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Abstract

In this paper we give a convergence theorem for non C° nonconforming finite element to
solve the elliptic fourth order singular perturbation problem. Two such kind of elements, a
nine parameter triangular element and a twelve parameter rectangular element both with
double set parameters, are presented. The convergence and numerical results of the two
elements are given.
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1. Introduction
We consider the following elliptic singular perturbation problem [:

2A% —Au=f inQ 1
{ u = g—x =0 on 0f) (1)
where f € L%(Q),A = 68—:2 + 68—;2 is the Laplace operator, A? = (66—; + 68—;2)2, QCRisa
bounded polygonal domain, 9f is the boundary of Q, 6% denotes the outer normal derivative
on 99, and ¢ is a real parameter such that 0 < ¢ < 1. When ¢ tends to zero, (1) formally
degenerates to Poisson’s equation. Hence, (1) is a plate model which may degenerate toward
an elastic membrane problem.

A conforming plate element should have C! continuity which makes the element compli-
cated, so nonconforming plate elements are widely used. For convergence criterion there are
Patch-Test['% which is convenient to use for engineers, and Generalized Patch-Test!?) which is
a sufficient and necessary condition. According to Generalized Patch-Test, Professor Shi pre-
sented F-E-M-Test[!!] which is easier to use. Many successful nonconforming plate elements
[5:7.:3,12,13,14] have been presented, but not all of them are convergent for (1) uniformly respect
to e.

It is proved!! that the non-C° nonconforming plate element— Morley’s element 2 —is
not convergent for (1) when ¢ — 0. In [1] a C° nonconforming plate element is presented,
which is convergent for (1) uniformly in €. In this paper we study the convergence of non-
C° nonconforming plate elements for (1). In section 2 we give a general convergence theorem
for non-C” nonconforming plate elements solving (1). In section 3 the double set parameter
method to construct nonconforming finite element is presented. In section 4 a triangular and a
rectangular non-C° nonconforming plate elements 34 are presented and their convergence for
(1) uniformly in € is proved. In section 5 some numerical results are given.

(2]
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2. A Convergence Theorem

The inner product on L?(Q2) will be denoted by (-,-), H™(Q) is the usual Sobolev space of
functions with partial derivatives of order less than or equal to m in L?(£2), and the correspond-
ing norm by || - ||m,o- The seminorm derived from the partial derivatives of order equal to m
is denoted by | - | 0. The space H§*(Q2) is the closure in H™ () of C§°(£2). Alternatively, we
have

0
HYSQ) = {v e H (Q);v]oq = 0}, HA(Q) = {v € HX(Q);v = a_z =0, 0n00}
Let Du be the gradient of u and D?u = (%)gxg be the 2 x 2 tensor of the second order

partial derivatives.
The weak form of (1) is : find u € HZ(2) such that

e2a(u,v) + b(u,v) = (f,v) Yo € HE(Q) (2)

where

a(u,v) = /QD2u : D*vdx, b(u,v) = /QDu - Dvdx. (3)

(5]

From Green’s formulal® | it is easy to see that

/ D?*u : D*vdx = / Aulvdx Yu,v € HF(Q) (4)
Q Q

However this identity does not hold on the noncomforming finite element spaces. We use
the form (3) like in [1].

Assume that {7},} is a quasi-uniform ! and shape-regular® family of triangulations of €,
here the discretization parameter h is a characteristic diameter of the elements in 77,. We use
Vi, to denote the finite element space which is piecewise polynomial space and satisfies the
boundary conditions of (1) in some way. Then the finite element approximation of (2) is: find
up € Vi, such that

