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Abstract

We study the behavior of some polynomial interior-point algorithms for solving random
linear programming (LP) problems. We show that the expected and anticipated number
of iterations of these algorithms is bounded above by O(n'*). The random LP problem is
Todd’s probabilistic model with the Cauchy distribution.
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1. Introduction

Since Karmarkar [4] introduced his O(nL)-iteration projective algorithm, the area of interior
point algorithms for linear programming have developed rapidly. Many other algorithms have
been introduced to the growing literature on interior point algorithms, for examples, path-
following algorithms; potential reduction algorithms; and predictor-corrector algorithms, etc.
The best known worst-case iteration complexity for interior point algorithms is O(y/nL), where
n is the number of variables and L is the input data length of the LP problems.

In practice the interior point algorithms also performed compatetive with simplex algo-
rithm. People (e.g.,Lustig et la. [6], Yang and Huang [10]) have observed that the number
of iterations needed to solve the LP problems is O(lnn) using regression. Therefore there is
a gap between the theoretical worst case complexity and practical performance of the interior
point algorithms. Ye [11] showed that the anticipated number of iterations of interior point
algorithms is bounded above by O(y/nlnn). Recently, Anstreicher et al. [1] have obtained
expected number of iterations bound of O(nlnn) for a variant of degenerate random LP model
(Model II of Todd [9]) using the infeasible primal-dual algorithms of Potra [8]. Huang [3] has
shown that the expected number of iterations of some feasible interior point algorithms (e.g.,
Kojima et la. [5]) is bounded above by O(n'-%) for a nondegenerate random LP model (Model
I of Todd [9]).

In this paper, we will show that the expected and anticipated number of iterations of some
interior point algorithms is bounded above by O(n!-3) for solving a random LP model which is
an extension of Todd’s model I in [9].

The paper is organized as follows. In section 2, we introduce the random LP model and
some useful results. We review the stopping criterion for polynomial interior-point algorithms
in section 3. Section 4 derives a bound for the expected number of iterations for solving the
random LP model using certain interior point algorithms. We show the anticipated result in
section 5. Finally we will give some concluding remarks in section 6.
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2. The Probabilistic Model

We consider the following probabilistic model which is an extension of Todd’s model I in

[9].

(LP) minimize ez

subject to Az =b, x >0,

where b = Ae and e € R™ is a vector of all ones, A = (a;;) € R™*" is a random matrix whose
entries are independently and identically distributed as Cauchy distribution with characteristic
function e=°*l (¢ > 0). It’s dual form can be stated as:

(LD)  minimize eTs

subject to s=e— ATy,s >0,
since bTy = (Ae)Ty = eTATy = eT(e — 5) = n — eTs. Therefore max b7y is equivalent to
min eT's. The following lemma will help us to derive the distribution of the optimal solution of
above random LP model.
Lemma 2.1. Consider the system Bx = d, where B = (a;;) € R™*™ is a random matric
such that a;; (i,j = 1,---,m) are independent and identical(iid) Cauchy random wvariables,
and d € R™ is a random vector such that d;(i = 1,--- ,m) are iid Cauchy random variables.
Assume the columns of B and d are independent. Then the random variables xy (k=1,--- ,m)
are distributed as ’;—’g (k=1,---,m) where A\, (k=0,1,---,m) are independent and identical
random variables with Cauchy distribution.
Proof. The proof is similar to the proof in Girko [2] where the matrix B is not a square

matrix. For completion we include it here. It is easy to see that detB # 0 with probability one.
By Cramer’s rule we have

iy diBi _ (X2, diBi) R
Yo awBay (O aiBig)R™Y

where By, (i = 1,--- ,m) is the cofactor of the a;, in the matrix B, R = (3., |Bix|) and |Bjg|
is the determinant of B;y.

Next we calculate the joint characteristic function of the numerator and denominator of (x)
using conditional expectation:

Ty =

(%)

m m
Eewp{itz d,’Bz’kR_l + ’LTZ a,-kBikR_l}
i=1 i=1

= EElexp{ity d;BjxR ' +ity ayBuR YVYay,v=1,--- ,myp={1,---,m}/k
N

i=1 i=1

= E[H exp{—c|tByx|R '} H exp{—c|TBi|R'}]

i=1 i=1
= exp{—c|t|exp{—c|[}.

Therefore the numerator and denominator are independent and identically distributed as Cauchy
distribution.

