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Abstract

By making use of the quotient singular value decomposition (QSVD) of a matrix pair,
this paper establishes the necessary and sufficient conditions for the existence of and the
expressions for the general solutions of the linear matrix equation AXAT + BYBT = C
with the unknown X and Y, which may be both symmetric, skew-symmetric, nonnegative
definite , positive definite or some cross combinations respectively. Also, the solutions of
some optimal problems are derived.
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1. Introduction

It has been of interest for many authors to solve the linear matrix equations under con-
strained conditions. For the cases of one unknown matrix, such as AX = B or AXB = C, the
discussions can be seen in literatures [6,11,12,14,16] and [17]. The authors in [2,3,5,13] and [15]
considered the solutions of the following linear matrix equation with two unknown matrices

AXB+CYD=E, (1.1)

which originates from the applications to output feedback pole assignment problems in control
theory and from an inverse scattering problem. As special cases, Jameson and Kreindler (1973),
Jameson, Kreindler and Lancaster(1992), and Dobovisek (2001) developed the consistent con-
ditions and representations of the solutions of homogeneous equations

AX+YB=0 (1.2)

with X or Y symmetric(Hermitian), nonnegative definite or positive definite and some cross
combinations respectively.
In this paper, we discuss the symmetric matrix equation

AXAT + BYBT =C (1.3)

with the unknown X and Y both symmetric, skew-symmetric, nonnegative definite , positive
definite or some cross combinations respectively, which has been studied in [3] for the case X
and Y are both symmetric by using the general singular value decomposition (GSVD).
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Let R™*™ denote the set of all real m x n matrices, SR**™ , AR"*", SR;*" , SR}™" and
OR™ ™ are the sets of all real symmetric , skew-symmetric, symmetric nonnegative definite,
symmetric positive definite and orthogonal n x n matrices respectively. When the size is clear,
we also write A > 0 or A > 0 to denote that A is symmetric nonnegative definite or symmetric
positive definite matrix, and A > B(A > B) means A— B > 0(A— B > 0). For A € R™*", let
AT AT and R(A) be, respectively, the transpose, the Moore-Penrose inverse and the column
space of A. || - || stands for the Frobenius norm of a matrix, A x B represents the Hadamard
product of A and B.

Let A€ R™" B e R™*P, C' € R™*™, S; = SR"*", Sy = SRy™",S3 = SR}*", Sy =
AR, Ty = SRP*P, Ty = SRE*P Ty = SRE*P, Ty = ARP*P | in the next sections the following
problems are considered.

Problem I. Given A, B and C, and let

L ={[X,Y]: X €8,,Y € T;,AXAT + BY BT = C}, (1.4)

find the consistent conditions for L;; # 0, and if the conditions hold, find the expression of
[X, Y] S LU
problem II. Find [X,Y] € Ly, such that

|

This paper is organized as follows. In section 2, we introduce some preliminaries and give
the solutions of Problem I and Problem II on Li;. In section 3, we establish the solutions of
Problem I on Li5 and Li3 . In section 4, we provide the solutions of Problem I and Problem II
on Lo, the solutions of Problem I on Ls3 and L3s. Finally in section 5, we discuss the solutions
of Problem I and Problem II on L4.

1

(% 7))| = [I%03 + 1713] = min. (1.5)

2. Preliminaries and the Solution on Li;

We first introduce two lemmas about nonnegative definite and positive definite matrices,
see [1], [8] and [18, p325].

Lemma 2.1. Given matric H = FET g) with E € RM*™ F € RM*"2 (G € R"*"2,
then the following statements are equivalent.

(i) H>0;

(ii) E>0,G— FTE*F >0 and R(F) C R(E )

(iii) G > 0,E — FGYFT >0 and R(FT) C R
Lemma 2.2. Given matric H = < ) with E € R™M>*™  F € R"*"2 G € R"*"2 then

the following statements are equivalent.

(i) H > 0;

(ii)) E>0,G — FTE71F > 0;

(iii) G > 0,E — FG~'FT > 0.

