations research (pro-

duction planning, inventory control etc.) and signal processing. These problems can often be

regarded as monotonic data fitting problems (see Section 4). The most challenging of the ap-

plied MR problems are characterized by a very large value for n. For such large-scale problems,

it is of great practical importance to develop algorithms whose complexity does not rise too

rapidly with n.

It is easy to solve problem (1.1) when the constraints have the simple form

u1 ≤ u2 ≤ . . . ≤ un, (1.2)

i.e. when the associated graph G(N, E) is a path. For this special case of complete order,

the most efficient and the most widely used algorithm is the Pool-Adjacent-Violators (PAV)

algorithm [1, 17, 14]. Its computational complexity is O(n) [11].

The conventional quadratic programming algorithms (see [20]) can be used for solving the

general MR problem (1.1) only in the case of small and moderate values of n, up to few hundred.

There are some algorithms [2, 22] especially developed for solving this problem. The minimum

lower set algorithm [4, 5] is known to be the first algorithm of this kind. It was shown in

[3] that this algorithm, being applied to problem (1.1) with the simple constraints (1.2), is of

complexity O(n2), which is worse than the complexity of the PAV algorithm. The existing

optimization-based [3, 16, 23] and statistical [18, 19, 24] MR algorithms have either too high

computational complexity or too low accuracy of their approximate solutions. The best known

complexity of the optimization-based algorithms is O(n4) [16, 23], which is prohibitive for large

n. Perhaps, the most widely used algorithms for solving large-scale applied MR problems are

based on simple averaging techniques. They can be easily implemented and have a relatively

low computational burden, but the quality of their approximations to u∗ is very case-dependent

and furthermore, these approximations can be too far from optimal.

In [6, 7], we introduced a new MR algorithm, which can be viewed as a generalization of the

Pool-Adjacent-Violators algorithm from the case of a completely ordered (1.2) to partially

ordered data set of observations. We call it the GPAV algorithm. It combines both low

computational complexity O(n2) and high accuracy. These properties extend the capabilities

of the existing tools to solving very large-scale MR problems. The efficiency of the GPAV

algorithm has been demonstrated in [6, 7] on large-scale test problems with obvious superiority

over the simple averaging techniques [18, 19, 24]. In [13], it has been used advantageously for

solving applied MR problems.

Our algorithm treats the nodes N or, equivalently, the observations in a consecutive order.

Any topological order [9] of N is acceptable, but the accuracy of the resulted solution depends

on the choice. In this paper, we focus on studying the effect of topological sort on the quality

of the solution produced by the GPAV algorithm.

In Section 2, the GPAV algorithm is reformulated for the case when the nodes N are

topologically ordered. We prove in Section 3 that, for any MR problem (1.1), there exists a

topological order assuring that the GPAV algorithm produces the exact solution to this problem.

In Section 4, test problems based on the monotonic data fitting are described. We introduce

a wide variety of topological sorts and study their effect on the performance of the GPAV

algorithm. Results of extensive numerical experiments are presented and discussed in this

section. In Section 5, we draw conclusions about the most and the least preferable topological

sorts.

Data Preordering in Generalized PAV Algorithm for Monotonic Regression 773

2. GPAV Algorithm for Preordered Data Sets

For presenting this algorithm and discussing its properties, we will use the following defin-

itions and notations. Denote the set of immediate predecessors {j ∈ N : (j, i) ∈ E} for node

i ∈ N by i−. The subset of nodes B ⊂ N is called a block if, for any i, j ∈ B, all the nodes in

all the paths from i to j belong to B. The block Bi is said to be an immediate predecessor for

Bj , or adjacent to Bj , if there exist k ∈ Bi and l ∈ Bj such that k ∈ l−. Let B−
i denote the set

of all blocks adjacent to block Bi. We associate each block with one of its upper nodes, which

is called the head node. If i is the head node for some block, we denote this block by Bi. The

set of all head nodes is denoted by H . The set of blocks {Bi}i∈H , where H ⊂ N , is called a

block partitioning of N if
⋃

i∈H

Bi = N

and

Bi ∩ Bj = ∅, ∀i 6= j, i, j ∈ H.

Let Wk denote the weight of the block Bk. It is computed by the formula

Wk =
∑

i∈Bk

wi.

For any point u ∈ Rn feasible in (1.1), the set of nodes N can be uniquely partitioned into

disjoint subsets using the following principles:

• if j ∈ i− and ui = uj, then i and j belong to one and the same subset;

• if ui 6= uj, then the nodes i and j belong to different subsets;

• if there is no path connecting the nodes i and j, they belong to different subsets.

It is easy to show that these subsets are blocks, and for any block Bk,

ui = Uk, ∀i ∈ Bk,

where Uk denotes a common value of the components for this block. The resulting partitioning

of the nodes is called the block partitioning induced by u. By this definition, the following

strict inequalities hold

Uj < Uk, ∀j ∈ B−
k . (2.1)

This means that the same block partitioning can be obtained by excluding the edges of E which

are associated with the non-active monotonicity constraints in (1.1).

The optimality conditions for the MR problem (1.1) are well studied (see e.g. [2, 3, 15, 21,

22]). We reformulate them in a form useful for further consideration as follows.

Theorem 2.1. The feasible point u∗ ∈ Rn is the optimal solution to problem (1.1) iff, for any

block Bk of the block partitioning {Bk}k∈H induced by u∗, the corresponding components u∗
i ,

i ∈ Bk, solve the MR sub-problem

min
∑

i∈Bk
wi(ui − Yi)

2 (2.2)

s.t. ui ≤ uj ∀i, j ∈ Bk, (i, j) ∈ E

774 O. BURDAKOV, A. GRIMVALL AND O. SYSOEV

Proof. The result is a straightforward consequence of the Karush-Kuhn-Tucker conditions

[20] applied to problems (1.1) and (2.2).

Consider (2.2) as a separate problem determined by a given set of components Bk. It is

known that if the block partitioning induced by the optimal solution to this problem produces

the single block Bk, its components u∗
i , i ∈ Bk, have a common value

Uk =

∑

i∈Bk
wiYi

Wk

. (2.3)

The solution u ∈ Rn generated by the GPAV algorithm is feasible, but not necessarily

optimal to the MR problem (1.1). For each block Bk of the block partitioning {Bk}k∈H induced

by u, the corresponding components ui, i ∈ Bk, have the common value Uk defined by formula

(2.3), but not all the blocks provide optimal solutions to the corresponding MR sub-problems

(2.2). Our numerical experiments show that the set of constraints active for the GPAV solution,

is almost identical to the optimal set of active constraints. This explains why the GPAV

algorithm is able to solve MR problem (1.1) with sufficiently high accuracy.