Using lemma 2.1 we can obtain following two lemmas which discuss the distribution of the
vertices of (LP) and (LD).
Lemma 2.2. Let A\, A1, -+, A\ be independent and identical Cauchy random variables.
Then a vertex (may not be feasible) of (LP) has its basic variables distributed like 1 + d;\‘—; for
i=1,---,m (d =n—m) and its nonbasic variables equal 0. Furthermore, every vertex of (LP)
is nondegenerate with probability one.

Proof. Assume that first m columns of A are basic columns and is denoted by B, and
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z = (zB,0)T is a vertex of (LP) corresponding to B, then

(B,N)(:UB,O)T = (BaN)(eBaeN)Ta
which implies

ez =ep+ B 'Ney =ep+ (B 'amy1, -, B an)en = €p + (Yms1, " ,Un)en-
Let Y = (y;;) = B™'N, we now need to show that each component of every row of Y is
distributed like %, where n; (j =m +1,---,n) and 7 are identical and independent Cauchy
random variables. Let y; = B 'a; and y; = B 'a; be any two columns of Y (j # ;4,1 =
m+1,---,n), and
vy = Z%l aijBix _ (Eg:l aisz'k)R:1 _n
Ei:l a;r By, (Z’i:]_ aikBik)R 1 7o

_ YiiagBiy (O eaBg)R™' m
Ykl YomiawBi (O aaBik) R mo
be two kth components of y; and y; (k =1,--- ,m), where R = """, | Bjj|, then similar to the
proof in lemma 2.1 we can show that n;, n; and 79 are independently and identically distributed
as Cauchy random variables. Note that for any i.i.d. Cauchy random variables X and Y with
characteristic function e~¢l!l (¢ > 0), we have

X+Y =:2X

and

Since
Elexp{it(X +Y)}] = Elexp{itX }exp{itY}] = e~I?!l.
Therefore, x; is distributed like 1 + di—’g (k=1,---,m). Tt is easy to see that x = (zp,0) is
nondegenerate with probability one.
A similar result applies to the dual form of (LD).
Lemma 2.3. Let no, n1, -+ -, na be independent Cauchy random variables. Then a vertex (may
not be feasible) of (LD) has its basic variables distributed like 1 — m% fori=1,---,d and its
nonbasic variables equal 0. Furthermore, every vertex of (LD) is nondegenerate with probability
one.
Proof. Let s = (0,sn)? be a vertex of (LD) and (B, N) be a partition of A with respect to
s, then
0,58)" = (eB,en)” — (BTy, NTy)"
implies that
€EB = BTy
and
sy =eny— NTy
eEN — NT(BT)_leB
=en —eL(B7IN)
=en —eL(B lamy1, -+ , B tay).

By lemma 2.1 we know s; is distributed like 1 —m% (j =1,---,d) conditioned on that s; > 0,
where n; (j = 0,---,d) are independently and identically distributed as Cauchy distribution.
It is also easy to see that s = (0, sy) is nondegenerate with probability one.

We will use Lemma 2.2 and Lemma, 2.3 to analyze the distribution functions of the compo-
nents of an optimal solution of (LP) and (LD).

3. A Stopping Criterion for Interior Point Algorithms

If the data for a LP problem are rational, then a primal-dual polynomial algorithm for LP
stops whenever it finds a pair of primal-dual feasible solutions (x, s) such that 27s < 27, where
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L is the input data length of the (LP) and (LD). This is the theoretical base of all polynomial
algorithms for LP. Since our LP model were randomly drawn from real numbers, therefore
we can’t use this stopping criterion any more. In this paper we will use a new theoretical
termination criterion of Mehrotra and Ye [7] as was used in Huang [3].

Define o(z) to be the index set such that

o(z) ={i:z; >0}.
It is well known that if (LP) and (LD) are both feasible, then there is a unique o* such that
for all strict complementary optimal solutions (z*,s*) of (LP) and (LD), we have
o(z*) = o, o(s®)=a*={1,---,n}/o".