2an(un, vn) + bn(un, vn) = (f,vn) Yo € Vj, (5)
where
ap(u,v) = Z / D*u : D*vdzx, bp(u,v) = Z Du - Dvdx.
Kem, VK Kem, VK
We define a seminorm ||| - |||, by !
lwll[2, = ean(w, w) + bn(w, w) = w3, + [wlf (6)

where | - |12,h = ZK |- |12,Kai =12

The interpolation operator derived by V}, is denoted by II,. Let Il = II|i for K € Tp.
P,,(K) is the polynomial space of degree less than or equal to m on K. Let F' denote any edge
of an element.
Theorem 1. Let u and uy, be solutions of (2)and (5) respectively. If Vi, satisfies the following
conditions:
(cI) - e, s @ norm on Vj,.
(C,Q) VK € Tp,Vv € PQ(K),HK’U =.
(c8) Yup, € Vi, vy is continuous at the vertics of elements and is zero at the vertics on 0f).
(c4) Yo, € Vi, fF vpds s continuous across the element edge F' and is zero on F C 0N).

(¢5) Yy, € Vy, fF %ds is continuous across the element edge F and is zero on F C 0f).
Then

[|u —un|l|e,n < chlelulz,a + Jul2,0 + || fllo) (7)
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where ¢ is independent of €, h and u.
Proof. That the second Strang Lemma 2] is used to problem (2) and (5) results(!,

E. p(u,wy,
|||u—uh|||e,hSc( inf [lju— wnlll + sup M) ®)
VR E wp €Vh |||wh|||€7h
where
E. p(u,wp) = e2an(u, wp) + by (u, wp) — (f,wp) 9)

Obviously the discrete problem (5) has a unique solution from condition c¢1) by Lax-Milgram
Lemma. By condition ¢2) and interpolation theory Bl we have

. 1
inf [ = onlllen < [[lu = Mpulllen = (*fu = Mpul3 ), + Ju = Taul ;)2
onevi, : :

< ch(eluls,n + |ul2,0). (10)

Since
DQ’LL : D2wh = Aquh + (2312u812wh — 811u822wh — (922U(911wh).

From Green’s formula [21[]

8wh

/ AulNwpdr = Au
K

dsf/ VAuNVwpdz.
K on K

0%u Ow,  O%udwy,

/K 2812u812wh — anu(’)ggwh — agguan’wh)dl‘ = /BK(MK - @%) S

Then
ap(u, wp,) / D?u : D*>wpdx
KeT

52u awh 82u Gwh
- Z {/aK [(A“_ @) an + 950m D3 }dﬂc—/KVAquhdx}. (11)

KeTy

where % is the tangent derivative on the edges of elements.

Let w,IL be the piecewise interpolation polynomial of wy such that:

For triangular elements, VK € Ty, wf|x € Po(K), w} |k (a;) = wn(ai), [p wids = [ wpds, F; €
OK,i=1,2,3.

For rectangular elements, wj|x € Po(K) U {2y, 2y}, wj|k(ai) = walai), [p whds =
fFi wpds, F; € 0K,i=1,2,3,4.

Then from conditions ¢3) and c4) we have

w) € H&(Q),/ (wy, — w})ds = 0,VF C OK,VK € T, (12)
F

(f,w}) Z / (2N — Au)w} dx

KeT,

=- Z / (e*VAu — Vu) - Vujdx (13)
KeTy,
Substituting (11) and (13) into (9) results:

0w Owy, 0%u Owy,
Benlun 0n) _KeT {/BKE {(Au 0s2 ) on + 0sOn 0Os ds
h
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f/ 2V Au - V(wy, — wi)dx + /
K

KVU~V(wh w{l)dm(f,whw,ll)} . (14)

Now we estimate every term in (14).
From conditions ¢3) and ¢5) we have

/ Own, df/ Own ds = 0,YF c dK,VK € T,,
on Os

where [v] is the jump of v across F. Using the formal skill for nonconforming elements of plate
bending problem Bl we get

2
Z / { au)a(;uh+aaau aguh]ds
i Jox n sOn Os

< chluls.olwnlzn < che™ uls,al|[whl]-n. (15)

From interpolation theory!® we have

Z/VAU th—wh)d

KT

< chluls,lwn|2,n < che™Huls ol l[whll|en- (16)
|(f, wn — wh)| < el flloallwn —whllog
< ch| fllo,elwnlin < chl flloelllwnlll,n- (17)

