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Abstract

In this paper, we consider multigrid methods for solving symmetric nonnegative definite
matrix equations. We present some interesting features of the multigrid method and prove
that the method is convergent in L2 space and the convergent solution is unique for such
nonnegative definite system and given initial guess.
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1. Introduction

Multigrid (MG) methods have been successfully applied to many scientific computing prob-
lems. The main advantage of this method is its asymptotically optimal convergence, i.e., the
computational work required to achieve a fixed accuracy is proportional to the number of dis-
crete unknowns. The convergence analysis of multigrid methods has been studied extensively
by many papers (see [3, 6, 9, 11, 12, 16, 17, 18]). Recent effort for indefinite systems has been
made in [5, 8, 21].

In this paper, we consider convergence of the multigrid method for linear systems with sym-
metric nonnegative definite matrices. Classical iterative algorithms, such as Jacobi iteration and
Gauss-Seidel iteration, for solving such nonnegative definite systems have been well studied in
many literatures (e.g., see [1]). Some semiconvergent iterative methods were discussed in [7,13].
An incomplete factorization and an extrapolation technique were presented in [15] and [19],
respectively. The convergence analysis of these classical iterations for the semidefinite problems
can be obtained due to simple structures of algorithms. It has been proved theoretically and
numerically that multigrid methods are usually more efficient than those classical iterations.
Some numerical investigation of multigrid methods has been presented for solving certain sin-
gular systems arising from eigenproblems, second-order elliptic PDEs with Neumann boundary
conditions, queuing networks, and image reconstruction ([3,5,10] ). Theoretical analysis for the
indefinite systems is less explored. The major difficulties lie on the fact that there exist infinite
many solutions for a consistent singular system and the structure of multigrid methods is more
complicated than those of classical iterations. The concept of classical convergence should be
modified. In fact, for a singular system, one only expects to find an approximation to one of
solutions. In this case, the main point for an iterative algorithm is as follows: when the iteration
stops, the difference between the iterative solution and some exact solution is less than a given
tolerance. In this paper, we shall prove that multigrid methods for symmetric nonnegative
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definite systems are convergent in a classical sense ( L2-norm ). Some important features will
be discussed. We present a convergence rate in a quotient space (in an energy norm) and an
asymptotic convergence rate in the classical sense (L2-norm). Thus, the multigrid method,
similar to some classical iterations, is a semiconvergent method and can be applied directly to
symmetric nonnegative systems of equations.

The paper is organized as follows. We present a multigrid algorithm and some new features
for the singular case in section 2. The general convergence theory of multigrid methods for
semidefinite problems are discussed in section 3.

2. Multigrid Algorithm

Let V m, m = 1, 2, ..., M , be nested nm dimensional Hilbert spaces with inner product (·, ·)
and ‖vm‖L2

= (vm, vm)1/2 . Let Am ≥ 0 be an nm × nm symmetric nonnegative definite
matrix on V m with null space N(Am). Denote the quotient space V m/N(Am) by Hm. Then
Am > 0 on Hm and Hm = span{vm

1 , vm
2 , ..., vm

lm
}, where vm

l , 1 ≤ l ≤ lm, are the eigenvectors
corresponding to nonzero eigenvalues and lm is the rank of the matrix Am.Let P m

H : V m → Hm

and P m
0 : V m → N(Am) be the orthogonal projection operators. For any v ∈ V m, we have

v = vH + v0 , where vH = P m
H v and v0 = P m

0 v.
Consider the matrix problem

A1U1 = R1, (2.1)

and assume that A1 is irreducible and symmetric nonnegative definite and the right-hand side
R1 is given properly such that there exists at least a solution for the above problem (2.1), i.e.,
R1 is in the quotient space H1.

Let Im+1
m : V m → V m+1 define a restriction and Im

m+1 : V m+1 → V m an interpolation,
1 ≤ m ≤ M − 1. Let Gm: V m × V m → V m be smoothing operators and F M represents
an exact solver, in which case F M (UM , RM ) = UM,∗, where AMUM,∗ = RM . The following
defines a standard µ-cycle multigrid algorithm ( called a V -cycle if µ = 1 and a W -cycle if
µ = 2 ) for solving

AmUm = Rm, 1 ≤ m ≤M. (2.2)

Standard MG Algorithm
(i) If m = M , then UM ← F M (UM , RM ).
(ii) If m < M , then
(1) Um ← Gm(Um, Rm) (pre-smoothing step);
(2) perform µ iterations of Standard MG Algorithm on level m + 1 (with fixed value of U m)

for the following correction problem, starting from zero initial value :

