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Abstract

In this paper,we will prove the derivative of tetrahedral quadratic finite element ap-
proximation is superapproximate to the derivative of the quadratic Lagrange interpolant
of the exact solution in the L

∞-norm, which can be used to enhance the accuracy of the
derivative of tetrahedral quadratic finite element approximation to the derivative of the
exact solution.
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1. Introduction

Recently, J.H. Brandts and M. Kř́ıžek [1] discussed the superconvergence of tetrahedral
quadratic finite elements. Their work focused on the superapproximation of the gradient of the
quadratic finite element approximation to the gradient of the quadratic Lagrange interpolant of
the exact solution in L2-norm. For the same model problem, utilizing the theory of the discrete
Green’s function, this paper studies the superapproximation in L∞-norm.

2. Preliminaries

Let Ω be a convex bounded polyhedral domain in R3 with Lipschitz boundary and denote by
W k, p(Ω) the usual Sobolev spaces of functions having generalized partial derivatives up to order
k in Lp(Ω) and their usual norm and seminorm by ‖ · ‖k, p and | · |k, p, respectively. In addition,

we denote by W
1, p
0 (Ω) the subspace of W 1, p(Ω) with suppu ⊂ Ω for each u ∈ W

1, p
0 (Ω). In

particular, we set

Hk(Ω) = W k, 2(Ω), H1
0 (Ω) = W

1, 2
0 (Ω)

‖ · ‖k = ‖ · ‖k, 2, | · |k = | · |k, 2.

In this paper, let T h be the same uniform partition of Ω̄ into tetrahedra as in [1], and
h be the largest diameter of all element E from the partition T h. Relative to the partition
T h, let Sk

h be the k-order finite element subspace of H1(Ω), and set Sk
0h = Sk

h ∩ H1
0 (Ω).

Let Lh : H2(Ω) → S1
h be the linear Lagrange interpolation operator on the vertices of the

tetrahedra, and Qh : H2(Ω) → S2
h be the quadratic Lagrange interpolation operator on the

vertices and midpoints of edges of the tetrahedra.
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Now we introduce the subspace B2
0h ⊂ S2

0h of so-called quadratic bubble functions, defined
by

B2
0h =

{

(I − Lh)v | v ∈ S2
0h

}

.

This definition induces the following space-decomposition

S2
0h = S1

0h ⊕B2
0h,

which expresses that each v ∈ S2
0h can be uniquely written as l + b with l ∈ S1

0h and b ∈ B2
0h

(cf. [1]). This decomposition will be used in our main results. Obviously, B2
0h is spanned by

the basis ψi, (i = 1, · · · , M), where each ψi ∈ S2
0h has a positive value at the midpoint of the

internal edge ei, has norm |ψi|1 = 1, and vanishes at all other edges.
Next, we define discrete δ function δh

z ∈ S2
0h(Ω), discrete derivative δ function ∂zδ

h
z ∈

S2
0h(Ω), L2 projection Pu ∈ S2

0h(Ω) of u ∈ L2(Ω), discrete derivative Green’s function ∂zG
h
z ∈

S2
0h(Ω), and derivative zhun Green’s function ∂zG

∗
z ∈ H1

0 (Ω) as follows [2]:

(v, δh
z ) = v(z), ∀v ∈ S2

0h(Ω)

(u− Pu, v) = 0, ∀v ∈ S2
0h(Ω)

(v, ∂zδ
h
z ) = ∂v(z), ∀v ∈ S2

0h(Ω)

(∇∂zG
h
z , ∇v) = ∂v(z), ∀v ∈ S2

0h(Ω)

(∇∂zG
∗
z , ∇v) = (∂zδ

h
z , v), ∀v ∈ H1

0 (Ω)

where S2
0h(Ω) ⊂ H1

0 (Ω) is the quadratic tetrahedral finite element space. Obviously, ∂zG
h
z is

the finite element approximation to ∂zG
∗
z .

In addition, for u ∈ H1
0 (Ω), we can easily obtain

(∇∂zG
∗
z, ∇u) = (∂zδ

h
z , u) = (∂zδ

h
z , Pu) = ∂zPu(z).

Further, the following stability estimate holds

‖Pu‖1, q ≤ C‖u‖1, q for 3 < q ≤ ∞,

which can be similarly proved as Corollary 2 in Zhu,Lin[2, pp104].
Finally, we will give the following two fundamental assumptions which are needed in next

sections (cf. [2, 3]):
(A1). For the model problem (1) considered in Section 3, there exist 1 < q0 ≤ ∞ and a

constant C(p) such that the following a priori estimate holds

‖u‖2, p, Ω ≤ C(p)‖f‖0, p, Ω, ∀ 1 < p < q0, u ∈W 2, p(Ω) ∩W 1, p
0 (Ω).