Let Ilpv = 3 [ vdz. From (12) [ V(wy — w})de = [, (wn — w})nds = 0, then

Z/VU V(wpn, — w})d

KT

Z / (Vu — o Vu)V(wy, — w})da

KT

< > IVu—=ToVaullox|wn — wi |1,k < chlulz,alwnlin
KeT,

< chlulz,qlllwallle.n- (18)

Substituting (15)-(18) into (14) we get
[ Een(u, wn)| < ch(elulz.a + |ulz0 + (| fllo,o)ll[wnlllen (19)

Then (7) follows from (8) (10) (19).
Remark 2.1. Morley’s element does not satisfy (c4) and has been proved!] not convergent for

2).

3. Two Non-C" Nonconforming Elements with Double Set Parameters

1. A Nine Parameter Triangular Element[3].

Given a triangle K with vertices a; = (x4, ;),1 < i < 3, we denote by F;, n;, s;, respectively
, the side opposite to a;, the unit outward normal and the tangential vectors on F;. Let A; be
the area coordinates for the triangle K, A be the area of K, v;,viz,v;y be the function value
of v and its first derivatives at a;, and a2, ass, az; be the midpoints of Fs, Fy, F5 respectively.
Put

b; = Yi+1 = Yi—1,C = Ti—1 — Ti41,T5 = (bi+1bi71 + Ci+1ci71)/A;
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t; = F?/A,i=1,2,3(mod 3).
The shape function space is

P(K) = P3(K) = span{A1, A2, A3, A1 A2, AaAs, AzAq,

Mo — A2, A3 — Ao A2 A2\ — A3 A s} (20)
Degrees of freedom are
D(v) = (d1(v), -+ ,d1o(v)) (21)
Where di(v) =wv;,1=1,2,3,d4(v) = v(alg) ds (v ) = v(az3), d6( ) = v(as1),
—2 [, Stds,ds(v) = =2 [, §ds,do(v) = =2 [, Gtds,

le( 4fF )\QBUdS
Y € Pg (K), suppose that

v = [1A1 + Bada + B33 + Badi Ao + B5Aa A3 + BeAz A

+87(AFA2 — AM1A3) + Bs(A3As — A2A3) + Bo(A3A1 — A3A]) + BroAideAs (22)
Substituting (22) into (21) results
Cb=D(v) (23)
where b = (81,---,B10) ", the interpolation matrix is
1 0 0
0 1 0
0 0 1
101
2 3 0 1 0 0
0 5 2+ O i 0
C= 1 301 4 1
3 05 0 0 3
t1 T3 T2 4 -4 4 —%1 0 %1 %
& b _E b _b &
rs tQ 1 f tz f 3 3 0 G
oot -2 B L o & _n ok
t1 ors orp 2 22h Z -3 -2 &8 10%10
It is easy to see that
det C t%t%éo (24)
etC = ——= .
36
Nodal parameters are defined by
Q('U) = (Ulavlm;vly;U27'02:67'U2yvv37'0317'03y)—r' (25)

We approximate the degrees of freedom (21) in terms of the nodal parameters (25) as follows
dz(’U) :’L)i,i: 1,2,3. (26)

dy = Hs(a12),ds = Hi(aas),ds(v) = Ha(as1),here H;(x,y) is the Hermite interpolation polyno-
mial of order 3 of v on Fj,7 = 1,2, 3, resulting

v1 + V2 + F[(v1g — vz )es — (Viy — voy)bs]
v + v3 + 1 [(V2p — v3z)c1 — (vay — vy )] (27)
v3 +v1 + 3 [(V3e — Viz)c2 — (V3y — V1y)b2]

d4—

1
i
deé
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Let |F;| be the measure of F;. For the degrees of freedom d7(v),dg(v),dgo(v) we use the
trapezoidal rule, giving

dr = b1(vag + v32) + c1(vay + v3y) + O(|F1]?|v]3,K,00)
dg = bQ('ng —+ 11195) + CQ(’Ugy + 'Uly) + O(|F2|3|’U|31K,Oo) (28)
dg = b3(viz + v2z) + c3(viy + v2y) + O(|F3]%[0]3, 1 00)

and dyp(v) = —4 fFl Ag[l(g—Z)ds, here I; is the linear interpolation operator on Fj, we get