We assume now that the nodes N of the directed acyclic graph G(N, E) have a topological

order. The GPAV algorithm sets initially Bi = {i} and B−
i = i− for all the nodes i ∈ N , and

subsequently operates with the blocks only. It treats the blocks in the order consistent with the

topological sort, namely, B1, B2, . . . , Bn. For the block which is treated, say Bk, its common

value (2.3) is compared with those of its adjacent blocks. While there exists an adjacent violator

of the monotonicity, the block Bk absorbs the one with the most severe violation and inherits

the list of blocks adjacent to the absorbed one. The common value Uk is updated accordingly.

The outlined GPAV algorithm for solving the MR problem (1.1) with topologically pre-

ordered data set can be presented as follows.

Algorithm GPAV. Given: vectors w, Y ∈ Rn and a directed acyclic graph G(N, E) with

topologically ordered nodes.

Set H = N .

For all i ∈ N , set Bi = {i}, B−
i = i−, Ui = Yi and Wi = wi.

For k = 1, 2, . . . , n, do:

While there exists i ∈ B−
k such that Ui ≥ Uk, do:

Find j ∈ B−
k such that Uj = max{Ui : i ∈ B−

k }.
Set H = H \ {j}.
Set B−

k = B−
j ∪ B−

k \ {j}.
Set Uk = (WkUk + WjUj) / (Wk + Wj).

Set Bk = Bk ∪ Bj and Wk = Wk + Wj .

For all i ∈ H such that j ∈ B−
i , set B−

i = B−
i ∪ {k} \ {j}.

For all k ∈ H and for all i ∈ Bk, set ui = Uk.

We formulate and discuss here some of its basic properties that will be used in the subsequent

sections for a closer study of this algorithm.

Note that, at any stage of the algorithm, the head nodes k ∈ H are such that

i ≤ k, ∀i ∈ Bk.

In the main body of the while-loop of iteration k, block Bk absorbs block Bj . This can

increase, but never decreases, the block common value Uk, because Uj ≥ Uk before the absorbing

starts.

Data Preordering in Generalized PAV Algorithm for Monotonic Regression 775

2

311 Y = 03

Y = 72

Y = 8
Fig. 2.1. An example of G(N, E) and Y for MR problem (1.1) with w1 = w2 = w3 = 1

Consider the current values of u1, u2, . . . , uk, produced at the first k iterations. They are

defined by the corresponding block common values. The values of u1, u2, . . . , uk are monotone;

i.e. if one disregards the monotonicity constraints involving the other components, the remain-

ing constraints are satisfied. Moreover, the values of u1, u2, . . . , uk never increase at subsequent

iterations. To show this, note that the current value ui for i ≤ k can change at the iteration

l ≥ k only when the block Bl absorbs the block Bj that contains the node i. In this case, the

value of ui changes from the block common value Uj to the new one

WlUl + WjUj

Wl + Wj

.

This can never increase the value of ui, because Uj ≥ Ul.

A constraint, which does not change the set of feasible points when it is removed, is said to be

redundant. We also call ‘redundant’ the edges in E associated with the redundant monotonicity

constraints. Thus, the edge (i, j) ∈ E is redundant if there exists an alternative path from i to

j. For instance, in the case of the constraints ui ≤ uk, uk ≤ uj and ui ≤ uj , the last one is

redundant and so the edge (i, j). The GPAV algorithm can work correctly in the presence of

redundant constraints, but it is more efficient if problem (1.1) is reduced by eliminating such

constraints.

One of the most important features of the GPAV algorithm is that it deals with a reduced

acyclic graph of blocks, which is initially identical to G(N, E). The graph shrinks whenever one

block absorbs another one. This assures the low computational complexity of our algorithm,

estimated in [6, 7] as O(n2). Note that the complexity of any MR algorithm can not be any

better than this, because the worst-case estimate for the number of constrains in (1.1) is O(n2)

even with all redundant constraints eliminated.

Let us address to the origin of the inaccuracy of the GPAV algorithm. For this purpose,

consider the following MR problem:

min (u1 − 8)2 + (u2 − 7)2 + (u3 − 0)2 (2.4)

s.t. u1 ≤ u2, u1 ≤ u3

This example is illustrated by Fig. 2.1. The depicted acyclic graph G(N, E) admits only two

topological orders. For the order 1, 2, 3, the GPAV solution is

u1 = u2 = u3 = 5, ϕ(u) = 38.

In the case of the order 1, 3, 2, the GPAV algorithm produces the solution

u1 = u3 = 4, u2 = 7, ϕ(u) = 32.

The last one is the optimal solution. It can be obtained by the GPAV algorithm, if after treating

node 1, the next is the node among the immediate successors with the smallest value of Yi.

776 O. BURDAKOV, A. GRIMVALL AND O. SYSOEV

The same principle assures optimality in the case of a star-type graph with more than two

immediate successors of node 1. Although optimality is not guaranteed in the general case of

the acyclic graph G(N, E), the described principle proves to be efficient in practice. This is

illustrated by the results of our numerical experiments presented in Section 4.

3. Optimal Topological Order

The solution produced by the GPAV algorithm satisfies the monotonicity constraints, but

it is not guaranteed to be optimal. We prove here that the nodes in N can be ordered so that

the resulted GPAV solution is optimal. For the proof we need a lemma:

Lemma 3.1. Let the single block B = N be the optimal solution to problem (1.1). Suppose

U∗ =

∑

i∈N wiYi
∑

i∈N wi

denotes the common value of the optimal block. Then:

(i) for any topological order of the nodes, the GPAV algorithm produces the same optimal single-

block solution;

(ii) in the while-loop of iteration k, if the current common value Uk is such that

Uk < U∗, (3.1)

then the set B−
k is not empty;

(iii) after iteration k, all the current common values Uj with j ≤ k, j ∈ H, satisfy the inequality

Uj ≥ U∗. (3.2)

Proof. To prove assertion (i), we observe that for any subset of nodes Bk ⊂ N , the value of

Uk defined by (2.3) is the unique minimizer of the strictly convex function

ϕk(U) =
∑

i∈Bk

wi(U − Yi)
2.