The quotient singular value decomposition (QSVD) of a matrix pair [A, B] is stated as
follows(cf. [4]), compared with the GSVD, it has a simple form.
Lemma 2.3. Given two matrices A € R™*™, B € R™*P the QSVD of [A, B] is

A=MY ,U", B=MY vl (2.1)
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where M is a nonsingular m x m matriz, and if we let k = rank(A,B), r = k — rank(B),

s = rank(A) + rank(B) — k, then in (2.1), U € OR™™™, V € ORP*P and

Ix 0 0 r Op 0 0 T

0 Sag O s . 0 Iap O s
2a= 0 0 04 )k—r—s’ Yp= 0 0 Ig|k—r—s’

0 0 0 m—k 0 0 0 m—k

r s n—r—s p+r—k s k—r—s

here Ia,Ig and Iap are identity matrices, 04 and Op are zero matrices, and

Sap =diag(o1,--+,05),0; >0 =1,---,9).

The solutions on L1y about Problem I and II can be seen in [3, Theorem 3.1], which was
derived by GSVD, now we state the similar results proved by QSVD, the proof is similar to
that of [3, Theorem 3.1] , so we omit the proof.

Theorem 2.1 (X7 = X, YT =Y). Let the QSVD decomposition of the matriz pair [A, B] be
of the form (2.1). Partition M~ CM~T into the following form:

Cii Cia Ci3 Cu r
C Coo Coz C S
M-tom-T = 21 22 Caz Ca4 ’ 99
Cs1 O3z C33 Csq | k—1—35 (22)
Cin Cypp Caz Cy m—k
r s k—r—sm-—=k
then the set L1y is nonempty if and only if
CT =C,013=10,C14=0,C5 = 0,C34 = 0,Cyss = 0, (2.3)
when the condition (2.3) is satisfied, the general expression of [X,Y] € Lyy is
Ci1 C12S4 5 X13
X=U| S pCL Sip(Ca—Y)Sip Xos | U7, (2.4)
XL X5 X33
Y Y2 Yis
Y=V [Y}5 Yo Cy |VT, (2.5)

Y CL Cs

where
X153 € Rrx(nfrfs),X23 c Rsx(nfrfs%ng c SR(nfrfs)X(nfrfs),

YVll c SR(p-l—T—k)X(p-‘rT—k),YéZ c SRSXS’Y'IQ c R(p-l—r—k)xs,ylg c R(p-l—r—k)x(k:—r—s)

are arbitrary matrices. o o
In Lq;, there exists a unique [X, Y] that makes (1.5) hold, and X,Y can be expressed as

) Ci1 C1254 5 0
X=U| S50 VU (SapCSas) 0 |UT,
0 0 0
A 0 0 0
V=V|0 UxCo Cs |V, (2.6)

0 CL Css3
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here 1
\Il:(zbij)GRws,i/fij:ngajg_,lﬁi,jés. (2.7)

3. The Solutions on L, and L3

In this section we discuss the solutions of Problem I on L5 and L3 respectively.
Theorem 3.1 (X7 = X,Y > 0). Let the QSVD decomposition of the matriz pair [A, B] be
of the form (2.1) and M—*CM~T be of the form (2.2). Suppose the condition (2.3) hold, then
the set Lio is monempty if and only if

Cs3 >0, R(CL)C R(Cs3). (3.1)

When the condition (3.1) is satisfied, the general expression of [X,Y] € Lis is given by (2.4)
and (2.5), where X13, Xo3, X3 = Xa3 are arbitrary submatrices with appropriate sizes, and
Y{§ = Y11, Yo, Y13, Yoh = Yoo are parameter matrices with appropriate sizes which satisfy

R(Y{3) € R(Cs3),
R(Y{") C R(Y2),
Y> >0,

Yo - 1YY >0,

(3.2)

where
Yo = Y11 — Y13CH Y,
Vi = Yis — Yo3CHCL, (3.3)
Ya = Yoy — Ca3C55CL.