2
dio(v) = 5[(2021 + v32)b1 + (202 + vy )] + O(|F1*|v]3 .00

Then we have
D(v) = GQ(v) +4(v) (29)
where §(v) = (0,0,0,0,0,0,£(v),e(v),e(v),e(v)) T, e(v) = O(h*|v|3.K.00)

1 0 0
0 0 0 1 0 0
0 0 0 0 0 0 1 0 0
N R
0 0 0 i a _uh 1 _a by
G= 1 c2 bo 6 80 80 % 582 b82
2 8 8 2 8 8
0 0 0 0 bl C1 0 b1 C1
0 b2 Co 0 0 0 0 b2 Co
0 bg C3 0 bg C3 0 0 0
4bq 4cq 2b1 2¢q
0 0 0 0 F F 0 F F
Neglecting the term 6(v) and combining (23) we get
=C7'GQ(v). (30)

(22) and (30) are the real expression of the shape function v, @Q(v) is the real nodal parameters.

2. A Twelve Parameter Rectangular Element [

Suppose the rectangular element K is on the (x,y) plane with the center (xg,yo), its sides
are parallel to axes of coordinates and the side lengths are 2a and 2b respectively, (xz, vi), Fi =
[ai,a;4+1],1 < i < 4 are the vertices and the sides of K. The reference element Kisa square
on the plane (¢, 1) with center (0,0), @y(—1, —1),dx(1, —1),@s(1,1),a4(—1,1) are 4 nodes of K.
Under the affine mapping £ = (z — z0)/a,n = (y — yo)/b, K — I?, and v(z,y) = v(,n).

We chose degrees of freedom as

D(v) = (di(v),- - ,d12(v))" (31)

where

d;(v) =v;,1 <i <4

ds(v) = L [, vds = fif(«s 1)de, dg(v) = & [, vds = [, 5(1,n)dn,

dr(v) = =1 [, vds = [ T(E, )d,g dg( =1 [, vds = fjla(—l,n)dm

dg(v>:fbfmf’”drfizz 1)de,

dio(v) = 3 sz ‘%ds = 11 gZ(l n)dn,

di1(v) = -3 st aﬁid f 1 1)dg,

di2(v) = § fF4 geds 7] 1 ag 1 ).
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This means that degrees of freedom are the function values of v at 4 nodes, the mean values of
v and the integrations of out normal derivatives of v along 4 sides.
The shape function space is

P(K) = P3y(K) U {z*,y"} = Span{p1,- - ,p12} (32)
where p1 = (1 -1 —n),p2 = 1+ (1 —n)
p3=11+E1+n),pa=31-A+n)
ps=(1—&),ps = (1 —n?),pr = (1= &*)n,ps = (1 — n?)E,
po=1—=E&pro=1—n*)npn=010-E)Ep2=(1—n?)n°.
Let

Yo e P(K), wv=/0p+-+Pi2p12 (33)

Substituting (33) into (31), resulting

D(v) = Cb (34)
where b = (ﬁla e aﬁlQ)T
1 00 0
0 1 0 0
0 0 1 0
0 0 0 1
1 10 0 2 0 -3 0 0 0 & 0
o 11 o0 0 3 0 3 0 0 0 %
C= 4 4 4
o o1 1 4 0 4 o0 0 0 £ 0
1 00 1 0 4% 0-32 0 0 0 &
—%—%%%04%00—404
—???—?—4003—40—40
—?—???0—4300—4074
-3 3+ 3 -3 4 0 0 % -4 0 4 0
It is easy to see that
224
The nodal parameters are taken as
Q(U) = (Ulavlmavlya T ,'U4,’U4I,’U4y)—r. (36)

