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Abstract

In order to construct closed surfaces with continuous unit normal, we introduce a new
spline space on an arbitrary closed mesh of three-sided faces. Our approach generalizes
an idea of Goodman and is based on the concept of ’Geometric continuity’ for piecewise
polynomial parametrizations. The functions in the spline space restricted to the faces
are cubic triangular polynomials. A basis of the spline space is constructed of positive
functions which sum to 1. It is also shown that the space is suitable for interpolating data
at the midpoints of the faces.
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1. Introduction

In computer-aided geometric design it is often useful to use surfaces defined parametrically
from box splines on a regular mesh. Those box splines usually used are tensor product B-
splines on a square mesh. However, such a representation cannot give a simple closed surface.
It therefore seems natural to attempt to define a “geometrically smooth” simple closed surface.
Attempts to do this have used the notion of subdivision for box splines to construct surfaces
by a process of recursive subdivision of the mesh, see for examples [1],[2] and [3]. [6],[7] and [9]
pioneered the idea of geometrically continuous spline spaces. [8] gives local bases of G? continu-
ous G-splines. They consider only quadrilateral meshes. The other more general constructions
based on irregular meshes may be seen in [5] and [10]. It is generally agreed that [6]-[9] are
a global method in that one needs to solve large linear, irregularly sparse systems to match
data, while [5] and [10] are a local method in that the coefficients of the parametrization in
Bernstein-Bézier form are generated by applying averaging masks to the input mesh, but before
computing the coefficients, several earlier algorithms contribute the idea of mesh refinement to
parametrizations. In this paper we consider a global method similar to [9]. We take a closed
polyhedral mesh M of three-sided faces and consider the space S(M) of all functions on it whose
restrictions to each face are certain polynomials and which satisfy certain matching conditions
across the edges. These matching conditions ensure that a parametrically defined surface in
R3 whose components lie in S(M) is G, i.e., is continuous and has a continuous unit normal
vector.

After giving the G' continuous conditions between two adjacent triangular Bezier patches in
section 2, we consider in section 3 a way defining spline space S(M) and discuss the dimension
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of S(M). In section 4 we study in detail the special case when M is a tetrahedron and the
technique used here should extend to other meshes. We construct a basis for S(M) of positive
functions which sum to 1 and are thus useful for the design of surfaces. We also show that
S(M) can be used for interpolating data at the midpoints of the faces of M.

2. The G'! Continuous Conditions between Two Adjacent Triangular
Beézier Patches

2.1. Triangular Patches

In the section, we will present the G* continuous conditions between two adjacent triangular
Bézier patches. Given conditions are used as the matching conditions of spline space S(M) in
next section. As for the G' continuous conditions, the discussion can also be seen in [4,11].

Triangular polynomial patches can be expressed in a Bernstein-Bezier form,

!
pu,v,w)= Y Gijx ,n'k'uv’ W, utv+w=1u0,w>0, (2.1)

itj+hk=n
i,5,k20

where coefficients G € R3. The parameters u,v,w are called barycentric coordinates of a
triangle; ¢ can be viewed as a map of this triangle into R*(see Fig.1). Again, we use a shorthand
notation for the coefficients:

Ti = Gl,i,n—i—l, iZO,... , N — 1, Sl = GO,i,nfi; iZO,... ,

8 Ta

Fig.1. Triangular polynomial patch

The boundary T'(v) = ¢(0,v,1 — v) has the form

_ Y SE)
0

and hence its derivative is given by

—nz i1 =SB (v). (2.2)

We shall consider a particular cross-boundary derivative, namely,

[Dp](v) = (1 = v)(pu — o) + 0(Pw — Pu),

where o, = ¢, (0,v,1 —v), 0, = 9, (0,0,1 —v), 00 = Yu(0,v,1 —v). Expressed in terms of
Bernstein polynomials,

[Dy](v) = n(1 —v) i T — S)B (0) + 10 Y (T — Sig1) B (v).
=0 i=0
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Simple algebra yields

IDgl(w) =n > (~

=0

% i1 — Si)BM(v). (2.3)

Let us now consider a special case: assume the boundary curve with cofficients S;,i =
0,...,n, is only of degree n — 1. This implies the existence of S;,i =0,... ,n — 1, with

n—1x

S; = S+ — S'i_l,izo,...,n. (2.4)

n

Invoking the degree elevation of Bernstein polynomial [4] and (2.4), we see that (2.3) is equiv-

alent to
n—1

[Dy)(v) =n Y (Ti = 5;) By (v). (2.5)

=0

2.2. The G' continuous conditions between two adjacent triangular Bézier
patches

Let ¢ and ¢ be two adjacent triangular patches of degree n, all of whose boundaries are
degree n — 1 and who share a common boundary cure I' of the form( 0 < v = ¢ < 1)(see Fig.2)

Ts

Fig.2. Coefficients for cross-boundary derivatives

F(v)zzn:SB" 25*3"1
i=0 i=0

with the derivative

(DT](0) = 1 3" (Sis1 — SIBI " (0) = (n— 1) 3" (Boys — 5 BI>(0).
=0 =0

From (2.5) in section 2.1, we assume that ¢ possesses a cross-boundary derivative of the

form
n—1

[Dig](v) =n ) (Ri — 5i)B} ' (v)

=0

and ¢ possesses a cross-boundary derivative of the form

n—1

[Dap](v) = n Y (T — 8;)Bp~(v).