This means that

ϕk(U) > ϕk(Uk), ∀U 6= Uk. (3.3)

We show that assertion (i) holds by assuming, to the contrary, that the GPAV algorithm

can produce a multiple-block partitioning, say {Bk}k∈H , H ⊂ N . Denote

H ′ = {k ∈ H : Uk 6= U∗}.

By our assumption, this set is not empty. Then, applying (3.3) to the optimal value of the

objective function in (1.1), we obtain

n
∑

i=1

wi(U
∗ − Yi)

2 =
∑

k∈H′

ϕk(U∗) +
∑

k∈H\H′

ϕk(U∗)

>
∑

k∈H′

ϕk(Uk) +
∑

k∈H\H′

ϕk(U∗) =
∑

k∈H

ϕk(Uk),

Data Preordering in Generalized PAV Algorithm for Monotonic Regression 777

where the last term is the value of the same objective function computed for the GPAV solution.

This contradicts the assumption that U∗ is optimal, and therefore (i) holds.

We will now demonstrate the validity of assertion (iii). Inequality (3.2), which we need to

prove, is clearly equivalent to

ui ≥ U∗, i = 1, 2, . . . , k.

To show that this inequality holds, it is sufficient to recall that, after the final iteration,

ui = U∗, i = 1, 2, . . . , n,

and that, as noted in Section 2, the current values u1, u2, . . . , uk produced by the first k itera-

tions never increase at subsequent iterations. This proves (iii).

To prove assertion (ii), it suffices to notice that if, on the contrary, B−
k = ∅, then this

terminates the while-loop with a value Uk which must satisfy two contradictory inequalities;

namely, (3.1) and (3.2).

Let H∗ be the the set of head nodes of the block partitioning {B∗
k}k∈H∗ induced by u∗,

the optimal solution to the MR problem (1.1). Denote the corresponding block values by U∗
k ,

k ∈ H∗. Consider a special order of the nodes which is assumed to assure that

U∗
k ≤ U∗

k′ , ∀k, k′ ∈ H∗, k < k′. (3.4)

Denote the the total number of blocks by h, i.e. h = |H∗|. Assumption (3.4) means that the

ordering of blocks in ascending order of the block indices

k1 < . . . < ki < ki+1 < . . . < kh, (3.5)

produces a topological order for the reduced acyclic graph, in which the nodes and the edges

are associated with the blocks and the monotonicity constraints (3.4) respectively. We suppose

also that the nodes within each block B∗
k are numbered from k−|B∗

k|+1 to k in the consecutive

order consistent with a topological order of the nodes in the graph G(N, E). This implies that

ki+1 = ki + |B∗
k| in (3.5).

It is easy to verify that all these assumptions define an order of nodes which is a topological

order. We call it an optimal order. It may not be unique, because there may exist different

topological orders within each block.

In the example considered at the end of Section 2, the optimal blocks are B∗
2 = {2} and

B∗
3 = {1, 3}. The corresponding block common values U∗

2 = 7 and U∗
3 = 4 order the blocks as

B∗
3 , B∗

2 . The topological order of nodes within the block B∗
3 is 1, 3. This provides the following

optimal order of nodes: 1, 3, 2. For the new numbering of nodes induced by the optimal order,

(3.4) and (3.5) hold.

Theorem 3.1. For any optimal order of nodes, the GPAV algorithm produces the optimal

solution to the MR problem (1.1).

Proof. We will prove, by induction in the block indices (3.5), that after iteration k ∈ H ,

the produced values of u1, . . . , uk are optimal for the MR problem (1.1). This is equivalent to

induction in i = 1, 2, . . . , h.

For i = 1, i.e. for iteration k1, the induction assertion follows immediately from Theorem

2.1 and Lemma 3.1.

778 O. BURDAKOV, A. GRIMVALL AND O. SYSOEV

Suppose that the assertion holds for i < h. This means that

Uj = U∗
j , j = k1, . . . , ki. (3.6)

Let us show that the induction assertion holds for the iteration ki+1. For this purpose, consider

the iterations from ki + 1 to ki+1, at which the nodes of the set B∗
ki+1

are treated by the

algorithm. From (2.1) and (3.6), we have the strict inequalities

Uj < U∗
ki+1

, ∀j ∈ (B∗
ki+1

)−.

Furthermore, by Lemma 3.1, for the current values of Uk and Bk in the while-loop of any

iteration k = ki + 1, ki + 2, . . . , ki+1, the inequality

U∗
ki+1

≤ max{Ui : i ∈ B−
k }

holds whenever Uk < U∗
ki+1

. Thus, when the nodes of the block B∗
ki+1

are treated by the

algorithm, none of the preceding blocks Bj , j = k1, . . . , ki, are absorbed in this process and

therefore the values of u1, . . . , uki
remain optimal. This means that the algorithm works at

these iterations in the same way as it would work if applied to solving the reduced MR problem

defined by B∗
ki+1

, similar to (2.2). Theorem 2.1 and Lemma 3.1 assure that Bki+1
= B∗

ki+1
,

with the optimal common value U∗
ki+1

resulting from iteration ki+1. This completes our proof

by induction and also the proof of the theorem, which follows from the case i = h.

It has been shown above that any optimal order can be obtained by ordering the optimal

blocks in ascending order of the block common values with subsequent choice of a topological

order of nodes within each block. It is interesting to know that such order exists, although to

find an optimal order may be as difficult as to solve the MR problem.

4. Numerical Results

Our test problems are based on the monotonic data fitting which is one of the most common

types of applied MR problems. In the monotonic data fitting, it is assumed that there exists

an unknown response function y(x) of p explanatory variables x ∈ Rp. It is supposed to be

monotonic in the sense that

y(x′) ≤ y(x′′), ∀x′ � x′′, x′, x′′ ∈ Rn,

where � is a component-wise ≤-type relation. Instead of the function y(x), we have available

a data set of n observed explanatory variables

Xi ∈ Rp, i = 1, . . . , n,

and the corresponding responses

Yi ∈ R1, i = 1, . . . , n.

The function and the data set are related as follows

Yi = y(Xi) + εi, i = 1, . . . , n, (4.1)

where εi is an observation error. In general, Xi � Xj does not imply Yi ≤ Yj , because of this

error.