Am+1Um+1 = Im+1
m (Rm −AmUm), Um+1 ∈ V m+1 ; (2.3)

(3) Um ← Um + Im
m+1U

m+1 (correction);
(4) Um ← Gm(Um, Rm) (post-smoothing step).
Here we assume that the interpolation Im

m+1 is full rank and

Im+1
m = (Im

m+1)
T and Am+1 = Im+1

m AmIm
m+1. (2.4)

It has been noted that the standard MG algorithm is given in a recurrence form. The matrix
Am+1 is irreducible and symmetric nonnegative definite if Am possesses these properties. More
important features are given in the following lemma.
Lemma 2.1. Assume that Am is irreducible and symmetric nonnegative definite, and the
interpolation operator Im

m+1 is full rank. Then, we have

Im
m+1 : N(Am+1)→ N(Am),

and
Im+1
m : Hm → Hm+1.
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Proof. For any vm+1 ∈ N(Am+1),

Am+1vm+1 = 0.

By (2.4) ,

Im+1
m AmIm

m+1v
m+1 = 0

and therefore,

(AmIm
m+1v

m+1, Im
m+1v

m+1) = 0,

which leads to

Im
m+1v

m+1 ∈ N(Am). (2.5)

Thus, we have from (2.5) that

(Im+1
m um, vm+1) = (um, Im

m+1v
m+1) = 0, ∀um ∈ Hm, vm+1 ∈ N(Am+1), (2.6)

i.e. ,

Im+1
m : Hm → Hm+1, Im

m+1 : N(Am+1)→ N(Am).

It follows from lemma 2.1 that the right-hand side Rm belongs to the quotient space Hm

for each level, 1 ≤ m ≤M . The following corollary is obtained immediately.
Corollary. If the system (2.1) is consistent, the system (2.3) is also consistent for all m.

In level m+1, the correction Um+1 can be decomposed as

Um+1 = Um+1
H + Um+1

0 .

It follows from lemma 2.1 that Im
m+1U

m+1
0 must be in the null space N(Am) and

P m
H Im

m+1U
m+1 = P m

H Im
m+1U

m+1
H . (2.7)

It is obvious that the component of the correction Im
m+1U

m+1 on the quotient space Hm is

independent of Um+1
0 , i.e., the correction does not bring any component in N(Am+1) produced

in the coarse grid into the component in Hm on the fine grid. The standard MG algorithm
and the assumption (2.4) guarantee that such a property holds in all levels. On other side, the
component in the null space can be controlled by suitably choosing the smoothing operator.
The convergence of the standard MG algorithm will be discussed in the following section.

3. The Convergence Analysis for the Semidefinite Systems

In addition to the Euclidean inner product (·, ·), we use the energy inner product: (u, v)1 =
(Au, v), along with its associated norm ‖ · ‖1 ≡ ‖ · ‖. The energy norm is a norm in the quotient
space Hm ( seminorm in V m ). Note that

(Amu, v) = (AmuH , vH), for u, v ∈ V m.

The following notations will be used in this paper:
Um,s : approximation solution in level m produced by the the standard MG algorithm in

the s-th V-cycle.
Um,∗ : solution of (2.2), in which Um,∗

H is unique and P m
0 Um,∗ may be some vector in the

null space.
Um,s(α) , α = 0, 1, 2, 3 : approximation solutions in level m and the s-th V-cycle before

step (1) and after steps (1), (3) and (4) in the standard MG algorithm, respectively, where
Um,s = Um,s(0) and Um,s+1 = Um,s(3).

em,s = Um,s − Um,∗
H and em,s(α) = Um,s(α) − Um,∗

H .
εm
H : convergence factor of the multigrid method in the quotient space Hm which is defined

by ‖em,s+1‖ ≤ εm
H‖e

m,s‖.
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It should be noted that em,s and em,s(α) do not represent error measurements. They do not
converge to zero in general when s→∞. We will omit the superscript m if no confusion arises.
Throughout this section c will denote a generic constant which is independent of s.

The convergence analysis in the vector space V m is the key to an iterative algorithm. Since
there are infinite many solutions in the singular problems (2.2), the sequence Um,s, if convergent,
will converge to one of solutions, which depends upon the initial guess. Clearly the general
solution Um,∗ of (2.2) can be decomposed into Um,∗ = Um,∗

H + Um,∗
0 and the component Um,∗

H

is unique in the quotient space. Then only the component in the null space is dependent upon
the initial guess Um,0.