(A2). For each v ∈W 2, q(Ω) ∩W 1, q
0 (Ω) there exists a χ ∈ S2

0h such that

‖v − χ‖1, q ≤ Ch‖v‖2, q for 1 ≤ q ≤ ∞.

In this paper we shall use letter C to denote a generic constant which may not be the same
in each occurrence.

3. The Tetrahedral Quadratic Finite Element Method

Let us consider the following boundary value problem

{

−∆u = f, in Ω
u = 0, on ∂Ω,

(1)
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and the associated weak formulation is

(∇u, ∇v) = (f, v), ∀v ∈ H1
0 (Ω).

The finite element method is to find uh ∈ S2
0h such that

(∇uh, ∇v) = (f, v), ∀v ∈ S2
0h.

Clearly, there is Galerkin orthogonality relation

(∇(u− uh), ∇v) = 0, ∀v ∈ S2
0h. (2)

4. Some Propositions and Lemmas

In this section, we will introduce some propositions and lemmas that are needed in the proof
of our main theorem.
Proposition 1. Suppose T h is a uniform tetrahedral partition, and Qh is defined as in Section

2. Then for all v ∈ W 3,∞(Ω) and each element E from the partition T h, we have

|v −Qhv|1,∞, E ≤ Ch2|v|3,∞, E . (3)

Proposition 2[2]. (Sobolev integral identity) Let Ω ⊂ Rn be a bounded open domain,

S ⊂ Ω a closed ball such that Ω is star-shaped with respect to S, and u ∈ Cm(Ω). Then u(x)
can be expressed by

u(x) =
∑

|α|≤m−1

lα(u)xα +

∫

Ω

1

rn−m

∑

|α|=m

Qα(x, y)Dαu(y) dy,

where lα(u) is a linear functional on Cm(Ω) defined by

lα(u) =

∫

Ω

ζα(y)u(y) dy,

and ζα(y) is a continuous bounded function with respect to variable y with |α| ≤ m− 1. More-

over, Qα(x, y) with |α| = m is a bounded infinite-times differentiable function with respect to

variables x and y. In addition,

r = |x− y| =





n
∑

j=1

|xj − yj |
2





1

2

for x, y ∈ Ω.

Proposition 3. Let uh be the finite element approximation of u ∈ H2(Ω), then

‖u− uh‖0 ≤ Ch2‖u‖2,

and

‖u− uh‖1 ≤ Ch‖u‖2.

Lemma 1. Suppose ∂zδ
h
z is defined as in Section 2, then

|∂zδ
h
z (x)| ≤ Ch−4e−Ch−1|x−z|, ∀x, z ∈ Ω, (4)

and

‖∂zδ
h
z ‖0, q ≤ Ch−4+ 3

q , for 1 ≤ q ≤ ∞, (5)
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where C is a positive constant independent of x,z and h.

With the same argument as in [2] (cf. [2], Theorem 3.6, 100-103), Lemma 1 can be easily
proved.

Lemma 2. Suppose k ≥ 1, q0 > 2, and ∂zG
∗
z and ∂zG

h
z are defined as in Section 2, then we

have

‖∂zG
∗
z − ∂zG

h
z‖1, p ≤ Ch

3

p
−3, (6)

where C is a positive constant independent of z and h, and 2 ≤ p < q0.

Proof. Let g = ∂zG
∗
z, gh = ∂zG

h
z , and gI be the interpolant of g. Then by (5), interpolation

error estimate, and a priori estimate, i.e., assumption (A1), we obtain

‖g − gI‖1, p ≤ Ch‖∇2g‖0, p ≤ Ch‖∂zδ
h
z ‖0, p ≤ Ch

3

p
−3.

Further, by inverse estimate we have

‖gI − gh‖1, p ≤ Ch
3

p
− 3

2 ‖gI − gh‖1, 2.

However, by Proposition 3, Lemma 1, and the triangular inequality, we obtain

‖gI − gh‖1, 2 ≤ ‖gI − g‖1, 2 + ‖g − gh‖1, 2

≤ Ch‖g‖2, 2 + Ch‖g‖2, 2

≤ Ch‖∂zδ
h
z ‖0, 2

≤ Ch−
3

2 .

Thus,

‖gI − gh‖1, p ≤ Ch
3

p
−3.

As a result,

‖g − gh‖1, p ≤ ‖g − gI‖1, p + ‖gI − gh‖1, p ≤ Ch
3

p
−3.

Hence, the proof of Lemma 2 is completed.