The following methods are used to approximate the degrees of freedom D(v) into the linear
combinations of nodal parameters Q(v):

dz(’l)) = ’Ui,i = 1,2,374. (37)

divqg = ‘F | fF (v)ds,1 < i < 4, here H;(v) is the Hermite interpolation polynomial of order
3 of von Fj,1 g 1 < 4, giving

(v) = v1 4+ v2 + &(v1p — Vo) + O(h*v]4, K,00)
(v) =ve +v3 + 5(112 —v3y) + O(h* |4 k,00)
d7(v) = v3 +v4 + 2(—v3y + Vaz) + O(h*|V|4,k,00)
(v) = v +va + 5 (viy — vay) + O(h*|v]4,K,00)

(38)



192 S.C. CHEN, Y.C. ZHAO AND D.Y. SHI

For dg(v) — dq2(v) trapezoidal rule of numerical integration is used, resulting

do(v) = b(vly + vay) + O(h*|vl3, K 00)
dio(v) = a(vay +v35) + O(R3|v]3,K,00)
di1(v) = b(v3y + vay) + O(h’|v]3 Kc,00)
di2(v) = a(vig + v4a) + O(h3|v|3,K,oo)

The above discretizing can be expressed as
D(v) = GQ(v) +(v) (40)

where §(v) = (0,0,0,0,e1(v),e1(v), e1(v),£1(v), £2(v), £2(v), 22(v),22(v)) T, £1(v) = O(h*|v]4. K 0 ),
e2(v) = O(h*[v]3,k,00),

SO Q OO0 oOCovwRo OO

O Tt OO O oweTo OO

ISiNeNeNoNoNoNol e NoNe Nl
OO O WTO O OO o OO
SO ODOO = EHOOF
\

SO OO OO OO OoOHR

OO OO DD OO OO
OO OO oOUWEro OO O
oo Q oowr o oo O
OO OO, M, OO
Q OO o oOwWRo OO

|
O ot O oW o O OO

o

Similarly, neglecting the term &(v), we get the real shape function v which is still as (33),
and b = C~1GQ(v).
Theorem 2. The above nine parameter triangle element and twelve parameter rectangle ele-
ment are convergent for (2) uniformly in e and

[llu = unllle,n < chleluls,o + lulz,o + ([ fllo.) (41)

where ¢ is independent of €, h and u.

Proof. Tt is only needed to check the conditions c1)-c5) of Theorem 1 for both elements.

Suppose v, € V3, and |||vp]||e,n = 0, this means vp|x =const, VK € Ty, then vy, = 0 in
follows from vp|an = 0 and vy, is continuous at the nodes of 75. So ||| - |||e,n is @ norm on V}
and c1) is satisfied for both elements.

Yov € Py(v), from (29) and (40) we have §(v) = 0, then D(v) = GQ(v) is hold exactly, and
D(MIgv) = GQ(v) = D(v), thus ITv = v. This means c2) is satisfied for both elements.

From dy (v) — d3(v) of (21) and d;(v) — d4(v) of (31), as well as (26) and (37) we know v is
continuous at nodes of 7j, so ¢3) is satisfied for both elements.

For the triangle element, VF C 0K,VK € T, from di(v) — dg(v) of (21), Yv € Vj,v
is continuous at two ends and midpoint of F, so [ 7 vds is continuous across F' by Simpson
formula of numerical integration. For the rectangle element | = vds is continuous across F' from
ds(v) — dg(v) of (31). Thus c4) is satisfied for both elements.

Obviously ¢b) is satisfied for both elements from d7(v) — dg(v) of (21) and dg(v) — d12(v) of

(31).
4. Numerical Experiments

Consider problem (1) with Q = [0,1]*> € R? and f = £?A%u — Au, where u = (sin(r)
sin(ray )20,
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For a comparison with Example 4.1 of [1], we compute the relative error in the energy norm,
[l —up|||en /|||l ]|en, for different values of & and h. Here ul denote the interpolant of u on
a finite element space V}, . We also consider the case ¢ = 0, the poisson problem with Dirichlet
boundary conditions, and the biharmonic problem A2u = f.