=0

The G! continuous condition[4,11] is equivalent to

#(V)[D19](v) + a(v)[D2¢](v) + A(v)[DT](v) = 0, p,a, A # 0.
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In order to arrive at a manageable G' construction, we specify that x4 and o must be constants
while A must be linear:
A(v) = (1 —v)Ao + v

Since a # 0, we can assume without loss of generality that « = 1 and get

n—1
0= {u(Ri - §) +(Ti - 5)
=0
n—1 n—1—14, % ~ T s 5 n—1
+ " ()\0 w1 (Sz—i-l_Sz)+)‘1n_1(sz_sz—1)>}Bz’ (’U)
This gives the desired G' continuous condition
—1—4 -1 ~ -1, ~
T; = n ’ ((1 + o Ao + p)S; — n Ao0Sit1 — MRz') +
n—1 n
) n—1 ~ n—1 ~ .
)\151'—1+(1_ A +IU/)SZ_II’RZ 77':07]-7"' ,’I'L_].- (26)
n—1 n n

3. The Spline Space

Let M be a closed triangular mesh in which every face has three edges and there is no
constraint on the number of triangles meeting at a vertex. On each face of M we take barycentric
coordinates u, v and w so that the face has the form {(u,v,w) : 0 < w,v,w,u+v+w =1}. We
shall construct a vector space S(M) of scalar functions on M whose restrictions to each face of
M are triangular Bernstein polynomials in u,v and w. This shall be constructed so that any
surface f : M — R® whose components lie in S(M) is guaranteed to be G?.

To ensure that, it is sufficient to require that the elements of S(M) satisfy some conditions
similar to (2.6) across the edges of M. We assume that any function S in S(M) coincides with
a cubic triangular Berstein polynomial on any face {(u,v,w) : 0 < u,v,w,u+v +w =1}

3V ik
o(u,v,w) = Z Gisgok J o WV W ,u+v+w=1u,v,w >0, (3.1)
itj+h=3 R
i,5,k>0
where coefficients g; ; » € R and along any edge of the face ¢ is a Bernstein polynomial of degree
2.

Fig.3. The coefficients around vertexes O1 and Oz

We now consider how to match S on two adjacent faces of M. Suppose that on one face S
is given by (3.1) and on an adjacent face it is given by (@, v, w) similar to (3.1). These two
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faces have a common edge
0,v,1—v) =(0,v,1-9), 0<v=v<1.

Let two end points of the common edge be 01, 02, respectively, and the number of edges meeting
at 01 be n, the number at 0, be m (see Fig.3). The coefficients of the polynomials on the faces
meeting at 0; and o, are labelled in Fig.3. Note that in Fig.3 we denote the coefficients of these
polynomials on the faces as (3.1) in capitals, these coefficients are real numbers, for example,
01, 0 for coefficients, but 01,02 for the vertices of parameteric triangular domain. Suppose
that oy corresponds to v = 0 and 0; to v = 1. In order to ensure that ¢ and 1 is G' continuous
a@ong common edge 0102, according to (2.6), these relations between coefficients Rth, 5’1 and
Rm_1, R()7 Sn—l are

Ri= (142X + w02 — 2280 — uRim—1,
Ti= 5 (043X +1)So — 2001 — puTo) + 5 (1= 5M + p)So + 3002 — uTy)
Sl = %)\150 + (1 - %)\1 + N)Ol - ,U/Sn—la
(3.2)
where
R1 = ;Rl + %Og,Rm_l = %Rm—l + %02,51 = gSl + %01,;5”_1 = %Sn—l + %01 (33)

(3.3) can be obtained by the degree elevation. In order to consider the G conditions of
other adjacent polynomials at o; and o0z, we take

2 2
,uzl,)\():—Z(:os—7T,)\1:2cos—7r (3.4)
m n

in G* condition (3.2). Substituting Ry, Ryn_1,51, Sn_1, ft, Ao, A1 in (3.2) by (3.3) and (3.4), we
have

2 2 1 1
(1 — cos E)O2 + cos ESO = §Rl + §Rm_1, (3.5)
2 2 2 2 3
cos _71—02 + cos —7T01 — (cos Ty cos 2t — 3)So = =(To + T1), (3.6)
n m n m 2
2 2 1 1
(1 —cos _77)01 + cos —WSO ==5+=5,_1. (3.7)
n n 2 2

In order to guarantee G'! continuity for n adjacent polynomials at o;, we require that the
relations similar to (3.5)-(3.7) exist among any two adjacent polynomials surrounding some
common vertex. Hence there exists following relations between the coefficients around o,

2 2 1 1
(1 — cos %)01 + cos %S,- = 55,-_1 + 55,-4_1, i=0,---,n—1, (3.8)

where all subscripts are taken modulo n. Adding the equations in (3.8) up, we have

n—1
1
O =~ ; S;. (3.9)
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According to (3.5),(3.6),(3.7) and (3.9), we have