Lemma 3. ‖∂zG
∗
z‖0 ≤ Ch−

1

2 | lnh|
2

3 .

Proof. Setting g = ∂zG
∗
z, gh = ∂zG

h
z and taking w ∈ H1

0 (Ω) such that

(∇v, ∇w) = (v, g), ∀v ∈ H1
0 (Ω),

by the stability estimate we obtain

‖g‖2
0 = (g, g) = (∇g, ∇w) = ∂zPw(z) ≤ |w|1,∞, (7)

where Pw is the L2-projection of w.

By Proposition 2, we derive

|w|1,∞ ≤ C(q)‖w‖2, q,

where C(q) ≤ C(q − 3)−
2

3 , (q → 3 + 0).

Hence, by a priori estimate, we have

|w|1,∞ ≤ C(q − 3)−
2

3 ‖g‖0, q , for 3 < q < q0. (8)
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For 3 < q < q0, taking 1 < q′ = q

q−1 < 3
2 , then by assumption (A2), there exist v ∈

W 2, q′

(Ω) ∩W 1, q′

0 (Ω) and χ ∈ S2
0h such that

‖g − gh‖
q
0, q =

(

|g − gh|
q−1sgn(g − gh), g − gh

)

= (∇v, ∇(g − gh))

= (∇(v − χ), ∇(g − gh))

≤ C‖v − χ‖1, q′‖g − gh‖1, q

≤ Ch‖v‖2, q′‖g − gh‖1, q .

By a priori estimate again, we have

‖v‖2, q′ ≤ C
∥

∥|g − gh|
q−1

∥

∥

0, q′
≤ C‖g − gh‖

q−1
0, q .

Thus, it follows that
‖g − gh‖0, q ≤ Ch‖g − gh‖1, q.

By Lemma 2 and inverse estimate,

‖g − gh‖0, q ≤ Ch‖g − gh‖1, q ≤ Ch
3

q
−2, (9)

and
‖gh‖0, q ≤ Ch

3

q
− 3

2 ‖gh‖0, 2. (10)

From (9) and (10), using the triangular inequality, we derive

‖g‖0, q ≤ Ch
3

q
−2 + Ch

3

q
− 3

2 ‖gh‖0, 2. (11)

Therefore, from (7), (8) and (11), we obtain

‖g‖2
0 ≤ C(q − 3)−

2

3h
3

q
−2 + C(q − 3)−

2

3 h
3

q
− 3

2 ‖gh‖0.

However, by Proposition 3, Lemma 1, and the triangular inequality, we have

‖gh‖0 ≤ ‖gh − g‖0 + ‖g‖0

≤ Ch2‖g‖2 + ‖g‖0

≤ Ch2‖∂zδ
h
z ‖0 + ‖g‖0

≤ Ch−
1

2 + ‖g‖0

Thus,

‖g‖2
0 ≤ C(q − 3)−

2

3h
3

q
−2 + C(q − 3)−

2

3h
3

q
− 3

2 ‖g‖0

By Young inequality, we have

‖g‖0 ≤ C(q − 3)−
2

3h
3

q
− 3

2 .

Since C is independent of q, in particular, taking q = 3 +
(

ln 1
h

)−1
, we obtain

‖g‖0 ≤ Ch−
1

2 | lnh|
2

3 .

Therefore, Lemma 3 is proved.
Remark 1. In fact, for a general convex polyhedral domain, we have known q0 > 2. However,

if the biggest dihedra of the boundary of a convex polyhedron is smaller than
√

2
2 π, one can

discover q0 > 3 (cf. [4]).
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Lemma 4. ‖∂zG
∗
z − ∂zG

h
z‖0 ≤ Ch−

1

2 .
Proof. By Lemma 1, a priori estimate, and L2 estimate,

‖∂zG
∗
z − ∂zG

h
z‖0 ≤ Ch2‖∂zG

∗
z‖2 ≤ Ch2‖∂zδ

h
z ‖0 ≤ Ch2 · Ch−4+ 3

2 ≤ Ch−
1

2 .

Thus, the proof is completed.
Lemma 5. Let T h be a uniform partition, {φi} and {ψi} be the basis functions sets of S1

0h and

B2
0h, respectively. Then for all cubic polynomials p, we have

(∇(p−Qhp), ∇φi)Ti
= 0 (12)

and

(∇(p−Qhp), ∇ψi)Si
= 0, (13)

where Ti = supp φi, and Si = supp ψi.
Remark 2. (13) has been proved in [1], and (12) can be similarly proved.
Lemma 6. Let vh ∈ S2

0h. Then vh = lh + bh,

|bh|0 ≤ C|vh|0 (14)

and

|lh|0 ≤ C|vh|0, (15)

where lh = Lhvh ∈ S1
0h and bh = (I − Lh)vh ∈ B2

0h.