In the figures we show errors in the norm |u — up|;p, ! = 0,1 for each mesh respectively and
for different values of € and h. The norm | - |; 5 is defined as

max
|al=L,a€M(Th)

lglin = |D%g(a)|,Vg €V

where M (T},) is the set of vertices of all K € T},.

Experiment 1. To solve the problem (1) with the twelve parameter rectangular element in
Section 4, we use two rectangular meshes which are shown in Figure 1 (case n=8) . The
relative errors measured by the energy norm for mesh 1 and mesh 2 are given in Table 1 and
Table 2 respectively. The errors measured by the norm |- |1n,0 = 0,1 for mesh 1 and mesh 2
are shown in Figure 2 and Figure 3 respectively.

Experiment 2. To solve the same problem as FExperiment 1 with the nine parameter triangular
element in Section 4, we use four triangular meshes which are shown in Figure 4 (case n=8).
The relative errors measured by the energy norm for mesh 8 to mesh 6 are given in Table 3 to
Table 6 respectively. The errors measured by the norm | - |;n,l = 0,1 for mesh 8 to mesh 6 are
shown in Figure 5 to Figure 8 respectively.

From the above numerical experiments it can be seen that these numerical results are con-
sistent with the theoretical analysis.

Figure 1: Two subdivisions: mesh 1 ( the left) and mesh 2 (the right)

Table 1. The relative error measured by the energy norm for mesh 1

e\n 27 27 2° 20
20 8.16e-003 | 2.85e-003 | 7.69e-004 1.96e-004
272 6.37e-003 | 2.23e-003 | 6.01e-004 1.53e-004
24 1.37e-003 | 4.89¢-004 | 1.33e-004 3.40e-005
276 7.95¢-005 | 2.97e-005 | 9.34e-006 2.49¢-006
278 1.40e-005 | 6.91e-007 | 3.12e-007 1.27e-007
2—10 1.14e-005 | 7.15e-008 | 3.46e-009 1.96e-009
Poisson 1.12e-005 | 5.33e-008 | 2.19e-010 8.67e-013
Biharmonic | 8.31e-003 | 2.90e-003 | 7.84e-004 2.00e-004
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Table 2. The relative error measured by the energy norm for mesh 2

e\n 2? 2* 2° 20
20 3.11e-003 | 1.92e-003 | 6.04e-004 1.62e-004
272 2.40e-003 | 1.50e-003 | 4.72e-004 1.27e-004
24 4.57e-004 | 3.17e-004 | 1.04e-004 2.81e-005
276 5.72e-005 | 1.48e-005 | 6.36e-006 1.98e-006
28 9.23e-005 | 8.65e-006 | 5.46e-007 7.63e-008
2710 9.74¢-005 | 1.05e-005 | 8.39e-007 5.22¢-008
Poisson 9.78e-005 | 1.06e-005 | 8.82e-007 6.24e-008
Biharmonic | 3.17e-003 | 1.96e-003 | 6.16e-004 1.66e-004
10° — 10° ‘ ‘ —— g=2°
—— g=272 —— g=072
—— g=27 107 —— g=27
—b— g=070 ) —— =06
10’2 —e— g=p78 —e— g=p78
— 8=2710 —— 8:2710
- —*= Poisson - —*= Poisson
= —— Biharnomic = 4 | — Biharnomic
T 710
S107* =
1076 \ 10_5 L
3
8 16 2 64 8 16 2 64
n n
Figure 2: The error of u;, measured by the norms |- |5, = 0,1 for mesh 1
10° — o =20
—— g2 —— g=272
gt —— g=74
> g=p =2t
107t | == g=28 » =
—— 10 10 1| = =210
< —* Poisson < —* Poisson
56 —— Biharnomic = —— Biharnomic
Iazlo"’— E
107
10°
10°
8 16 32 64 8 16 32 64
n n