Remark. Since Li2 C Lq1, therefore condition (2.3) must be satisfied in Theorem 3.1.
Proof. The “if” part. Denote

011 01252]{—5, 0
Xo=U|[ S;L0L S;5(Cop — CosCHCE)S1E 0 | UT,
0 0 0
0 0 0
Yo=V |0 Co3ChCh Cos | VT, (3.4)

0 CL Css

then in view of Lemma 1, X7 = X | YT >0 and [X,Y] € L1z, so Li5 is nonempty.
The “only if” part. Let [X,Y] € Lio, then [X,Y] € L1, so Y has the form (2.5). Because
Y > 0 implies <Y2T2 023> > 0, therefore (3.1) follows by Lemma 2.1.
Cos Css
When condition (3.1) is met, L2 is nonempty. X,Y can be expressed by (2.4) and (2.5).
By Lemma 2.1, Y > 0 implies R(Y5) C R(Cs3),C33 > 0 and

Yo Y1)\ _ (Yu —Y13CHYE  Yio — Y13CHCE >0
Vi Y, Y — CosCiYy Yoo — CosCinClfy ) =

therefore (3.2) follows by Lemma 2.1 again. The proof is complete.

Theorem 3.2 (X7 = X,Y > 0). Let the QSVD decomposition of the matriz pair [A, B] be
of the form (2.1) and M~*CM~T be of the form (2.2). Suppose the conditions in (2.3) hold,
then the set L13 is nonempty if and only if

C33 > 0. (35)
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When the condition (3.5) is satisfied, the general expression of [X,Y] € Lis is given by (2.4)
and (2.5), where X13, Xo3, X135 = Xa3 are arbitrary submatrices with appropriate sizes, and
Y{§ = Y11, Yia, Y13, Yoh = Yoo are parameter matrices with appropriate sizes which satisfy

{ Y2 >0, (3.6)

Yo - 1Y, Y >0,
with(3.3), here Cqgy = Cs3".

4. The Solutions on Loy, Lo3 and Loy

In this section we discuss the solutions of Problem I and II on Ly and the solutions of
Problem I on Los and Lgss respectively.
Theorem 4.1 (X > 0,Y > 0). Let the QSVD decomposition of the matriz pair [A, B] be of
the form (2.1) and M—*CM~T be of the form (2.2). Suppose the condition (2.3) hold, then

(i) The necessary and sufficient conditions for the set Lag is nonempty is that
C>0, R(CL)CR(Cs3), R(Ci2Sih) C R(Cn),

Cyo > CLOT Cra + C3CH1CF. (4.1)

When the condition (4.1) is satisfied, the general expression of [X,Y] € Lag is given by (2.4)
and (2.5), where

Yoy = 0230;530,21; + G, 0<G<Cy— ClTQCf_lClQ — 023035053) (42)

Y{i = Y11, Yia, Y13 are parameter matrices with appropriate sizes which satisfy (3.2) with (3.3),
and X13, Xo3, X5 = X33 are parameter matrices with appropriate sizes which satisfy

R(X13) € R(Cn1),
Z2 Z 07
Zo— 2,25 ZT > 0,

(4.3)

where
Zo = S3p(Cos — Ya2) Sy — Sy pCLCH CraSap,
Zy = Xo3 — 5, 5CHCH X, (4.4)
Zoy = X33 — X%ClﬁXlg

(ii) In Lo, there exists a unique [X,Y] that makes (1.5) hold, and X,Y can be expressed

as
. Ci1 0125,;113 0
X=U S;EC&TQ SX%;(CQQ - 0230:;3,053 - G’)Sgll% 0| UT,
0 0 0
0 0 0
}A/ =V 0 ngngCQTS + é C23 VTa (45)
0 CL Cs3

where G is the unique solution of following optimal problem
183G SAE + Sap(CesCs5C25 — Co2)SaplE + |G + Cos CHO%|[5 = min,  (4.6)

fOT 0 S G S 022 — ClTQCfrlclg — CQ?,C;%C%;,
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Proof. (i) Necessity. Suppose [X,Y] € Lao, then [X,Y] € L1, and X has the form (2.4), Y
has the form (2.5). X > 0,Y > 0 imply that C' > 0 by (1.3) and

< Ci C1284 5 ) >0 <Y22 023) >0
SapCly Sap(Cas —Ya2)Sup ) =7 \Cfy Caz) =7
therefore by Lemma 2.1,

R(C1255) € R(Cn),
Sap(Caz — Y22)Sy 5 — Sy pCHLCT, C1aSyE > 0,

4.7
R(CE) € R(Cay), 4.0
Yo — Ca3C55C1 > 0.
Let
Yoy = C23C5;Ca5 + G, (4.8)

from (4.7) we know G > 0 and Cap — Yoy — CLC,C12 > 0, i.e.,
Cag — OO Cra — Co3CHCY > G > 0.