Since the residual of Um,s is defined by

Rm −AmUm,s = Am(Um,∗ − Um,s) = Am(Um,∗
H − Um,s

H )

and
λm

min‖U
m,∗
H − Um,s

H ‖L2
≤ ‖Rm −AmUm,s‖L2

≤ λm
max‖U

m,∗
H − Um,s

H ‖L2
,

where λm
max and λm

min denote maximal eigenvalue and minimal nonzero eigenvalue of the ma-
trix Am, respectively, the convergence in the quotient space is equivalent to one of residual.
Therefore, the iteration can stop in practical computation when the residual Rm −AmUm,s is
less than a given tolerance in L2 norm.

We consider the convergence of general multigrid (MG) method (including GMG and AMG)
for the symmetric and nonnegative definite problems. We need to consider two problems for
A ≥ 0: (1) Components of sequence of approximation solutions produced by MG method are
bounded in null spaces ( Computation can not be completed if the components in the null
space tend to infinite); (2) The sequence of approximation solutions produced by MG method
is convergent in vector spaces V m.

Let A = A1 − A2 be a splitting, where A1 is nonsingular. A general iterative scheme for
(2.2) is given by

Unew = £Uold + £rR, (3.1)

where £ = (A1)
−1A2,£r = (A1)

−1.
A complete convergence analysis of the iterative scheme (3.1) were given in [1] by introducing

the semiconvergence for matrix A ≥ 0.
First, the boundness is considered.

Lemma 3.1. If the conditions
(i) Am is symmetric nonnegative definite;
(ii) MG method is convergent with factor εm

H in the quotient space Hm ;
(iii) the smoothing operators Gm is of the form (3.1) with semiconvergent matrix £m,
are satisfied, then

‖Um+1,s(3)‖L2
≤ c‖e

m,s(0)
H ‖L2

.

Proof. We use mathematical induction to prove the theorem. Let λm
max and λm

min denote
maximal eigenvalue and minimal nonzero eigenvalue of the matrix Am, respectively.

First, two-level grids (1, 2) are considered.
The approximation after the pre-smoothing step in level 1 is given by

U1,s(1) = U
1,s(1)
H + U

1,s(1)
0 .

By (3.1) and noting the fact that the null space of A1 is the same as the eigenspace of £1

corresponding to the eigenvalue 1, we have

e1,s(1) = £1e1,s(0) = e
1,s(0)
0 + £1e

1,s(0)
H ,

which implies

‖e
1,s(1)
H ‖L2

≤ ‖e
1,s(0)
H ‖L2

,
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where the semiconvergence is used. The defect d1,s = R1 −A1U1,s(1) is estimated by

‖d1,s‖L2
≤ λ1

max‖e
1,s(1)
H ‖L2

≤ c‖e
1,s(0)
H ‖L2

,

since

d1,s = d1,s
H = −A1e1,s(1) = −A1e

1,s(1)
H .

In level 2, we have

‖R2,s‖L2
≤ ‖I2

1‖L2
‖d1,s‖L2

≤ c‖e
1,s(0)
H ‖L2

,

since

R2,s = I2
1 (R1 −A1U1,s(1)) = I2

1d1,s.

In level 2 (the coarsest grid), we use the same iterative algorithm as in smoothing step until
convergent. Then We see that

e2,s,i = (£2)ie2,s(0) = −(£2)iU2,∗
H

and

e2,s = lim
i→∞

e2,s,i = −( lim
i→∞

(£2)i)U2,∗
H ,

where e2,s,i denotes the i-th iterative value for e2,s on the coarsest grid and U2,s(0) = 0 is used.
The definition of semiconvergence implies that

‖U2,s(3)‖L2
≡ ‖U2,s+1‖L2

≤ ‖U2,∗
H ‖L2

+ ‖e2,s‖L2
≤ c‖U2,∗

H ‖L2
≤

c

λ2
min

‖R2,s‖L2
≤ c‖e

1,s(0)
H ‖L2

,

where A2U2,∗
H = R2,s is used.

Now, assume that

‖Um+2,s(3)‖L2
≤ c‖e

m+1,s(0)
H ‖L2

= c‖Um+1,∗
H ‖L2

, (3.2)

since Um+1,s(0) = 0.
We are to prove that in the finer grid

‖Um+1,s(3)‖L2
≤ c‖e

m,s(0)
H ‖L2

. (3.3)

The approximation after the pre-smoothing step in level m+1 is given by

Um,s(1) = U
m,s(1)
H + U

m,s(1)
0 .