Figure 3: The error of up measured by the norms

i, 1 =0,1 for mesh 2
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g P

Figure 4: Four triangulations: mesh 3 ( the top left), mesh 4 (the top right), mesh5 (the bottom left)
and mesh6 (the bottom right)

Table 3. The relative error measured by the energy norm for mesh 3

e\n 27 27 2° 2°
20 3.89e-002 | 9.89¢-003 | 2.46e-003 6.14e-004
272 3.09e-002 | 7.76e-003 | 1.92e-003 4.80e-004
24 8.16e-003 | 1.80e-003 | 4.32e-004 1.07e-004
26 3.16e-003 | 2.75e-004 | 3.90e-005 8.34e-006
28 3.18¢-003 | 2.29e-004 | 1.50e-005 1.14e-006
2—10 3.19e-003 | 2.32¢-004 | 1.54e-005 9.73e-007
Poisson 3.20e-003 | 2.32¢-004 | 1.55e-005 9.90e-007
Biharmonic | 3.96e-002 | 1.01e-002 | 2.50e-003 6.26e-004

Table 4. The relative error measured by the energy norm for mesh 4

e\n 2? 2* 2° 20
20 4.39e-002 | 1.24e-002 | 3.21e-003 8.12e-004
272 3.50e-002 | 9.74e-003 | 2.51e-003 6.35e-004
24 9.19e-003 | 2.25e-003 | 5.64e-004 1.41e-004
276 3.11e-003 | 2.93e-004 | 4.77e-005 1.08¢-005
28 2.98¢-003 | 2.02¢-004 | 1.36e-005 1.19e-006
2—10 2.98e-003 | 2.02e-004 | 1.30e-005 8.19e-007
Poisson 2.98e-003 | 2.02e-004 | 1.30e-005 8.19e-007
Biharmonic | 4.47e-002 | 1.26e-002 | 3.27e-003 8.27e-004
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Table 5. The relative error measured by the energy norm for mesh 5

e\n 27 27 2° 20

20 3.68e-001 | 2.61e-001 | 1.96e-001 1.65e-001

20 3.16e-001 | 2.17e-001 | 1.60e-001 1.34e-001

20 9.84e-002 | 5.88e-002 | 4.08e-002 3.33e-002

20 1.63e-002 | 5.23e-003 | 3.19e-003 2.56e-003

20 1.08e-002 | 1.18e-003 | 2.62e-004 1.66e-004

20 1.06e-002 | 9.58e-004 | 8.37e-005 1.49e-005
Poisson 1.06e-002 | 9.47e-004 | 7.28e-005 5.11e-006
Biharmonic | 3.73e-001 | 2.64e-001 | 1.99e-001 1.68e-001

Table 6. The relative error measured by the energy norm for mesh 6

e\n 27 27 2° 2°
20 3.35e-001 | 2.64e-001 | 2.21e-001 2.04e-001
272 2.86e-001 | 2.20e-001 | 1.82e-001 1.67e-001
24 8.82e-002 | 6.03e-002 | 4.73e-002 4.27e-002
276 1.67e-002 | 5.57e-003 | 3.73e-003 3.31e-003
278 1.23e-002 | 1.37e-003 | 3.06e-004 2.14e-004
2710 1.21e-002 | 1.14e-003 | 9.60e-005 1.86e-005
Poisson 1.21e-002 | 1.13e-003 | 8.31e-005 5.80e-006
Biharmonic | 3.39e-001 | 2.68e-001 | 2.24e-001 2.07e-001
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Figure 5: The error of u; measured by the norms |- |;,5,l = 0,1 for mesh 3
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Figure 6: The error of u; measured by the norms |- |5, = 0,1 for mesh 4
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Figure 7: The error of u; measured by the norms |- |5, = 0,1 for mesh 5
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Figure 8: The error of u; measured by the norms |- |;,5,l = 0,1 for mesh 6
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