Sufficiency. Denote Xy, Yy by (3.4), then in view of Lemma 2.1 and condition (4.1), we know
X0 >0,Yy >0 and [Xo,Yy] € Laa, so Lay is nonempty.

When condition (4.1) is met, the expression (2.5) and the condition (3.2) about Y follows,
the proof is similar to that of Theorem 3.1. While in (2.4), X > 0 implies that R(X13) C R(C11)
and < Z% Zl> > 0, therefore (4.3) follows.

7T 7,
(ii) When [X,Y] € Lgg, from (2.4), (2.5) and (4.2), we have

X117 + ||5i|1|% o , ,
= ap + [|Syp(Ca2 — Y22) Sy llE + ([ Yool + 2[| X3l
+2[| Xos||F + [ X335 + Y11l F + 2[Yiall% + 2] Vi3]

where «q is a constant number, therefore || X||% + ||Y||% = min if and only if X3 = 0, Xo3 =
0,X33=0,Y1; =0,Y12=0,Y13 =0 and

IS35(Caz = Ya2) SpllE + [[Yarlf: = min,
this is the optimal problem (4.6), notice that the set
{G S SRsxsl 0<G<Cy — ClTQCf_lClg — 0230;_?)053}

is a closed convex set, therefore the optimal problem (4.6) has a unique solution.

The proof of the following results is similar to that of Theorem 4.1, so we omit the process.
Theorem 4.2 (X > 0,Y > 0). Let the QSVD decomposition of the matriz pair [A, B] be of the
form (2.1) and M—*CM~T be of the form (2.2). Suppose the condition (2.3) hold and C > 0,

then the necessary and sufficient conditions for the set Los is nonempty is that
Cs3 > 0, R(CuSZ};) - R(CU),

Cos > CHLCT Cha + Ca3C33' O (4.9)

When the condition (4.9) is satisfied, the general expression of [X,Y] € Log is given by (2.4)
and (2.5), where

Yoo = Co305'Cas + G, 0 < G < Cog — CHLCL 012 — Co3 O3 O (4.10)
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YL = Y11, Yo, Y13 are parameter matrices with appropriate sizes which satisfy (3.6) with (3.3),
and X13, Xa3, XI5 = X33 are parameter matrices with appropriate sizes which satisfy (4.3) with
(4.4).

Theorem 4.3 (X > 0,Y > 0). Let the QSVD decomposition of the matriz pair [A, B] be of the
form (2.1) and M—*CM~T be of the form (2.2). Suppose the condition (2.3) hold and C > 0,

then the necessary and sufficient conditions for the set L3 is nonempty is that
Ci1>0,C33 >0,

Caz > CHLCH Cia + Co3C53' O (4.11)

When the condition (4.11) is satisfied, the general expression of [X,Y] € Las is given by (2.4)
and (2.5), where

Yoo = 023053)10;3 + G, 0<G<Cy— Cgc;llclg — 0230351033. (4.12)

YL = Y11, Yio, Y13 are parameter matrices with appropriate sizes which satisfy (3.6) with (3.3),
and X13, Xo3, X5 = X33 are parameter matrices with appropriate sizes which satisfy

{ 22> 0. (4.13)

Zo— 21250 7T > 0,
with (4.4), here C{; = C;'.

5. The Solutions on Ly

Let us first introduce a lemma.
Lemma 5.1. Given G,H € R™™", A = diag(\1,---, ) > 0, P = diag(ry,---,7.) > 0, there
exists a unique matriz S € AR™", such that

IASA — G| + || PSP — H|

= mi ASA — G||F + ||PSP — H|% 5.1
Jmin (] 1% +1 I12), (5.1)
and S can be expressed as
|
§=50x (AMG-G")A+P(H - H")P), (5.2)

where

1
555,117 5.3
NN A ShIsT (5:3)

¢ =(pi) €ER", @y =
Proof. For S = (s;;) € AR™*",G = (¢i;) € R™*", and H = (h;;) € R"*", we have

IASA = G|% +||PSP - H|%
= > [NiAjsiy = 9i)* + (rirysig — hij)?]