( 1 n—1
O =— Sz';
T Z (3.10)

2 2 2 2
2 ((1 —cos—7r)cos—7r + (1 — cos —W)cos—w
n n m m

2 2 2 2
{ —3(1 — cos —W)(l — cos —W)) So — cos —W(l — cos —W)
n m n n

2m 27
(Ry + R,,_1) — cos E(l — Cos E)(Sl +5n-1) (3.11)

2 2
| =—3(1—cos %)(1 — cos %)(To + 1),
where Rg = Sp. (3.10),(3.11) are the G! compatible conditions of polynomials on these faces
meeting at a common vertex. We call the coefficients S; and R; edge coefficient labelled by
”—” in Fig.3, O1 and Oz vertex coefficient, T; face coefficient labelled by ”x”, the condition
(3.10) vertex condition, and the condition (3.11) edge condition.

Let the closed mesh M has e edges, f faces and v vertices. Then the sum of polynomial
coeflicients on all faces is e + f + v. From (3.10) and (3.11) we see that the vertex conditions
and the edge conditions can afford e + v independent equations at most. Thus this gives
Theorem 1. If S(M) is defined as before and M has f faces, then

dimS(M) > f.

4. Splines on a Tetrahedron

Theorem 2. If M is a tetrahedron, then
dimS(M) = 4.

Fig.4. Coefficients of polynomials on each face of tetrahedron

The coefficients of polynomials on each face of tetrahedron are labelled in Fig.4, Q1 for
faceSyS2S3 coefficient, Qo for face S2S1S3 coefficient, Q3 for face SoS2S1 coefficient and Q4
for face SuS1S3 coefficient. Because the number of edges meeting at every verter is 8, n and
m in section 8 are 8. From wverter condition (3.10) and edge condition (3.11) on each face of

tetrahedron, we have
AV =Q, (4.1)
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where
3000000—50—%
0§0000—§00—§
00%00000—%—§
000;00-%070
A_oooogoo-%—go
“fooo0oo0oo0 % -1 - 0 0 |

010101 -3 0 0 0
100011 0 -3 0 0
001110 0 0 =3 0
111000 0 0 0 -3

A Q2+ Q4

B Q1+ Q4

c Q1+ Q2

D Q1+ @3

E Q2+ Qs

V_F’Q_Q3+Q4

So 0

S 0

Sy 0

Ss 0

It is easy to verify that detA # 0, thus, Theorem 2 come into existence.

We now return to Fig.4 and consider the case when ()1 = 1 and all other face coefficients
vanish. Resolving system (4.1), we obtain

1 5 7 1
A=E=F=ﬁ,BZCZDZH,SQZSz=S3—ﬁ,Sl—ﬁ.

For each other face we have a corresponding function such that the coefficient for that face
is 1 and the other face coefficients are 0. It is easily seen that these four functions sum to 1.
Thus we have constructed a basis for S(M) of positive functions that sum to 1.

These functions can be used to design a closed G* surface in the following standard fashion.
Denote the functions by B;,i = 1,2,3,4. Given any points V; in R®,i = 1,2, 3,4. Consider the
parametrically defined surface

4
f=)_ViBi. (4.2)
i=1

Then the surface lies in the convex hull of V1, V5, V3, V4 and moving the points V; correspond-
ingly alters the shape of the surface. These basis functions are also useful for interpolation.
Theorem 3. Let t1,t2,t3,t4 be the points at the barycenters of the faces of the tetrahedron.
Then given y1,Y2,Ys3,Ys i R, there is a unique element q of S(M) satisfying

q(ti) = Yi, = 1,2,3,4.

Proof. Let B; be the function as above with Bezier coefficient ); = 1 in the face with
barycenter t;. Let ¢ = Y} a;B;. Then

(t) L +1 +1 +1a
= —-a —-a —-a —a4 = UY1-
q\t1 21 62 63 64 [0

There are corresponding equations for ¢(¢;),¢ = 1,2, 3,4. Since the determinant of the coefficient
matrix of the system is not null, there is a unique solution for a1, a2, as,a4.
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Now the space S(M) is of value only in constructing parametrically defined surfaces. Take
points X; = (z4,¥;,2:) € R®,i = 1,2,3,4. Then, by Theorem 3, there are a;,bj,c; €,5 =
1,2,3,4, with

4

(aj, b]', C]')B]' (tz) = (.’L'z', Yi, Z,’), 1= ]., 2, 3, 4,
j=1
giving a surface of form (4.2) passing through X;, X, X3, X4.

The above discussion of spline on tetrahedron is also suitable for hexahedron and octahedron
composed of triangular face, we can obtain similar results.
Remarks. The discussion of the paper is only done under the condition of closed triangular
mesh. The study of the spline spaces defined on open triangular meshes is also significant.
Example. The closed surface in Fig.5 is generated by freely given four space points whose
components are regarded as face coefficients.

Fig.5. Closed surface generated by four Fig.6. Closed surface generated by six
space points space points
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