Let matrix B consists of those columns in A corresponding to the partition o* and the rest
form matrix N, and (zp,zn) and (sp,sny) denote those corresponding primal-dual variables
respectively. Then, the optimal face for the primal is

Q,={2:Bzp=0b, zp>0, zny=0} (1)
and the dual optimal face is
Qd:{s:sN:cN—NTy, sy >0, sp=0} (2)
Define
& = rgin{max zj, st. xz€Qp}, (3)
j€o*
and
&a = xrelin{max sj, s.t. s€Qq}. (4)
jea*
Let
€ = min(gpagd)' (5)

Obviously, £ > 0. Note that if both primal and dual are nondegenerate, then both €2, and Q4
contains only one point. Let {(z*,s*)} be the solution sequence generated by a primal-dual
interior point algorithm (e.g., Kojima et al. [5]) such that

ok sk
i%j .
where Q(x) denotes a function such that Q(z) > cx for some constant ¢. We also denote O(z)
a function such that O(x) < ¢/(x) for some constants ¢'. Let

o* :{j:x;? Zsf}.

Then we have the following theorem.
Theorem 3.1137. Let {(z*,s*)} be a primal-dual solution sequence generated by an interior
point algorithm satisfying (6). If (z*)Ts* < O(£2/n), then

ok =o*.

Theorem 3.1 states that the optimal partition can be identified whenever the duality gap
is less than O(£?/n) for LP problems. A detailed proof can be found in Mehrotra and Ye [7]
and Huang [3]. We can find an optimal primal solution at that time by projecting z¥% onto
the hyperplane {zp : Bxg = b} and find an optimal dual solution similarly. Note that in this
paper we will focus on the random LP problem described in Section 2. Since the LP problem
is nondegenerate with probability one, the optimal partition B will be an optimal basis with
probability one. Thus, an optimal primal and dual solution pair can be obtained immediately by
computing z% = B~!b and y* = B~Tcp. Therefore, we can use z7s < O(£%/n) as a stopping
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criterion to terminate most primal-dual interior-point algorithms which generates sequences
satisfying (6). One draw back of theorem 3.1 is that we don’t know the value of £ before hand.
Therefore it only has theoretical value.

Now consider applying the stopping criterion in theorem 3.1 to our random model, since
(2°,5%) = (e, e) is a feasible primal-dual interior point, we can use it as an starting point to
solve the random LP. The number of iterations of interior point algorithms satisfying (6) will
depend on In ¢ as stated by following theorem.

Theorem 3.2. Let k = k(A) denote the number of iterations to solve the random LP problem
using an interior point algorithm satisfying (6) (e.g., Kojima et al. [5]), then

k= —=v/nO(ln¢) + O(v/nlnn).

The proof is easy and can be found in theorem 4.1 of Huang [3]. Hence the expected value
of In¢ will be a key to obtain the expected number of iterations for interior point algorithms.
Next section we will derive a bound for expected value of In £.

4. The Expected Number of Iterations

Let (z,s) be an optimal primal-dual solution of (LP)-(LD). Since the random (LP)-(LD)
model is nondegenarate with probability one, hence we can assume, without loss of generality,
that o* = {1,---,m}. Once o* is determined, then partition B and N of columns of A is
determined, and g and sy is also determined and their components are distributed as lemma
2.2 and lemma 2.3. Because the random model does not favor any particular index set as a

basis, therefore
1

Let Q, and Q4 be defined as in (1) and (2) of section 3, and z = (2B, 0) € Q, be a vertex

on primal optimal face of our model and s = (0,sy5) € Q4 be a vertex on dual optimal face.
Similar to section 3 we define, for our random model,

P(o* ={1,---,m})

& =min{xy, - ,xplo" = {1,---,m}},
Ed = min{sm+1, T ,sn|a* = {15 T 5m}}5
and
£= min(gpagd)' (7)

Now we are ready to derive a bound for expected value of In £. We prove some lemmas first.
The following lemma is basically the lemma 3.1 of Huang [3].
Lemma 4.1. Let z; (i = 1,---,n) be continuous random variables with probability density
functions (p.d.f.) fz;(u) (i=1,---,n), and let

y=min{z1, - ,Tpn}
with p.d.f. f,(u), then
fw) <3 Fauw).
i=1

The following lemma shows that fe(u), the p.d.f. of £, is bounded above by a constant.
Lemma 4.2. Let (z,s) be an optimal vertex of (LP) and (LD) and & be defined as in (7), let
fe(u) denotes the p.d.f. of &, then

1
fe(u) <nCY, for 0<u< 5
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Proof. From Lemma 2.2 and Lemma 2.3 we know x; (¢ = 1,---,m) and s; (j = m +
1,---,n) are distributed as 1+dX; /Ao and 1 —mmn; /no conditioned on that they are nonnegative
respectively, and X;/Ao and n;/nmo are distributed as the ratio of two independent Cauchy

distributions and are identically distributed as F%;’;—'_"l by [2]. Since P(z; > 0) = P(X\;/Xo >
—2) > % and P(s; > 0) = P(n;/no < &) > 3, therefore z; (conditioned on z; > 0) has the
p.d.f.
20 In |%|
Pl = g oy =1

where ¢; = P(z; > 0)7!, and s; (conditioned on s; > 0) has the p.d.f.