Then, we have in the similar argument to the previous one

‖e
m,s(1)
H ‖L2

≤ ‖e
m,s(0)
H ‖L2

,

and

‖dm,s‖L2
≤ λm

max‖e
m,s(1)
H ‖L2

≤ c‖e
m,s(0)
H ‖L2

.

In level m + 1, we have from the standard MG algorithm that

‖Rm+1,s‖L2
≤ ‖Im+1

m ‖L2
‖dm,s‖L2

≤ c‖e
m,s(0)
H ‖L2

,

and

‖Um+1,s(1)‖L2
≤ ‖£m+1

r ‖L2
‖Rm+1,s‖L2

≤ c‖e
m,s(0)
H ‖L2

.

The corrected solution and new approximation after the post-smoothing step in the level
m + 1 are given by

Um+1,s(2) = Um+1,s(1) + Im+1
m+2Um+2,s(3)

and

Um+1,s(3) = £m+1Um+1,s(2) + £m+1
r Rm+1,s,
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respectively. Using the previous inequalities, assumption (3.2) and estimation

‖Um+1,∗
H ‖L2

≤
1

λm+1
min

‖Rm+1,s‖L2
,

we have
‖Um+1,s(3)‖L2

≤ c‖e
m,s(0)
H ‖L2

.

The proof is completed.
Theorem 3.1. If the conditions (i)-(iii) in lemma 3.1 are satisfied, then the sequence U m,s

produced by the MG algorithm is convergent in the vector space V m.
Proof. We have the correct approximation and the approximation on the (s+1)-th V-cycle

in level m
Um,s(2) = Um,s(1) + Im

m+1U
m+1,s(3)

and
Um,s+1 ≡ Um,s(3) = £mUm,s(2) + £m

r Rm,

which imply that

em,s+1 = £mem,s(2) = £mem,s(1) + £mIm
m+1U

m+1,s(3) = (£m)2em,s + £mIm
m+1U

m+1,s(3) .

In view of recurrence, we have

em,s = (£m)2sem,0 + ((£m)2s−1Im
m+1U

m+1,0(3)

+(£m)2s−3Im
m+1U

m+1,1(3) + · · ·+ £mIm
m+1U

m+1,s−1(3)).

Thus, we get for i > j, that

em,i − em,j

= (£m)2j((£m)2(i−j) − I)em,0 + [(£m)2j−1((£m)2(i−j) − I)Im
m+1U

m+1,0(3)

+(£m)2j−3((£m)2(i−j) − I)Im
m+1U

m+1,1(3) + · · ·+ £m((£m)2(i−j) − I)Im
m+1U

m+1,j−1(3)]
+[£m(£m)2(i−j−1)Im

m+1U
m+1,j(3) + £m(£m)2(i−j−2)Im

m+1U
m+1,j+1(3)

+ · · ·+ £mIm
m+1U

m+1,i−1(3)].
(3.4)

Since £m is semiconvergent, there exists the decomposition (see [1])

£m = P

[

I1 0
0 K

]

P−1, (3.5)

where I1 is the identity matrix and ρ(K) < 1. Then,

(£m)2j((£m)2(i−j) − I)

= P

[

I1 0
0 K2j

] [

0 0

0 K2(i−j) − I2

]

P−1 = P

[

0 0

0 K2j(K2(i−j) − I2)

]

P−1.

By some basic argument in linear algebra [1], for any ξ > 0, there exists a jξ such that

‖Kj‖
1/j
L2
≤ (ρ(K) + ξ), for j > jξ. We see that

‖(£m)2j((£m)2(i−j) − I)‖L2
≤ c(ρ(K) + ξ)2j .