Data Preordering in Generalized PAV Algorithm for Monotonic Regression 779

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 4.1. Nonlinear function y(x) defined by (4.2) and (4.3)

The relation � induces a partial order on the set {Xi}n
i=1. The order can be presented by a

directed acyclic graph G(N, E) such that node i ∈ N corresponds to the i-th observation. This

graph is unique if all redundant relations are eliminated.

In monotonic data fitting, one must construct a monotonic response surface model u(x)

whose values u(Xi) are as close as possible to the observed responses Yi for all i = 1, . . . , n.

Denoting

ui = u(Xi), i = 1, . . . , n

and using the sum of squares as the distance function, one can reformulate this problem as the

MR problem (1.1). In the numerical experiments, we set the weights wi = 1 for all i = 1, . . . , n.

For our test problems, we use two types of functions y(x) of two explanatory variables

(p = 2); namely, linear and nonlinear. Our nonlinear function is given by the formula

y(x) = f(x1) − f(−x2), (4.2)

where

f(t) =

{

3
√

t, t ≤ 0,

t3, t > 0.
(4.3)

This function is shown in Fig. 4.1.

Our choice of the linear test problems is inspired by the observation that the optimal values

u∗
i that correspond to a local area of values of x depend mostly on the local behavior of the

response function y(x) and on the values of the observation errors in this area. Due to the

block structure of u∗, these local values of u∗
i typically do not change if to perturb the function

values y(x) in distant areas. Therefore, we assume that the local behavior can be well imitated

by linear local models.

For the linear function, we consider

y(x) = α1x1 + α2x2, (4.4)

780 O. BURDAKOV, A. GRIMVALL AND O. SYSOEV

with the following four possible combinations of the coefficients:

α = (0, 0), (1, 0.1), (0.1, 1), (1, 1),

where α = (α1, α2). The rationale behind studying these combinations is the following. The

choice α = (0, 0) simulates the behavior of the unknown response function in the local areas

where it is almost flat. The choices α = (1, 0.1) and α = (0.1, 1) correspond to the areas where

it increases much faster in one explanatory variable than in the other one. The choice α = (1, 1)

imitates the cases in which the response function increases in one explanatory variable as rapidly

as in the other. The nonlinear function combines the considered types of behavior. In addition,

depending on the side from which x1 or x2 approaches zero, the function value changes either

sharply, or remarkably slowly.

For the numerical experiments, samples of n = 102, n = 103 and n = 104 observations

{Xi}n
i=1 were generated for two types of distribution of the explanatory variables. One was

the normal distribution with mean zero and the identity covariance matrix. The other was the

independent uniform distribution of the explanatory variables in the interval [−2, 2]. The error

terms εi in (4.1) were independent and identically distributed with mean zero and variance

one. Two different types of distributions were used for generating the error terms, namely,

normal and double-exponential, which are known as light-tailed and heavy-tailed distributions,

respectively.

We call preprocessing the stage at which MR problem (1.1) is generated. The observed ex-

planatory variables {Xi}n
i=1 are involved in formulating this problem implicitly; namely, via the

partial order intrinsic in this data set of vectors. Given {Xi}n
i=1, we generate a directed acyclic

graph G(N, E) with all the redundant edges removed. The adjacency-matrix representation [9]

is used for the graph. The preprocessing is accomplished by a topological sorting of the nodes

N .

In our experiments, we study the following sortings, for which it is not difficult to show that

they produce a topological sort of the nodes.

• The vectors {Xi}n
i=1 are sorted in ascending order of their first components, and then if

equal, in ascending order of their second components etc. MATLAB function sortrows

implements this sorting. (1stComp)

• The vectors {Xi}n
i=1 are sorted p times in ascending order of their first components,

then second components and so on. If the same components of two different vectors are

equal, they get the same ordinal number. This produces a specific ordinal number for

each component of the vectors {Xi}n
i=1. Then for each vector Xi, the sum of the ordinal

numbers of its components is assigned to the node i. The nodes in N are sorted in

ascending order of the sums. (SumOrd)

• For each vector Xi, the sum of its components is assigned to the corresponding node i.

The nodes in N are sorted in ascending order of the sums. (SumComp)

• The nodes in N are sorted in ascending order of the number of their predecessors.

(NumPred)

• The nodes in N are sorted in descending order of the number of their successors.

(NumSucc)

Data Preordering in Generalized PAV Algorithm for Monotonic Regression 781

• Set N = N . While N is not empty, find one of the lower nodes in N , say i, with the

smallest value Yi and exclude i from N . The nodes in N are sorted in the order in which

they have been excluded from N . (MinVal)

• Set N = N . While N is not empty, find all the lower nodes in N and exclude them from

N in ascending order of the values Yi. The nodes in N are sorted in the order in which

they have been excluded from N . (Hasse1)

• Set N = N . While N is not empty, find all the upper nodes in N and exclude them from

N in descending order of the values Yi. The nodes in N are sorted in reverse of the order

in which they have been excluded from N . (Hasse2)

The advantages of involving the smallest values of Yi in topological sorts were discussed at

the end of Section 2. This advantage is exploited in (MinVal), (Hasse1) and (Hasse2).

The sorts (Hasse1) and (Hasse2) are related to Hasse diagrams drawn for posets [10]. The

same two sorts, but without sorting in the values Yi, were used in [8] for studying how rapidly

the mean square difference between the expected response values y(xi) and the values ui fitted

by GPAV tends to zero, and how quickly the mean square residual

n
∑

i=1

(ui − Yi)
2/n

approaches the true variance of the random error, as the number of observations n increases. In

[6, 7], we used (NumPred) for showing the advantages of the GPAV algorithm over the popular

simple averaging algorithm.

The consecutive order in which the observations {Xi, Yi}n
i=1 are treated by the GPAV algo-

rithm is determined by the topological sort applied. This order determines the propagation of

the set of points X1, . . . , Xi as i increases from 1 to n. We call it set propagation. In Figures

4.2 and 4.3, we plot, respectively, normally and uniformly distributed points Xi for n = 104.