_ 20 In|2y
- 1—u\s ’
mn? (152)? =1

i:]_,...7m7

fsj(u) j=m—|—1,---,n,

where ¢, = P(s; > 0)"!. Let 0 < u < 1, from Lemma 4.1 we have

few) € — {3 fulW) + Y fiy(u)}

Cﬁn j=m+1
2me;  In|%FL| 2de, In|i=Y|
= C;”{ 2 (u—1)2 + 2 (1-u ;n }
m o 4m 4d
<O ¥ )
<nCy',

where the third inequality uses the fact In(1 + z) < z,# > =1,z # 0 and In|%Z}| = In(1 +
{2t 1)) < |2t -1

Now we are ready to give a lower bound for the expected value of In¢&.
Lemma 4.3. Let £ be defined as in (7), then

E(In¢) > -2n—2lnn—1.

Proof. Let a = nC}", then

E(In¢) = /Ooolnufg(u)du

= [(wufewdus [Cmufa
0

> /Oalnufg(u)du—lna/;o fe(u)du

> /a Inufe(u)du —Ina
0

But from lemma 4.2 we have

|/0;1nuf§(u)du| < /0; [ Inu| fe(u)du

ga/a | In u|du
0

=Ina+1.
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So,

/a Inufe(u)du > —Ina -1
0

and
E(ln¢) > —2Ina —1.

Since C7* < 2™ and InC]* < n, therefore we have

E(n¢) > -2lnnC™ -1
=—-2lnn-2InC* -1
> —2lnn—2n—1.

Combining theorem 3.2 and lemma 4.3 we have the following theorem.
Theorem 4.4. The expected number of iterations to solve the probabilistic LP model, using
primal-dual interior point algorithms satisfying (6), is bounded above by O(n'-®).

5. High Probability Analysis

In this section we will give a “high probability” analysis on the number of iterations required
for termination of some interior point algorithms. An event is said to be anticipated if the
probability that it occurs approaching one as n — oo. If an event is likely to happen for
large n, then it is called high probability event. The high probability analysis of this section
complements the expected result obtained in section 4.

Theorem 5.1. The anticipated number of iterations required to terminate the interior point
algorithms satisfying (6) is bounded above by O(n'?).
Proof. Since fe(u) <nC™ (0 < u < 1) by lemma 4.2, therefore

PO<é< )=/ng<u>du
0

2
n2Cm

“zom
< / nCydu
0

1
=
Hence 1
P> ——)>1——
€> mgm) > 1=
and 1
P(ln§>—lnn20;n)>1—ﬁ,
or

1
P(ln¢ > -0O(n)) >1- e
From theorem 3.2 we know that the anticipated number of iterations required to terminate the
interior point algorithms satisfying (6) is bounded above by O(n!-).

6. Further Remarks

In this paper we have shown that the expected number of iterations of some O(y/nL)
interior-point algorithms is bounded above by O(n!-®). The random LP problem that we dealt
with in this paper is an extension of the probabilistic LP model introduced by Todd [9]. We
also showed that the anticipated number of iterations needed to terminate these algorithms is
bounded above by O(n!®). We expect that the result in the paper can be extended to more
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general random LP models. For example, if the entries of A are independently and identically
distributed as stable distribution with characteristic function e=¢/** (0 < a < 2), then the
result in this paper corresponding to @ = 1 and the result in [3] corresponding to a = 2. It
would be interesting to see the result in this paper hold for 0 < a < 2. It will be a more difficult
task.

The probabilistic analysis in this paper has been concentrated on improve the factor L in the
worst-case complexity to O(n) in expected complexity. Another important issue of probabilistic
analysis of interior point algorithms is the average improvement per iteration compared to the
worst-case complexity analysis. This could lead to improve the factor of \/n in the worst-case
complexity. It remains an interesting and open problem.
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