The following estimate is obtained by using lemmas 3.1 and convergence in the quotient
space

‖(£m)2j−1((£m)2(i−j) − I)Im
m+1U

m+1,0(3) + (£m)2j−3((£m)2(i−j) − I)Im
m+1U

m+1,1(3)

+ · · ·+ £m((£m)2(i−j) − I)Im
m+1U

m+1,j−1(3)‖L2

≤ c((ρ(K) + ξ)2j−1 + (ρ(K) + ξ)2j−3εm
H + · · ·+ (ρ(K) + ξ)(εm

H)j−1)
≤ c((εm)2j−1 + (εm)2j−2 + · · ·+ (εm)j)
≤ c(εm)j ,

where
εm = max(εm

H , ρ(K) + ξ). (3.6)
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The last term in (3.4) is estimated as follows

‖£m(£m)2(i−j−1)Im
m+1U

m+1,j(3) + £m(£m)2(i−j−2)Im
m+1U

m+1,j+1(3)

+ · · ·+ £mIm
m+1U

m+1,i−1(3)‖L2

≤ c(‖Um+1,j(3)‖L2
+ ‖Um+1,j+1(3)‖L2

+ · · ·+ ‖Um+1,i−1(3)‖L2
)

≤ c(εm
H)j .

Then, for any ξ > 0 and j > jξ,

‖em,i − em,j‖L2
≤ c(εm)j . (3.7)

em,s = Um,s − Um,∗
H is convergent since εm < 1, ρ(K) < 1 and ξ is arbitrary. The convergence

of Um,s follows immediately.
Theorem 3.2. If the conditions (i)-(iii) in lemma 3.1 are satisfied, then for ξ > 0, there exists
an sξ such that

‖Um,s − Um,∗‖L2
≤ c(εm)s, for s > sξ,

where εm is given in (3.6) and Um,∗ is a solution of (2.2).
Proof. Since em,i = Um,i − Um,∗

H ,

em,i − em,j = Um,i − Um,j .

It follows from (3.7) that
‖Um,i − Um,j‖L2

≤ c(εm)j . (3.8)

By theorem 3.1, Um,s is convergent in the vector space. In view of the assumption, Um,s
H of

the sequence produced by the standard MG algorithm is convergent to Um,∗
H in the quotient

space. It is clear that sequence Um,s
0 converges to a vector of null space. Therefore, Um,s =

Um,s
H +Um,s

0 → Um,∗ where Um,∗ is a solution of (2.2). Let i→∞ in (3.8). Then for any ξ > 0
and j > jξ ,

‖Um,∗ − Um,j‖L2
≤ c(εm)j ,

The proof is completed.
Remark 1. There are some interesting features in our convergence analysis. The asymptotic
convergence factor in L2-norm given in theorem 3.2 depends upon the two factors, εm

H and ρ(K),
which is larger. The former is the convergence rate in the quotient space Hm and the latter
represents the asymptotic convergence rate of the iterative scheme (3.1), which usually is some
classical iteration. Let

Um,s = Um,s
H + Um,s

0

and Um,s → Um,∗. Some features are summarized below.
• In the classical sense of convergence (L2-norm in the vector space V m), the standard multi-

grid algorithm for solving the singular problems has the same convergence rate as those classical
iterations. It is reasonable since the interpolation is required to reduce only the component in
the quotient space Hm.
• In the sense of convergence in the quotient space Hm, general multigrid algorithms for

solving the symmetric nonnegative definite systems have the same convergence rate as the
algorithms for solving symmetric positive definite systems.
• Since one only expects to find the approximation to some solution of problem, the con-

vergence in the quotient space seems to be more realistic in practical computations. When the
computation stops after S V-cycles, the difference between the approximation and some exact
solution in L2-norm is

‖Um,S − (Um,∗
H + Um,S

0 )‖L2
= ‖Um,S

H − Um,∗
H ‖L2

≤ c(εm
H)S ,

which gives the same convergence rate as in the quotient space.
Remark 2. The Gauss-Seidel and damped Jacobi iterations are semiconvergent (see [1]).
Therefore, theorems 3.1 and 3.2 demonstrate that the convergence of the MG method in the
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quotient space implies one in the vector space in L2 norm if the Gauss-Seidel or damped Jacobi
iterations is chosen as the smoothing operator.
Remark 3. In [12], J. Mandel, S. McCormick and J. Ruge proved convergence of the multi-
grid method for the symmetric positive definite systems of linear equations, i.e., convergence
in the quotient space for the symmetric nonnegative definite systems. The convergence of two-
level grids of the AMG methods for the symmetric positive definite systems is proved in [4,6,16].
Under certain conditions, some properties of matrices , for example, symmetry, diagonally dom-
inance and positive definite property, can be kept in all level. Hence, we can have convergence
of the AMG methods in a fixed number of levels ( the convergence factor is dependent on the
number of levels). Therefore, convergence of the MG methods for the symmetric nonnegative
definite systems can be obtained from these results and our theorems under certain conditions
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