The visible strips are formed by four groups of equal numbers of points. The groups correspond

to the following intervals for i:

[

1,
1

4
n

]

,

(

1

4
n,

1

2
n

]

,

(

1

2
n,

3

4
n

]

,

(

3

4
n, n

]

,

where i is the ordinal number in the considered topological order. The strips illustrate the set

propagation. Note that the sorts (1stComp), (SumOrd), (SumComp), (NumPred), (NumPred)

do not depend on the values of Yi. To generate these values for the other sorts, we used

the linear function y(x) = x1 + x2 with two different types of error distribution, normal and

double-exponential. When the sort (Hasse1) is applied, the pictures are very similar for both

distributions. The same holds for (Hasse2). The difference caused by the different error distri-

butions is more evident for (MinVal). Therefore, in Figures 4.2 and 4.3 we preset the normal

error distribution case for all the sortings, while the double-exponential case is presented in

Figure 4.4 for (MinVal) only. Notice that the (MinVal) strips have zig-zagging boundaries for

both types of error distribution. In each left lower corner of these boundaries, one can find a

point Xi with a large value of Yi, so that GPAV treats this point only after treating the points

to the left of the boundary line going up from Xi and those below the line going from Xi to the

right. Since the double-exponential distribution is heavy-tailed, it has fewer such corner points

compared with the normal distribution. The form of the data cloud is different for the normal

782 O. BURDAKOV, A. GRIMVALL AND O. SYSOEV

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(1stComp) (SumOrd)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(SumComp) (NumPred)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(NumSucc) (MinVal)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(Hasse1) (Hasse2)

Fig. 4.2. Set propagation for normally distributed observed points Xi, normal error

and uniform distributions. It is round and square respectively for these two distributions. This

affects the strip shape for some of the sortings, like (SumOrd). Figures 4.2–4.4 will help us to

understand why some of the sortings considered are preferable for the GPAV algorithm to the

Data Preordering in Generalized PAV Algorithm for Monotonic Regression 783

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(1stComp) (SumOrd)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(SumComp) (NumPred)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(NumSucc) (MinVal)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(Hasse1) (Hasse2)

Fig. 4.3. Set propagation for uniformly distributed points Xi, normal error

others.

We used MATLAB for implementing our algorithms. The numerical results presented here

were obtained on a PC running under Windows XP with a Pentium 4 processor (2.8 GHz, 1GB

784 O. BURDAKOV, A. GRIMVALL AND O. SYSOEV

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 4.4. Set propagation for (MinVal), normally (left) and uniformly (right) distributed points Xi,

double-exponential error

RAM). We evaluate performance of the presented sortings by comparing the relative error

e(u) =
ϕ(u) − ϕ(u∗)

ϕ(u∗)
,

where ϕ(u) is the objective function value obtained by GPAV for the given sort, and ϕ(u∗) is

the optimal value obtained by MATLAB solver lsqlin. Recalling that u∗ is the orthogonal

projection of Y on the convex set C and using a well known projection property (see, e.g., [12]),

we observe that

‖u − u∗‖2 ≤ ‖u − Y ‖2 − ‖u∗ − Y ‖2.

Since ϕ(u) = ‖u − Y ‖2, the relative error e(u) provides an upper estimate for the relative

distance between the approximate solution u and the optimal solution u∗.

Because lsqlin failed to solve any of the test problems for n = 103 and n = 104 within ten

hours, in these large-scale cases the performance evaluation was based on the following relative

deviation from the best result

d(u) =
ϕ(u) − ϕ(ubest)

ϕ(ubest)
,

where ϕ(ubest) is the smallest among the eight objective function values obtained by GPAV

with the use of the considered sortings for the same MR problem.

Tables 4.1 and 4.2 summarize the performance data obtained for normal and for uniform

distribution of the explanatory variables. We consider the five functions y(x), namely, four

linear (4.4) and one nonlinear (4.2)-(4.3). For each function, the left and the right columns

refer respectively to the normal and the double-exponential distributions of errors. For n = 102

and n = 103, we present the average value of d(u) · 100% for 100 MR problems generated by

each combination of the considered distributions of the explanatory variables and the error.

The average value of e(u) · 100% is calculated only in the case of n = 102, for the reasons

discussed above. One can see that the average values of d(u) · 100% are sufficiently close to

those of e(u) · 100%. For n = 104, we report the results of solving only one MR problem for

each combination of the distributions, because it takes about 3-4 minutes of CPU time to solve

one such large-scale problem. Therefore, our main analysis will be focused on the results of the

most extensive numerical experiments that correspond to n = 102 and n = 103. The results

corresponding to n = 104 serve to illustrate our main conclusions.

Data Preordering in Generalized PAV Algorithm for Monotonic Regression 785

Table 4.1: Relative error and relative deviation for normally distributed explanatory vari-