2 2 2 242 2.2\ .2 2 2 (5'4)
= Z l95 + 3] + Z {205 +rirg)si; + 95 + 95
1<i<r 1<i<j<r

+h%; 4 B3 4 2NN (951 — gig) + rar(hyi — hij)]sis )
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From (5.4), it is easy to obtain a unique solution S = (4;;) € AR™" of (5.1), and

. 1 1 .
8ij = QW[M(QU = 95i)Aj + rilhig — hyi)ryl, 1 <, <, (5.5)
Thus (5.2) is proved.
The following theorem establishes the necessary and sufficient conditions for the existence of
the solutions of Problem I and Problem II on L4, and under these conditions, the expressions

of the solutions are obtained.
Theorem 5.1. Let the QSVD decomposition of the matrixz pair [A, B] be of the form (2.1) and
M=YCM~T be of the form (2.2). Then the set Lyy is nonempty if and only if

CT =—-C,Ci135=0,C14=0,C4 =0,C34 = 0,Cyay = 0. (5.6)

When the condition (5.6) is satisfied, the general expression of [X,Y] € Lyy is

Ci1 C12S45 X13
X =U|-S;5CL Sap(Cor—Ya2)Syp Xas | UT,
. XL X33

where
X153 € Rrx(nfrfs)7X23 c Rsx(nfrfs),XBS c 14R(nf7"75)><(nfrfs)7

YVll c AR(p+T_k)X(p+T_k),Y12 c R(p+r—k)><s’y'13 c R(p+r—k)><(k—r—s),}/'22 e ARSXS

are arbitrary matrices. o o
In Lyq4, there exists a unique [X, Y] that makes (1.5) hold, and X,Y can be expressed as

A Ciy C125, 5 0
X=U|-S;5C5L Ux(SapC22Sap) 0 |UT,
0 0 0
) 0 0 0
Y=V[0 UxCp Co |VT, (5.8)
0 —-CL Cs3
here
1

; (5.9)

U = (hij) € R% ahsj = <4,7<s

2,277 = =
1+o0j0;

Proof. 1f the set Ly is nonempty, obviously, C' must be skew-symmetric. For [X,Y] € Lyy,
according to Lemma 2.3, we have

MY UTXUSTMT + MEpVTYVEEMT = C, (5.10)
it is equivalent to
YAUTXUS, +2pVTYVEL = M—teMm—T. (5.11)
Write
X1 X X3 T Yiu Y2 Y3\ p+r—k
UTXU = | =X, X Xo3 s, VIYV=| -V} VYo Yo s

7X1T3 —X2T3 X33/ n—r—s leg —Yg?: Y3 ) k—r—s
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T s m—r—s p+r—k s k—r—s (5.12)
by (5.11), (5.12) and (2.2), we obtain

X1 X1254B 0 0 Ci1 Ci2 Ciz Cus

—SapXly SapXooSap+Yas Yoz 0 _ —Cf, Cyn Oy Cxn (5.13)
0 —Y5; Yz3 0 —Cly —Cdy Css Cay |’ ’
0 0 0 0 ¢l ¢l —CI, Cu
Therefore

X11 = C11, X12 = C12S . Yoz = Chs, Yaz = Css, (5.14)
C13=0,C14=0,024 =0,034 = 0,Cy4 = 0, (5.15)
SapX225ap + Yoz = Caa. (5.16)

Thus when L4y is nonempty, the condition (5.6) hold and the expression (5.7) of La4 is
obtained.

In addition, L44 is a closed convex set, so there exists a unique [X , Y] € Ly4 that makes
(1.5) hold. When [X,Y] € Lyq,

1X1% + ||Y|1|% )
= B0+ 1S45(Ca2 — Ya2) Sy 5% + Y2l % + 2 X131 %
+2(| Xos||% + | X33l + Y11 |7 + 2[|YaallF + 2([ Vi3] %

where 3y is a constant number, therefore || X||% + ||Y||% = min if and only if X153 = 0,X03 =
0,X33=0,Y11 =0,Y12=0,Y13 =0 and

1S4 5(Caz = Ya2) S |17 + Yoz || = min

for Yoo € AR®**5. Therefore, by Lemma 5.1, we obtain Y5, and then )A(,}A/ Theorem 5.1 is
proved.
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