Proof. By the interpolation error estimate, there exists a constant C > 0 such that

|(I − Lh)vh|0, E ≤ C|vh|0, E ,

i.e.,
|bh|0, E ≤ C|vh|0, E .

Summing over all elements in the partition T h proves (14). Applying the triangular inequality
and lh = vh − bh, we immediately obtain (15).
Lemma 7. Under the conditions of Lemma 5 and Lemma 6, let lh =

∑

i βiφi ∈ S1
0h and

bh =
∑

i αiψi ∈ B2
0h. Then,

∑

i

|βi| ≤ Ch−
3

2 |lh|0 (16)

and
∑

i

|αi| ≤ Ch−
3

2 |bh|0. (17)

Proof. First define an affine transformation by

F : x̂ ∈ Ê −→ x = Bx̂+ b ∈ E

such that
E = F (Ê),

where B = (bij) is a matrix of order 3 × 3. Then, writing v̂(x̂) = v(F x̂), for all v ∈ L2(E), we
have

|v̂|0, Ê
≤ C|detB|−

1

2 |v|0, E (18)

and
|v|0, E ≤ C|detB|

1

2 |v̂|0, Ê
, (19)

moreover,
|detB| ≤ Ch3 (20)
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(cf. [2] 79-81 ).
By the equivalence of norms in the finite-dimensional space, we have

∑

i

|βi| ≤ C|l̂h|0, Ê
(21)

and
∑

i

|αi| ≤ C|b̂h|0, Ê . (22)

From (18), (20), (21), and taking v = lh, we derive

∑

i

|βi| ≤ Ch−
3

2 |lh|0, E ,

which proves (16) by summing over all elements. (17) can be similarly proved.

5. The Main Theorem

Theorem. Let u ∈W 4,∞(Ω), uh be its tetrahedral quadratic finite element approximation, and

Qhu the quadratic Lagrange interpolant of u. Then we have

|uh −Qhu|1,∞, Ω ≤ C(u)h3| lnh|
2

3 ,

where C(u) is a positive constant independent of h.

Proof. Since ∂zG
h
z ∈ S2

0h having decomposition ∂zG
h
z = lh + bh with lh = Lh∂zG

h
z ∈ S1

0h

and bh = (I − Lh)∂zG
h
z ∈ B2

0h is the finite element approximation of ∂zG
∗
z , we have

∂(uh −Qhu)(z) =
(

∇∂zG
h
z , ∇(uh −Qhu)

)

=
(

∇∂zG
h
z , ∇(u−Qhu)

)

= (∇lh, ∇(u−Qhu)) + (∇bh, ∇(u−Qhu)) .
(23)

Let lh =
∑

i βiφi and bh =
∑

i αiψi, then by (14) and (16), we obtain

|(∇lh, ∇(u−Qhu))| ≤
∑

i |βi || (∇φi, ∇(u−Qhu))|

≤ Ch−
3

2 |lh|0 · |(∇φj , ∇(u−Qhu))|

≤ Ch−
3

2 |∂zG
h
z |0 ·

∣

∣

∣(∇φj , ∇(I −Qh)u)
Tj

∣

∣

∣ ,

(24)

where Tj = supp φj .

By Proposition 1 and Lemma 5, for all cubic polynomials p, we obtain

∣

∣

∣(∇φj , ∇(I −Qh)u)
Tj

∣

∣

∣ =
∣

∣

∣(∇φj , ∇(I −Qh)(u− p))
Tj

∣

∣

∣

≤ |∇(I −Qh)(u− p)|0,∞, Tj
· |∇φj |0, 1,Tj

≤ Ch2|u− p|3,∞, Tj
· Ch2

≤ Ch4|u− p|3,∞, Tj
.

(25)

Let p be the cubic Lagrange interpolant of u, then

∣

∣

∣(∇φj , ∇(I −Qh)u)
Tj

∣

∣

∣ ≤ Ch5|u|4,∞, Tj
≤ Ch5|u|4,∞, Ω. (26)

Further, applying Lemma 3, Lemma 4, and the triangular inequality, we derive

|∂zG
h
z |0 ≤ Ch−

1

2 | lnh|
2

3 . (27)
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From (24), (26) and (27), it follows that

|(∇lh, ∇(u−Qhu))| ≤ Ch3 |lnh|
2

3 |u|4,∞, Ω. (28)

Similarly, we can obtain

|(∇bh, ∇(u−Qhu))| ≤ Ch3 |lnh|
2

3 |u|4,∞, Ω. (29)

Finally, Theorem follows from (23), (28) and (29).
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