ables

average e(u) · 100% for n = 102

sort α = (0, 0) α = (1, 0.1) α = (0.1, 1) α = (1, 1) nonlinear

(1stComp) 2.63 2.85 3.31 3.42 13.57 14.83 8.60 9.19 7.63 7.30

(SumOrd) 0.58 0.63 2.55 2.25 2.42 2.12 1.34 1.22 1.15 1.58

(SumComp) 0.56 0.64 2.35 1.95 2.36 2.09 1.22 1.25 1.33 1.37

(NumPred) 0.79 0.71 2.96 2.58 3.05 2.88 2.19 1.57 2.04 2.50

(NumSucc) 0.79 0.92 2.52 2.06 2.74 2.40 1.80 1.54 1.35 1.40

(MinVal) 0.62 0.68 0.87 0.88 1.02 0.71 0.77 0.72 0.71 0.74

(Hasse1) 0.56 0.50 2.41 1.94 2.11 1.69 0.90 0.83 1.09 1.42

(Hasse2) 0.75 0.89 2.49 2.25 2.46 2.17 1.62 1.43 0.89 0.90

average d(u) · 100% for n = 102

(1stComp) 2.45 2.69 2.87 3.02 13.00 14.41 8.36 8.95 7.48 7.10

(SumOrd) 0.41 0.48 2.11 1.86 1.92 1.73 1.12 1.00 1.00 1.39

(SumComp) 0.39 0.48 1.91 1.56 1.85 1.70 0.99 1.02 1.19 1.18

(NumPred) 0.62 0.55 2.52 2.18 2.54 2.50 1.96 1.34 1.89 2.31

(NumSucc) 0.62 0.76 2.08 1.66 2.23 2.01 1.58 1.32 1.21 1.20

(MinVal) 0.45 0.52 0.44 0.49 0.53 0.33 0.54 0.50 0.57 0.55

(Hasse1) 0.39 0.35 1.97 1.55 1.61 1.31 0.67 0.61 0.94 1.22

(Hasse2) 0.58 0.73 2.05 1.86 1.96 1.78 1.40 1.21 0.74 0.71

average d(u) · 100% for n = 103

(1stComp) 1.52 1.28 3.46 2.74 48.73 50.74 33.59 33.93 29.11 30.23

(SumOrd) 0.21 0.19 1.27 1.24 1.31 1.03 0.50 0.41 0.92 0.89

(SumComp) 0.02 0.03 0.70 0.68 0.81 0.53 0.03 0.02 0.62 0.55

(NumPred) 0.28 0.19 1.97 1.82 2.42 1.93 1.27 1.15 3.03 2.76

(NumSucc) 0.21 0.23 2.26 1.90 2.37 2.09 1.31 1.04 0.21 0.24

(MinVal) 0.42 0.34 0.28 0.41 0.18 0.48 1.09 1.09 1.12 1.25

(Hasse1) 0.24 0.15 2.29 2.01 2.60 1.82 0.97 0.86 2.47 2.37

(Hasse2) 0.28 0.33 2.72 2.18 2.81 2.33 1.53 1.21 0.16 0.14

d(u) · 100% for n = 104

(1stComp) 0.55 0.41 0.75 0.44 75.37 85.53 71.12 74.42 56.80 71.79

(SumOrd) 0.10 0.09 2.48 0.86 3.38 1.62 0.75 0.82 2.87 3.03

(SumComp) 0.00 0.00 0.85 0.00 2.05 0.00 0.00 0.00 1.12 1.11

(NumPred) 0.08 0.09 3.28 1.91 3.91 1.63 1.59 1.49 7.43 7.76

(NumSucc) 0.11 0.05 4.03 2.51 5.29 2.14 1.63 1.45 0.00 0.00

(MinVal) 0.20 0.23 0.00 1.00 0.00 1.05 1.95 3.25 2.07 2.55

(Hasse1) 0.08 0.08 3.32 3.38 5.09 1.82 1.66 1.46 7.81 6.72

(Hasse2) 0.18 0.05 4.26 2.38 5.46 2.68 2.26 2.55 0.16 0.30

In Table 4.3, one can see how the average CPU time for the preprocessing and for running

the GPAV algorithm increases with n for normally distributed explanatory variables. The CPU

time for uniformly distributed explanatory variables is very similar. Since the rate of increase

786 O. BURDAKOV, A. GRIMVALL AND O. SYSOEV

Table 4.2: Relative error and relative deviation for uniformly distributed explanatory vari-

ables

average e(u) · 100% for n = 102

sort α = (0, 0) α = (1, 0.1) α = (0.1, 1) α = (1, 1) nonlinear

(1stComp) 3.34 2.94 3.50 3.33 14.98 15.69 7.12 9.26 7.58 7.41

(SumOrd) 0.68 0.84 2.90 2.20 2.40 2.62 1.49 1.41 1.35 1.57

(SumComp) 0.76 0.79 2.65 2.22 2.34 2.53 1.48 1.38 1.34 1.68

(NumPred) 0.88 0.95 3.13 2.77 3.69 3.72 1.97 2.24 2.49 2.55

(NumSucc) 0.83 0.96 2.92 2.20 2.74 2.95 2.30 2.32 1.29 1.44

(MinVal) 0.72 0.66 1.21 0.91 0.70 0.66 0.46 0.60 0.64 0.62

(Hasse1) 0.62 0.58 2.03 2.14 1.86 2.08 1.01 0.78 1.16 1.50

(Hasse2) 0.85 1.11 2.88 2.54 2.19 2.75 2.00 2.14 0.89 0.96

average d(u) · 100% for n = 102

(1stComp) 3.14 2.73 2.90 2.93 14.46 15.20 6.90 9.07 7.42 7.25

(SumOrd) 0.49 0.64 2.29 1.80 1.94 2.19 1.28 1.24 1.20 1.42

(SumComp) 0.57 0.59 2.04 1.82 1.88 2.10 1.26 1.21 1.19 1.53

(NumPred) 0.68 0.75 2.52 2.37 3.21 3.28 1.75 2.06 2.34 2.40

(NumSucc) 0.64 0.76 2.31 1.80 2.27 2.52 2.09 2.15 1.14 1.29

(MinVal) 0.52 0.46 0.61 0.52 0.23 0.24 0.25 0.43 0.49 0.47

(Hasse1) 0.43 0.38 1.43 1.74 1.40 1.65 0.79 0.60 1.00 1.35

(Hasse2) 0.65 0.91 2.27 2.14 1.72 2.32 1.79 1.96 0.74 0.81

average d(u) · 100% for n = 103

(1stComp) 1.29 1.25 3.70 3.48 54.28 63.15 35.69 39.04 27.91 30.28

(SumOrd) 0.15 0.15 1.25 1.05 1.35 0.97 0.09 0.10 1.57 1.41

(SumComp) 0.14 0.15 1.31 1.02 1.34 0.96 0.09 0.10 1.57 1.43

(NumPred) 0.17 0.15 2.71 2.08 2.99 2.45 1.31 1.17 4.68 4.59

(NumSucc) 0.14 0.15 2.53 2.31 2.83 2.35 1.52 1.29 0.22 0.24

(MinVal) 0.34 0.30 0.11 0.23 0.12 0.30 0.78 0.71 1.00 1.01

(Hasse1) 0.14 0.09 2.98 2.61 2.81 2.25 1.12 0.97 3.66 3.82

(Hasse2) 0.24 0.23 2.93 2.81 3.46 2.84 1.81 1.49 0.22 0.14

d(u) · 100% for n = 104

(1stComp) 0.40 0.24 1.70 1.12 108.51 117.33 95.32 105.58 82.04 113.01

(SumOrd) 0.04 0.02 1.34 0.43 1.72 0.62 0.00 0.00 3.39 1.76

(SumComp) 0.03 0.06 1.37 0.53 1.41 0.32 0.02 0.00 3.37 1.70

(NumPred) 0.02 0.00 4.22 1.61 4.57 1.57 1.47 1.42 10.58 10.14

(NumSucc) 0.00 0.02 3.16 2.63 4.80 2.55 1.81 1.42 0.00 0.00

(MinVal) 0.10 0.06 0.00 0.00 0.00 0.00 1.82 2.22 2.00 5.79

(Hasse1) 0.02 0.02 4.78 3.24 5.05 3.20 1.78 2.32 10.55 9.43

(Hasse2) 0.04 0.07 5.24 3.49 5.73 1.96 2.83 1.92 0.17 0.41

was almost the same for all types of error distributions and functions considered, we present

here the computational time for y(x) = x1 + x2 and normally distributed errors. The CPU

time of lsqlin is available for n = 102 only; it was around 0.9 seconds. One can observe that,

Data Preordering in Generalized PAV Algorithm for Monotonic Regression 787

Table 4.3: CPU time (seconds) of running preprocessing and GPAV algorithm

algorithm n = 102 n = 103 n = 104

(1stComp) 0.011 0.373 50.3

(SumOrd) 0.012 0.388 50.5

(SumComp) 0.012 0.399 50.7

(NumPred) 0.013 0.399 51.4

(NumSucc) 0.019 0.834 130.9

(MinVal) 0.020 0.714 94.7

(Hasse1) 0.013 0.706 113.5

(Hasse2) 0.016 0.787 125.3

GPAV 0.019 0.596 108.2

for each value of n, the preprocessing time does not differ much for the sortings considered.

Moreover, the time for the preprocessing and for running the GPAV algorithm have comparable

values. For each sorting, the ratio between these two times changes with n moderately. For

GPAV, the observed growth of time with n is in a good agreement with the O(n2) estimate of

its computational complexity.

It should be emphasized that, in our numerical experiments, the variance of the error εi is

comparable with the function values y(Xi). Such observations, with a high level of noise, were

deliberately chosen for checking the performance of the GPAV algorithm in this difficult case.

The results presented in Tables 4.1 and 4.2 indicate that all the sortings, except (1stComp),

assure a fairly good accuracy of the GPAV solution. We discuss below the reasons why

(1stComp) is such an unfavorable sorting for our algorithm. The problems generated on the base

of the linear function with α = (0, 0) were the easiest for all the sortings including (1stComp).

Therefore, we will focus our analysis on the results obtained on the basis of the other functions.

Obviously, the most difficult were linear problems with α = (1, 0.1) and α = (0.1, 1). Note

that (1stComp) provides the best accuracy for α = (1, 0.1), while its worst performance cor-

responds to α = (0.1, 1). We tested even more difficult problems defined by α = (1, 0) and

α = (0, 1). They can be viewed as pathological, because the cases, in which y does not depend

on some of the explanatory variables, are not typical for the applied MR problems. The cor-

responding results are not reported in the tables. It is sufficient to mention here that the best

results of (1stComp) refer to α = (1, 0). They were even better than those obtained by the

sortings (SumOrd), (SumComp), (NumPred) and (NumSucc) which, like (1stComp), do not

depend on the values of Yi. The other sortings are discussed below. Figures 4.2 and 4.3 show

that the set propagation for (1stComp) is identical, in the case of α = (1, 0), to the propagation

of the set

{Xj : y(Xj) ≤ c, 1 ≤ j ≤ n} (4.5)

as c increases. They are similar when α = (1, 0.1). On the other hand, these two sets propagate

in almost orthogonal directions when α = (0.1, 1). This allows us to put forward a hypothesis

that the more similarities there are between the set propagation of a sorting and the level sets

of the function y(x), the better the accuracy is provided by the sorting. The set propagation

of (1stComp), in comparison to the other sortings, is much more different from the level sets of

the linear function with α = (0.1, 1). This explains why (1stComp) shows the worst results in

this case. Again, the set propagation for (SumComp) is identical to the level sets of the linear

function with α = (1, 1). The best accuracy among the five sorts mentioned is clearly attributed

to (SumComp) in this case and this supports the hypothesis. Moreover, for normally distributed

788 O. BURDAKOV, A. GRIMVALL AND O. SYSOEV

Table 4.4: Distribution of the relative deviation for (SumComp) and (MinVal), n = 103

linear function, α = (0, 0.1)

error sort normal Xi uniform Xi

0-1% 0-3% av. max 0-1% 0-3% av. max

norm. (SumComp) 64 99 0.81 3.49 39 98 1.34 3.05

norm. (MinVal) 95 99 0.18 3.83 96 100 0.12 2.78

d-exp. (SumComp) 77 100 0.53 2.50 56 98 0.96 3.08

d-exp. (MinVal) 83 96 0.48 3.86 89 99 0.30 7.60

linear function, α = (1, 1)

norm. (SumComp) 100 100 0.03 0.57 100 100 0.09 0.54

norm. (MinVal) 49 100 1.09 2.75 66 100 0.78 2.70

d-exp. (SumComp) 100 100 0.02 0.20 99 100 0.10 1.04

d-exp. (MinVal) 52 97 1.09 3.68 71 100 0.71 2.79

nonlinear function

norm. (SumComp) 80 100 0.62 2.26 27 95 1.57 3.89

norm. (MinVal) 54 93 1.12 3.65 57 94 1.00 4.97

d-exp. (SumComp) 82 100 0.55 2.33 31 98 1.43 3.61

d-exp. (MinVal) 47 93 1.25 4.18 57 96 1.01 6.31

explanatory variables, the set propagation of (SumOrd) differs noticeably from the propagation

of the set (4.5) when α = (1, 1), while they are identical for the uniform distribution. This

explains why (SumOrd) shows a better performance in the last case.

(MinVal) resembles the propagation of the level sets, especially in the case of normally

distributed errors. This is one of the reasons why this sorting usually provides the best accuracy,

and also why it performs better for this error distribution than in the double-exponential case.

The other reason is that (MinVal) is based on the idea presented at the end of Section 2 that

suggests treating next the observation with the smallest value of Yi among the observation

admitted by GPAV for treating next. This strategy offers an extra opportunity for obtaining a

higher accuracy.

The same basic idea is employed in sortings (Hasse1) and (Hasse2). This assures that these

sortings, as well as sorting (MinVal), provide an optimal topological order in the MR problem

presented by Figure 2.1.

In support of this strategy, it is necessary to mention that we compared sortings (Hasse1)

and (Hasse2) with essentially the same sortings, also based on the Hasse diagrams, but which

were not using the values of Yi. Sortings (Hasse1) and (Hasse2) performed much better due to

the introduced strategy. We do not report the details of this comparative analysis here.

Considering how the two different distributions of errors affect the performance of all the

sortings, we notice that (SumOrd), (NumPred) and (Hasse1) are among those least sensitive

to the presence of outliers produced by the double-exponential distribution of errors.

Obviously, (SumComp) and (MinVal) are among the best sortings in our numerical exper-

iments. It should be mentioned that (Hasse2) is among the best, mainly for the nonlinear

Data Preordering in Generalized PAV Algorithm for Monotonic Regression 789

function. Since Tables 4.1 and 4.2 present average values only, let us take a closer look, for

(MinVal) and (SumComp), at the variation of their relative deviation. This is presented in

Table 4.4. For each combination of function, distribution of errors and distribution of explana-

tory variables, we report in this table the number of problems, of 100 in total, which have been

solved with relative deviation below 1% and below 3%. To facilitate the analysis, we reproduce

in column ‘av.’ the average value of d(u) · 100% from Tables 4.1 and 4.2. Note that the over-

whelming majority of the generated MR problems have been solved by GPAV with the relative

deviation below 3%. In column ‘max’, the maximal value of d(u) ·100% is reported. Comparing

this value for (SumComp) and (MinVal), one can observe that the first sorting is less sensitive

to the outliers produced by the double-exponential distribution of errors. One more attractive

feature of (SumComp) is that it is easier to implement this sorting than (MinVal).

5. Conclusions

We have introduced several sortings which can be used at the preprocessing stage. Let us

summarize here the observations presented in the previous section. The GPAV algorithm has

been shown to be efficient in term of the computational time, which was below four minutes for

solving large-scale MR problems with 104 observations. In our extensive numerical experiments

(of about 5 · 104 in total), the algorithm has produced high accuracy solutions for all the

considered sortings, except (1stComp). If this unfavorable sort is disregarded, the average

relative error and the average deviation from the best of the solution obtained was typically

below 3%. The main conclusion is that all the sortings considered here, except (1stComp),

can be recommended for the data preordering. A slight preference may be given to sortings

(SumComp) and (MinVal).

We observed also that a sorting provides good accuracy when its set propagation follows in

a certain sense, or at least, does not differ too much from the propagation of the level sets of

the response function.

Moreover, the accuracy of the GPAV solution improves when the observed values Yi are

properly taken into account. The most successful was the strategy in which the observation

chosen for treatment at the current iteration has the smallest observed value among the possible

candidates for treatment.

References

[1] M. Ayer, H.D. Brunk, G.M. Ewing, W.T. Reid, E. Silverman, An empirical distribution function

for sampling with incomplete information, The Annals of Mathematical Statistics, 26 (1955),

641–647.

[2] R.E. Barlow, D.J. Bartholomew, J.M. Bremner, H.D. Brunk, Statistical inference under order

restrictions, Wiley, New York, 1972.

[3] M.J. Best, N. Chakravarti, Active set algorithms for isotonic regression: a unifying framework,

Mathematical Programming, 47 (1990), 425–439.

[4] H.D. Brunk, Maximum likelihood estimates of monotone parameters, The Annals of Mathematical

Statistics, 26 (1955), 607–616.

[5] H.D. Brunk, G.M. Ewing, W.R. Utz, Minimizing integrals in certain classes of monotone functions,

Pacific J. Math., 7 (1957), 833–847.

790 O. BURDAKOV, A. GRIMVALL AND O. SYSOEV

[6] O. Burdakov, O. Sysoev, A. Grimvall, M. Hussian, An algorithm for isotonic regression problems,

The Proceedings of the 4th European Congress of Computational Methods in Applied Science and

Engineering ‘ECCOMAS 2004’, Ed. P. Neittaanmaki et al., 2004.

[7] O. Burdakov, O. Sysoev, A. Grimvall, M. Hussian, An O(n2) algorithm for isotonic regression

problems, Large Scale Nonlinear Optimization, Ed. G. Di Pillo, M. Roma, Springer-Verlag, 2006,

25–33.

[8] O. Burdakov, A. Grimvall, M. Hussian, O. Sysoev, Hasse diagrams and the generalized PAV

algorithm for monotonic regression in several explanatory variables, submitted to Computational

Statistics & Data Analysis.

[9] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms (Second Edition),

MIT Press, Cambridge, 2001.

[10] B.A. Davey, H.A. Priestley, Introduction to Lattices and Order, Cambridge Univ. Press, Cam-

bridge, 2002.

[11] S.J. Grotzinger, C. Witzgall, Projection onto order simplexes, Applications of Mathematics and

Optimization, 12 (1984), 247–270.

[12] J.-B. Hiriart-Urruty, C. Lemarechal, Convex Analysis and Minimization Algorithms, Springer,

Berlin, 1993.

[13] M. Hussian, A. Grimvall, O. Burdakov, O. Sysoev, Monotonic regression for the detection of

temporal trends in environmental quality data, MATCH Commun. Math. Comput. Chem., 54

(2005), 535–550.

[14] J.B. Kruskal, Nonmetric multidimensional scaling: a numerical method, Psychometrika, 29 (1964),

115–129.

[15] C.I.C. Lee, The min-max algorithm and isotonic regression, The Annals of Statistics, 11 (1983),

467–477.

[16] W.L. Maxwell, J.A. Muchstadt, Establishing consistent and realistic reorder intervals in

production-distribution systems, Operations Research, 33 (1985), 1316–1341.

[17] R.E. Miles, The complete amalgamation into blocks, by weighted means, of a finite set of real

numbers, Biometrika, 46:3/4 (1959), 317–327.

[18] H. Mukarjee, Monotone nonparametric regression, The Annals of Statistics, 16 (1988), 741–750.

[19] H. Mukarjee, H. Stern, Feasible nonparametric estimation of multiargument monotone functions,

Journal of the American Statistical Association, 425 (1994), 77–80.

[20] J. Nocedal, S.J. Wright, Numerical Optimization, Springer-Verlag, New York, 1999.

[21] P.M. Pardalos, G. Xue, Algorithms for a class of isotonic regression problems, Algorithmica, 23

(1999), 211–222.

[22] T. Robertson, F.T. Wright, R.L. Dykstra, Order Restricted Statistical Inference, Wiley, New York,

1988.

[23] R. Roundy, A 98% effective lot-sizing rule for a multiproduct multistage production/inventory

system, Mathematics of Operations Research, 11 (1986), 699–727.

[24] M. Strand, Comparison of methods for monotone nonparametric multiple regression, Communi-

cations in Statistics - Simulation and Computation, 32 (2003), 165–178.

